CHAPTER – 01 RATIONAL NUMBER

Exercise 1.1

1. Add the following:

(i)
$$\frac{4}{7}$$
 and $\frac{5}{7}$
(ii) $\frac{7}{-13}$ and $\frac{4}{-13}$

Solution:

(i) Given

 $\frac{4}{7}$ and $\frac{5}{7}$

Adding both the numbers

 $\frac{4}{7} + \frac{5}{7} = \frac{(4+5)}{7}$ We get, $= \frac{9}{7}$ \therefore The addition of $\frac{4}{7}$ and $\frac{5}{7}$ is $\frac{9}{7}$ (ii) Given $\frac{7}{-13} \text{ and } \frac{4}{-13}$ Consider $\frac{7}{-13} = \frac{\{7 \times (-1)\}}{\{-13 \times (-1)\}}$ $= \frac{-7}{13}$ Also,

$$\frac{4}{-13} = \frac{\{4 \times (-1)\}}{\{-13 \times (-1)\}}$$
$$= \frac{-4}{13}$$

Now,

Adding both the numbers

$$\left(\frac{7}{-13}\right) + \left(\frac{4}{-13}\right) = \frac{(-7-4)}{13}$$

We get,

$$=\frac{-11}{13}$$

2. Simplify:

(i)
$$\frac{5}{11} + 4\frac{3}{9}$$

(ii) $\frac{-4}{9} + 2\frac{12}{13}$

Solution:

(i) Given

$$\frac{5}{11} + 4\frac{3}{9}$$

This can be written as,

$$\frac{5}{11} + \frac{39}{9}$$

Taking L.C.M we get,

$$\frac{5}{11} = \frac{(5 \times 9)}{(11 \times 9)}$$

We get,

$$=\frac{45}{99}$$

$$\frac{39}{9} = \frac{(39 \times 11)}{(9 \times 11)}$$

We get,

$$=\frac{429}{99}$$

Now,

Adding both the numbers,

$$\frac{45}{99} + \frac{429}{99} = \frac{(45 + 429)}{99}$$
$$= \frac{474}{99}$$
$$99 \ \boxed{474} \ 4$$
$$\underline{396}$$
$$78$$

$$=4\frac{78}{99}$$

Dividing numerator and denominator by 3,

$$=4\frac{(78\div3)}{(99\div3)}$$

We get,

$$=4\frac{26}{33}$$

(ii) Given

$$\frac{-4}{9} + 2\frac{12}{13}$$

This can be written as,

 $\frac{-4}{9} + \frac{38}{13}$

Taking L.C.M we get,

 $\frac{-4}{9} = \frac{(-4 \times 13)}{(9 \times 13)}$ We get, $= \frac{-52}{117}$ $\frac{38}{13} = \frac{(38 \times 9)}{(13 \times 9)}$ We get, $= \frac{342}{117}$

Now,

Adding both the numbers,

 $\frac{-52}{117} + \frac{342}{117} = \frac{(-52 + 342)}{117}$ We get, $= \frac{290}{117}$

$$117 \boxed{290} 2$$

$$\underline{234} \\ 56$$

$$= 2 \frac{56}{117}$$

3. Verify commutative property of addition for the following pairs of rational numbers.

(i) $\frac{-4}{3}$ and $\frac{3}{7}$

(ii)
$$\frac{-2}{-5}$$
 and $\frac{1}{3}$
(iii) $\frac{9}{11}$ and $\frac{2}{13}$

Solution:

(i)
$$\frac{-4}{3}$$
 and $\frac{3}{7}$

Adding both the numbers,

$$=\frac{-4}{3}+\frac{3}{7}$$

Taking L.C.M. we get,

$$= \frac{(-28+9)}{21} = \frac{-19}{21}$$

And

$$\frac{3}{7} + \left(\frac{-4}{3}\right)$$

Again taking L.C.M. we get,

$$= \frac{(9-28)}{21} = \frac{-19}{21}$$

Therefore,

$$\frac{-4}{3} + \frac{3}{7} = \frac{3}{7} + \left(\frac{-4}{3}\right)$$

(ii) $\frac{-2}{-5}$ and $\frac{1}{3}$

Consider,

 $\frac{-2}{-5} = \frac{\{-2 \times (-1)\}}{\{-5 \times (-1)\}}$ = $\frac{2}{5}$ Now, $\frac{2}{5} + \frac{1}{3}$ Taking L.C.M. we get, = $\frac{(6+5)}{15}$ = $\frac{11}{15}$ And $\frac{1}{3} + \frac{2}{5}$ Again taking L.C.M. we get,

 $=\frac{(5+6)}{15}$ $=\frac{11}{15}$

Therefore,

 $\frac{\frac{2}{5}}{\frac{1}{5}} + \frac{1}{\frac{3}{3}} = \frac{1}{\frac{3}{3}} + \frac{2}{\frac{5}{5}}$ (iii) $\frac{9}{11}$ and $\frac{2}{13}$

Adding both the numbers,

$$=\frac{9}{11}+\frac{2}{13}$$

Taking L.C.M. we get,

$$=\frac{(117+22)}{143}$$

We get,

 $=\frac{139}{143}$ And $\frac{2}{13} + \frac{9}{11}$ Again taking L.C.M. we get, $=\frac{22 + 117}{143}$ We get, $=\frac{139}{143}$ Therefore, $\frac{9}{11} + \frac{2}{13} = \frac{2}{13} + \frac{9}{11}$

4. Find the additive inverse of the following rational numbers:

(i)
$$\frac{2}{-3}$$

(ii) $\frac{-7}{-12}$

Solution:

(i) Given

-3

Additive inverse of

$$\frac{2}{-3} = -\left(\frac{2}{-3}\right)$$

We get,

$$=\frac{2}{3}$$

(ii) Given

$$\frac{-7}{-12}$$

Additive inverse of

$$\frac{-7}{-12} = -\left(\frac{-7}{-12}\right)$$

We get,

$$=\frac{-7}{12}$$

5. Verify that -(-x) = x for (i) $x = \frac{10}{13}$ (ii) $x = \frac{-15}{17}$ Solution:

(i)
$$x = \frac{10}{13}$$

 $-x = \frac{-10}{13}$
 $-(-x) = -(\frac{-10}{13})$
 $= \frac{10}{13}$
Hence, $-(-x) = x$
(ii) $x = \frac{-15}{17}$
 $-x = \frac{15}{17}$
 $-(-x) = -(\frac{15}{17})$

$$=\frac{-15}{17}$$

Hence, -(-x) = x

6. Using appropriate properties of addition, find the following:

(i)
$$\frac{4}{5} + \frac{11}{7} + \left(\frac{-7}{5}\right) + \left(\frac{-2}{7}\right)$$

(ii) $\frac{3}{7} + \frac{4}{9} + \left(\frac{-5}{21}\right) + \left(\frac{2}{3}\right)$

Solution:

$$(i) \frac{4}{5} + \frac{11}{7} + \left(\frac{-7}{5}\right) + \left(\frac{-2}{7}\right)$$
$$= \frac{4}{5} + \left(\frac{-7}{5}\right) + \frac{11}{7} + \left(\frac{-2}{7}\right)$$
$$= \frac{\{4 + (-7)\}}{5} + \frac{\{11 + (-2)\}}{7}$$
$$= \frac{(4 - 7)}{5} + \frac{(11 - 2)}{7}$$

On further calculation, we get,

$$=\frac{-3}{5}+\frac{9}{7}$$

Now, taking L.C.M. we get,

$$= \frac{(-21+45)}{35}$$
$$= \frac{24}{35}$$
$$(ii) \frac{3}{7} + \frac{4}{9} + \left(\frac{-5}{21}\right) + \frac{2}{3}$$
$$= \frac{3}{7} + \left(\frac{-5}{21}\right) + \frac{4}{9} + \frac{2}{3}$$

On simplifying, we get,

$$= \frac{\{9 + (-5)\}}{21} + \frac{(4+6)}{9}$$
$$= \frac{4}{21} + \frac{10}{9}$$

Taking L.C.M. we get,

$$=\frac{(12+70)}{63} = \frac{82}{63}$$

$$63 \boxed{82} 1$$

$$\underline{63}$$

$$\underline{63}$$

$$19$$

$$= 1 \frac{19}{63}$$

7. Fill in the blanks:

(i)
$$\left(\frac{-4}{9}\right) + \left(\frac{2}{7}\right)$$
 is a Number
(ii) $\left(\frac{43}{89}\right) + \left(\frac{-51}{47}\right) = \dots + \left(\frac{43}{89}\right)$
(iii) $\frac{2}{7} + \dots = \frac{2}{7} = 0 + \dots$
(iv) $\frac{4}{11} + \left\{\left(\frac{-7}{12}\right) + \frac{9}{10}\right\} = \left\{\left(\frac{4}{11}\right) + \left(\frac{-7}{12}\right)\right\} + \dots$
(v) $\frac{5}{9} + \dots = 0 = \left(\frac{-5}{9}\right) + \dots$

Solution:

(i)
$$\left(\frac{-4}{9}\right) + \left(\frac{2}{7}\right)$$
 is a rational number
(ii) $\left(\frac{43}{89}\right) + \left(\frac{-51}{47}\right) = \left(\frac{-51}{47}\right) + \left(\frac{43}{89}\right)$ (Commutative property)

(iii)
$$\frac{2}{7} + 0 = \frac{2}{7} = 0 + \frac{2}{7}$$
 (Commutative property)
(iv) $\frac{4}{11} + \left\{ \left(\frac{-7}{12} \right) + \frac{9}{10} \right\} = \left\{ \left(\frac{4}{11} \right) + \left(\frac{-7}{12} \right) \right\} + \frac{9}{10}$ (Associative property)
(v) $\frac{5}{9} + \left(\frac{-5}{9} \right) = 0 = \left(\frac{-5}{9} \right) + \frac{5}{9}$ (Existance of zero property)

8. If
$$a = \frac{-11}{27}$$
, $b = \frac{4}{9}$ and $c = \frac{-5}{18}$, then verify that $a + (b + c) = (a + b) + c$
Solution:

Given

$$a = \frac{-11}{27}, b = \frac{4}{9} and c = \frac{-5}{18}$$

 $a + (b + c) = (a + b) + c$

Consider,

L.H.S. = a + (b + c)
=
$$\frac{-11}{27} + \left\{\frac{4}{9} + \left(\frac{-5}{18}\right)\right\}$$

= $\frac{-11}{27} + \left(\frac{4}{9} - \frac{5}{18}\right)$

On simplification, we get

$$= \frac{-11}{27} + \frac{(8-5)}{18}$$
$$= \frac{-11}{27} + \frac{3}{18}$$

Taking L.C.M. we get,

$$= \frac{(-22+9)}{54} = \frac{-13}{54}$$

R.H.S. =
$$(a + b) + c$$

= $\left(\frac{-11}{27} + \frac{4}{9}\right) + \left(\frac{-5}{18}\right)$

On further calculation, we get

$$= \left\{ \frac{(-11+12)}{27} \right\} + \left(\frac{-5}{18} \right)$$
$$= \left(\frac{1}{27} \right) + \left(\frac{-5}{18} \right)$$
$$= \frac{(2-15)}{54}$$
$$= \frac{-13}{54}$$

Hence,

L.H.S. = R.H.S.

Exercise 1.2

1. Subtract:

(i) $2\frac{3}{5}$ From $\frac{-3}{7}$ (ii) $\frac{-4}{9}$ From $3\frac{5}{8}$ (iii) $-3\frac{1}{5}$ From $-4\frac{7}{9}$

Solution:

(i) $2\frac{3}{5} \operatorname{From} \frac{-3}{7}$ $= \frac{-3}{7} - \left(\frac{13}{5}\right)$

Taking L.C.M. we get,

$$=\frac{(-15-91)}{35}$$
$$=\frac{-106}{35}$$

$$35 \boxed{106} 3$$
$$\underline{105} 1$$

 $=-3\frac{1}{35}$

Hence, the subtraction of $2\frac{3}{5}$ from $\frac{-3}{7}$ is $-3\frac{1}{35}$

(ii)
$$\frac{-4}{9}$$
 From $3\frac{5}{8}$

This can be written as,

$$\frac{-4}{9} \operatorname{From} \frac{29}{8}$$
$$= \frac{29}{8} - \left(\frac{-4}{9}\right)$$
$$= \frac{29}{8} + \frac{4}{9}$$

Taking L.C.M. we get,

$$= \frac{(261 + 32)}{72}$$
$$= \frac{293}{72}$$
$$72 \boxed{293} 4$$
$$\frac{288}{5}$$
$$= 4 \frac{5}{72}$$

(iii) $3\frac{1}{5}$ From $-4\frac{7}{9}$

This can be written as,

$$= \frac{-16}{5} \text{ from } \frac{-43}{9}$$
$$= \frac{-43}{9} - \left(\frac{-16}{5}\right)$$
$$= \frac{-43}{9} + \frac{16}{5}$$

Taking L.C.M. we get,

_ (- 215 + 144)
45
We get,
$=\frac{-71}{45}$
45 71 1
45
26
$=-1\frac{26}{45}$

2. Sum of two rational numbers is. $\frac{3}{5}$. If one of them is. $\frac{-2}{7}$, find the other.

Solution:

Given

Sum of two rational numbers is $\frac{3}{5}$

One of the number is $\frac{-2}{7}$

Hence, the other number is calculated as follows:

Other number
$$=$$
 $\frac{3}{5} - \left(\frac{-2}{7}\right)$
 $=$ $\frac{3}{5} + \frac{2}{7}$
Taking L.C.M. we get,
 $=$ $\frac{(21+10)}{35}$

$$=\frac{31}{35}$$

Therefore, the other number is $\frac{31}{35}$

3. What rational number should be added to $\frac{-5}{11}$ to get $\frac{-7}{8}$?

Solution:

Given

According to the statement,

Sum of two numbers $=\frac{-7}{8}$ One number $=\frac{-5}{11}$

Hence, the other number is calculated as below:

Other number
$$=$$
 $\frac{-7}{8} - \left(\frac{-5}{11}\right)$
 $= \frac{-7}{8} + \frac{5}{11}$
Taking L.C.M. we get,

 $=\frac{(-77+40)}{88}$ $=\frac{-37}{88}$

Therefore, the other number is $\frac{-37}{88}$

4. What rational number should be subtracted from $-4\frac{3}{5}$ to get $-3\frac{1}{2}$?

Solution:

The required number can be calculated as follows:

$$\left(-4\frac{3}{5}\right) - \left(-3\frac{1}{2}\right)$$

This can be written as,

$$\left(-\frac{23}{5}\right) + \left(\frac{7}{2}\right)$$

On further calculation, we get

$$= \frac{(-46+35)}{10}$$
$$= \frac{-11}{10}$$
$$= -1\frac{1}{10}$$

Therefore, the required number is $-1\frac{1}{10}$

5. Subtract the sum of $\frac{-5}{7}$ and $\frac{-8}{3}$ from the sum of $\frac{5}{2}$ and $\frac{-11}{12}$.

Solution:

Sum of $\frac{-5}{7}$ and $\frac{-8}{3}$ can be calculated as, $\frac{-5}{7}$ And $\frac{-8}{3} = \left(\frac{-5}{7}\right) + \left(\frac{-8}{3}\right)$

On further calculation, we get

$$=\frac{(-15-56)}{21}$$
$$=\frac{-71}{21}$$

Now,

Sum of $\frac{5}{2}$ and $\frac{-11}{12}$ can be calculated as, $\frac{5}{2} + \left(\frac{-11}{12}\right) = \frac{5}{2} - \frac{11}{12}$

On simplification, we get,

$$=\frac{(30-11)}{12}$$

$$= \frac{19}{12}$$
Now,
 $\frac{19}{12} - \left(\frac{-71}{21}\right)$
 $= \frac{19}{12} + \frac{71}{21}$
Taking L.C.M. we get,
 $= \frac{(133 + 284)}{84}$
 $= \frac{417}{84}$

$$84 \overline{\smash{\big|}417\big|} 4$$

$$\underline{336} \\ 81$$

$$= 4 \frac{81}{84}$$

$$= 4 \frac{27}{28}$$

6. If
$$x = \frac{-4}{7}$$
 and $y = \frac{2}{5}$, then verify that $x - y \neq y - x$

Solution:

Given

$$x = \frac{-4}{7}$$
 and $y = \frac{2}{5}$

Now,

$$x-y=\frac{-4}{7}-\left(\frac{2}{5}\right)$$

$$=\frac{-4}{7}-\frac{2}{5}$$

Taking L.C.M. we get,

$$= \frac{(-20 - 14)}{35}$$
$$= \frac{-34}{35}$$

And

$$y - x = \frac{2}{5} - \left(\frac{-4}{7}\right)$$
$$= \frac{2}{5} + \frac{4}{7}$$

Taking L.C.M. we get,

$$= \frac{(14+20)}{35} = \frac{34}{35}$$

Therefore, $x - y \neq y - x$

7. If
$$x = \frac{4}{9}$$
, $y = \frac{-7}{12}$ and $z = \frac{-2}{3}$, then verify that $x - (y - z) \neq (x - y) - z$

Solution:

Given

$$x = \frac{4}{9}, y = \frac{-7}{12} \text{ and } z = \frac{-2}{3}$$
$$x - (y - z) \neq (x - y) - z$$
$$L.H.S. = x - (y - z)$$
$$= \frac{4}{9} - \left\{\frac{-7}{12} - \left(\frac{-2}{3}\right)\right\}$$

$$=\frac{4}{9}-\left(\frac{-7}{12}+\frac{2}{3}\right)$$

On further calculation, we get

$$= \frac{4}{9} - \left\{ \frac{(-7+8)}{12} \right\}$$
$$= \frac{4}{9} - \left(\frac{1}{12} \right)$$
$$= \frac{4}{9} - \frac{1}{12}$$

Taking L.C.M. we get,

$$=\frac{(16-3)}{36}$$
$$=\frac{13}{36}$$

Now,

R.H.S = (x - y) - z $= \left\{\frac{4}{9} - \left(\frac{-7}{12}\right)\right\} - \left(\frac{-7}{12}\right)$ $= \left(\frac{4}{9} + \frac{7}{12}\right) + \frac{7}{12}$

On further calculation, we get

$$= \left\{ \frac{(16+21)}{36} \right\} + \frac{7}{12}$$
$$= \frac{37}{36} + \frac{7}{12}$$

Again taking L.C.M. we get,

$$=\frac{(37+21)}{36} = \frac{58}{36}$$

Therefore, $x - (y - z) \neq (x - y) - z$

8. Which of the following statement is true / false?

(i) $\frac{2}{3} - \frac{4}{5}$ is not a rational number. (ii) $\frac{-5}{7}$ is the additive inverse of $\frac{5}{7}$.

(iii) 0 is the additive inverse of its own.

(iv) Commutative property holds for subtraction of rational numbers.

(v) Associative property does not hold for subtraction of rational numbers.

(vi) 0 is the identity element for subtraction of rational numbers.

Solution:

(i) $\frac{2}{3} - \frac{4}{5}$

Taking L.C.M

$$=\frac{(10-12)}{15}$$
$$=\frac{-2}{15}$$

Is a rational number

Hence, the given statement is false

(ii) The given statement is **true**

(iii) The given statement is **true**

(iv) Let us take,

 $\frac{5}{4} - \frac{3}{4} = \frac{2}{4}$

We know that,

$$\frac{3}{4} - \frac{5}{4} = \frac{-2}{4}$$

 $\frac{2}{4} \neq \frac{-2}{4}$

Therefore, the given statement is false

(v) The given statement is **true** (vi) Let us take, $\frac{7}{8} - 0 = \frac{7}{8}$ But $0 - \frac{7}{8} = \frac{-7}{8}$ $\frac{7}{8} \neq \frac{-7}{8}$

Therefore, the given statement is false

Exercise 1.3

1. Multiply and express the result in the lowest form:

(i)
$$\frac{6}{-7} \times \frac{14}{30}$$

(ii) $6\frac{2}{3} \times 1\frac{2}{7}$
(iii) $\frac{25}{-9} \times \frac{-3}{10}$
Solution:
(i) $\frac{6}{-7} \times \frac{14}{30}$
 $= \frac{(6 \times 14)}{(-7 \times 30)}$
We get,
 $= \frac{84}{-210}$
 $= \frac{(84 \div 42)}{(-210 \div 42)}$
 \therefore HCF of 84, 210 = 42
 $= \frac{2}{-5}$
 $= \frac{\{2 \times (-1)\}}{\{-5 \times (-1)\}}$
 $= \frac{-2}{5}$

(ii) $6\frac{2}{3} \times 1\frac{2}{7}$

This can be written as,

$$= \frac{20}{3} \times \frac{9}{7}$$
$$= \frac{(20 \times 9)}{(3 \times 7)}$$
$$= \frac{180}{21}$$
$$= \frac{(180 \div 3)}{(21 \div 3)}$$

∵ HCF of 180, 21 = 3

We get,

$$=\frac{60}{7}$$
$$=8\frac{4}{7}$$

(iii)
$$\frac{25}{-9} \times \frac{-3}{10}$$

$$= \frac{\{25 \times (-3)\}}{\{(-9) \times 10\}}$$

$$= \frac{-75}{-90}$$

$$= \frac{\{-75 \div (-15)\}}{\{-90 \div (-15)\}}$$
:: HCF of 75, 90 = 15
We get,

$$= \frac{5}{6}$$

2. Verify commutative property of multiplication for the following pairs of rational numbers:

(i)
$$\frac{4}{5}$$
 and $\frac{-7}{8}$
(ii) $13\frac{1}{8}$ and $1\frac{1}{8}$
(iii) $\frac{-7}{-20}$ and $\frac{5}{-14}$
Solution:
(i) $\frac{4}{5}$ and $\frac{-7}{8}$
Now,
 $\frac{4}{5} \times \frac{-7}{8}$
 $= \frac{\{4 \times (-7)\}}{5} \times 8$
We get,
 $= \frac{-28}{40}$
And
 $\frac{-7}{8} \times \frac{4}{5}$
 $= \frac{(-7 \times 4)}{(8 \times 5)}$
We get,
 $= \frac{-28}{40}$
Therefore, $\frac{4}{5} \times (\frac{-7}{8}) = \frac{-7}{8} \times \frac{4}{5}$

(ii)
$$13\frac{1}{8}$$
 and $1\frac{1}{8}$
This can be written as,

$\frac{40}{3}$ and $\frac{9}{8}$
Now,
$\frac{40}{3} \times \frac{9}{8}$
$=\frac{(40\times9)}{(3\times8)}$
$=\frac{360}{24}$
We get,
= 15
And
$\frac{9}{8} \times \frac{40}{3}$
$=\frac{(9\times40)}{(8\times3)}$
$=\frac{360}{24}$
We get,
= 15
Therefore, $\frac{40}{3} \times \frac{9}{8} = \frac{9}{8} \times \frac{40}{3}$
(iii) $\frac{-7}{-20}$ and $\frac{5}{-14}$
$\frac{-7}{-20} = \frac{\{-7 \times (-1)\}}{\{-20 \times (-1)\}}$
$=\frac{7}{20}$
Now, $\frac{7}{20}$ and $\frac{5}{-14}$

$$\frac{\frac{7}{20} \times \frac{5}{-14}}{\frac{-14}{20}} \times (-14)$$

$$= \frac{\frac{35}{-280}}{-280}$$
and
$$\frac{\frac{5}{-14} \times \frac{7}{20}}{-14 \times 20}$$

$$= \frac{\frac{(5 \times 7)}{(-14 \times 20)}}{\frac{35}{-280}}$$

Therefore, $\frac{7}{20} \times \frac{5}{-14} = \frac{5}{-14} \times \frac{7}{20}$

3. Verify the following and name the property also:

(i)
$$\frac{3}{5} \times \left(\frac{-4}{7} \times \frac{-8}{9}\right) = \left(\frac{3}{5} \times \frac{-4}{7}\right) \times \frac{-8}{9}$$

(ii) $\frac{5}{9} \times \left(\frac{-3}{2} + \frac{7}{5}\right) = \frac{5}{9} \times \frac{-3}{2} + \frac{5}{9} \times \frac{7}{5}$

Solution:

$$(i) \frac{3}{5} \times \left(\frac{-4}{7} \times \frac{-8}{9}\right) = \left(\frac{3}{5} \times \frac{-4}{7}\right) \times \frac{-8}{9}$$
$$L.H.S. = \frac{3}{5} \times \left(\frac{-4}{7} \times \frac{-8}{9}\right)$$
$$= \frac{3}{5} \times \frac{(-4 \times -8)}{7 \times 9}$$
$$= \frac{3}{5} \times \frac{32}{63}$$
$$= \frac{3 \times 32}{5 \times 63}$$

We get,

$$= \frac{96}{315}$$
R.H.S. $= \left(\frac{3}{5} \times \frac{-4}{7}\right) \times \frac{-8}{9}$

$$= \frac{-12}{35} \times \frac{-8}{9}$$

$$= \frac{\{-12 \times (-8)\}}{(35 \times 9)}$$
We get,

$$= \frac{96}{315}$$
Hence, $\frac{3}{5} \times \left(\frac{-4}{7} \times \frac{-8}{9}\right) = \left(\frac{3}{5} \times \frac{-4}{7}\right) \times \frac{-8}{9}$

The name of the property is Associative property of multiplication

(ii)
$$\frac{5}{9} \times \left(\frac{-3}{2} + \frac{7}{5}\right) = \frac{5}{9} \times \frac{-3}{2} + \frac{5}{9} \times \frac{7}{5}$$

L.H.S = $\frac{5}{9} \times \left(\frac{-3}{2} + \frac{7}{5}\right)$
= $\frac{5}{9} \times \left\{\frac{(-15+14)}{10}\right\}$
We get,
= $\frac{5}{9} \times \left(\frac{-1}{10}\right)$
= $\frac{-5}{90}$
= $\frac{(-5 \div 5)}{(90 \div 5)}$

We get,

$$= \frac{-1}{18}$$

R.H.S. $= \frac{5}{9} \times \frac{-3}{2} + \frac{5}{9} \times \frac{7}{5}$

On further calculation, we get,

$$=\frac{-15}{18}+\frac{35}{45}$$

Taking L.C.M. we get,

$$= \frac{(-75 + 70)}{90}$$
$$= \frac{-5}{90}$$
$$= \frac{(-5 \div 5)}{(90 \div 5)}$$
$$= \frac{-1}{18}$$

Hence, L.H.S. = R.H.S.

4. Find the multiplication inverse of the following:

(i) 12
(ii)
$$\frac{2}{3}$$

(iii) $\frac{-4}{7}$
(iv) $\frac{-3}{8} \times \left(\frac{-7}{13}\right)$

Solution:

- (i) The multiplication inverse of 12 is $\frac{1}{12}$
- (ii) The multiplication inverse of $\frac{2}{3}$ is $\frac{3}{2}$

(iii) The multiplication inverse of $\frac{-4}{7}$ is $\frac{7}{-4}$

$$(iv) \frac{-3}{8} \times \left(\frac{-7}{13}\right) = \frac{21}{104}$$

The multiplication inverse of $\frac{21}{104}$ is $\frac{104}{21} = 4\frac{20}{21}$

5. Using the appropriate properties of operations of rational numbers, evaluate the following:

(i)
$$\frac{2}{5} \times \frac{-3}{7} - \frac{1}{14} - \frac{3}{7} \times \frac{3}{5}$$

(ii) $\frac{8}{9} \times \frac{4}{5} + \frac{5}{6} - \frac{9}{5} \times \frac{8}{9}$
(iii) $\frac{-3}{7} \times \frac{14}{15} \times \frac{7}{12} \times \left(-\frac{30}{35}\right)$

Solution:

(i)
$$\frac{2}{5} \times \frac{-3}{7} - \frac{1}{14} - \frac{3}{7} \times \frac{3}{5}$$

= $\frac{2}{5} \times \frac{-3}{7} - \frac{3}{7} \times \frac{3}{5} - \frac{1}{14}$

Taking common term, we get

$$= \frac{-3}{7} \left(\frac{2}{5} + \frac{3}{5}\right) - \frac{1}{14}$$
$$= \frac{-3}{7} \times \frac{(2+3)}{5} - \frac{1}{14}$$
$$= \frac{-3}{7} \times 1 - \frac{1}{14}$$
$$= \frac{-3}{7} - \frac{1}{14}$$

Taking L.C.M. we get,

$$=\frac{(-6-1)}{14}$$

$$= \frac{-7}{14} = \frac{(-7 \div 7)}{(14 \div 7)}$$

We get,

$$=\frac{-1}{2}$$

(ii)
$$\frac{8}{9} \times \frac{4}{5} + \frac{5}{6} - \frac{9}{5} \times \frac{8}{9}$$

= $\frac{8}{9} \times \frac{4}{5} - \frac{9}{5} \times \frac{8}{9} + \frac{5}{6}$

Taking common terms, we get,

$$= \frac{8}{9} \left(\frac{4}{5} - \frac{9}{5}\right) + \frac{5}{6}$$
$$= \frac{8}{9} \left\{\frac{(4-9)}{5}\right\} + \frac{5}{6}$$
$$= \frac{8}{9} \times \frac{-5}{5} + \frac{5}{6}$$
$$= \frac{8}{9} \times (-1) + \frac{5}{6}$$

On further calculation, we get

$$=\frac{-8}{9}+\frac{5}{6}$$

Taking L.C.M. we get,

$$=\frac{(-16+15)}{18}$$
$$=\frac{-1}{18}$$

$$(iii) \frac{-3}{7} \times \frac{14}{15} \times \frac{7}{12} \times \left(-\frac{30}{35}\right)$$

$$= \left(\frac{-3}{7} \times \frac{14}{15}\right) \times \left(\frac{7}{12} \times \frac{-30}{35}\right)$$

On further calculation, we get

$$=\frac{-2}{5}\times\frac{-1}{2}$$

We get,

$$=\frac{1}{5}$$

6. If
$$p = \frac{-8}{27}$$
, $q = \frac{3}{4}$ and $r = \frac{-12}{15}$, then verify that
(i) $p \times (q \times r) = (p \times q) \times r$
(ii) $p \times (q - r) = p \times q - p \times r$

Solution:

Given

$$p = \frac{-8}{27}, q = \frac{3}{4} \text{ and } r = \frac{-12}{15}$$

(i) $p \times (q \times r) = (p \times q) \times r$
L.H.S. = $p \times (q \times r)$
= $\frac{-8}{27} \times \left(\frac{3}{4} \times \frac{-12}{15}\right)$
= $\frac{-8}{27} \times \frac{-3}{5}$

On further calculation, we get,

$$= \frac{\{(-8) \times (-3)\}}{(27 \times 5)}$$
$$= \frac{24}{(27 \times 5)}$$

We get,

$$=\frac{8}{45}$$

Now,

R.H.S. = $(p \times q) \times r$ = $\left(\frac{-8}{27} \times \frac{3}{4}\right) \times \frac{-12}{15}$ = $\frac{-2}{9} \times \frac{-12}{15}$

We get,

$$=\frac{8}{45}$$

Therefore, L.H.S. = R.H.S.

(ii)
$$p \times (q - r) = p \times q - p \times r$$

L.H.S. $= p \times (q - r)$
 $= \frac{-8}{27} \times \left\{ \left(\frac{3}{4} \right) - \left(-\frac{12}{5} \right) \right\}$
Taking L.C.M. we get,
 $= \frac{-8}{27} \times \left\{ \frac{(45 + 48)}{60} \right\}$
 $= \frac{-8}{27} \times \frac{93}{60}$
We get,
 $= \frac{-62}{135}$
R.H.S. $= p \times q - p \times r$
 $= \frac{-8}{27} \times \frac{3}{4} - \left(\frac{8}{27} \times \frac{-12}{15} \right)$
 $= \frac{-2}{9} - \frac{32}{135}$

$$=\frac{(-30-32)}{135}$$

We get,

$$=\frac{-62}{135}$$

Therefore, L.H.S. = R.H.S.

7. Fill in the following blanks:

(i)
$$\frac{2}{3} \times -\frac{4}{5}$$
 is a number.
(ii) $\frac{54}{81} \times \frac{-63}{108} = \dots \times \frac{54}{81}$
(iii) $\frac{4}{5} \times 1 = \dots = 1 \times \dots$
(iv) $\frac{5}{-12} \times \dots = 1 = \frac{-12}{5} \times \dots$
(v) $\frac{3}{7} \times \left(\frac{-2}{8} \times \dots\right) = \left(\frac{3}{7} \times \frac{-2}{8}\right) \times \frac{5}{9}$
(vi) $\frac{-8}{9} \times \left\{\frac{4}{13} + \frac{5}{17}\right\} = \frac{-8}{9} \times \frac{4}{13} + \dots \dots$
(vii) $\frac{-6}{13} \times \left\{\frac{8}{9} - \frac{4}{7}\right\} = \frac{-6}{13} \times \dots - \left(\frac{-6}{13}\right) \times \left(\frac{4}{7}\right)$
(viii) $\frac{16}{23} \times \dots = 0$

(ix) The reciprocal of 0 is

(x) The numbers and are their own reciprocals.

(xi) If y be the reciprocal of x, then the reciprocal of y^2 in terms of x will be

(xii) The product of a non-zero rational number and its reciprocal is

(xiii) The reciprocal of a negative rational number is Solution:

(i)
$$\frac{2}{3} \times -\frac{4}{5}$$
 is a rational number.
(ii) $\frac{54}{81} \times \frac{-63}{108} = \dots \times \frac{54}{81}$
 $\frac{54}{81} \times \frac{-63}{108} = \frac{-63}{108} \times \frac{54}{81}$
(iii) $\frac{4}{5} \times 1 = \dots = 1 \times \dots$
 $\frac{4}{5} \times 1 = \frac{4}{5} = 1 \times \frac{4}{5}$
(iv) $\frac{5}{-12} \times \dots = 1 = \frac{-12}{5} \times \dots$
 $\frac{5}{-12} \times \frac{-12}{5} = 1 = \frac{-12}{5} \times \frac{5}{-12}$
(v) $\frac{3}{7} \times \left(\frac{-2}{8} \times \dots\right) = \left(\frac{3}{7} \times \frac{-2}{8}\right) \times \frac{5}{9}$
 $\frac{3}{7} \times \left(\frac{-2}{8} \times \frac{5}{9}\right) = \left(\frac{3}{7} \times \frac{-2}{8}\right) \times \frac{5}{9}$
(vi) $\frac{-8}{9} \times \left(\frac{4}{13} + \frac{5}{17}\right) = \frac{-8}{9} \times \frac{4}{13} + \frac{-8}{9} \times \frac{5}{17}$
(vii) $\frac{-6}{13} \times \left(\frac{8}{9} - \frac{4}{7}\right) = \frac{-6}{13} \times \dots - \left(\frac{-6}{13}\right) \times \left(\frac{4}{7}\right)$
(viii) $\frac{16}{23} \times \dots = 0$

(ix) The reciprocal of 0 is not defined

(x) The numbers 1 and -1 are their own reciprocals

(xi) If y be the reciprocal of x, then the reciprocal of y^2 in terms of x will be x^2

(xii) The product of a non-zero rational number and its reciprocal is 1

(xiii) The reciprocal of a negative rational number is a negative rational number

8. If $\frac{4}{5}$ the multiplicative inverse of $-1\frac{1}{4}$? Why or why not?

Solution:

No, the multiplicative inverse of $\frac{4}{5}$ is not $\frac{-5}{4}$ The multiplicative inverse of $\frac{4}{5}$ is $\frac{5}{4}$

9. Using distributive, find

(i)
$$\left\{\frac{7}{5} \times \left(\frac{-3}{12}\right)\right\} + \left\{\frac{7}{5} + \frac{5}{12}\right\}$$

(ii) $\left\{\frac{9}{16} \times \frac{4}{12}\right\} + \left\{\frac{9}{16} \times \left(\frac{-3}{9}\right)\right\}$

Solution:

(i)
$$\left\{\frac{7}{5} \times \left(\frac{-3}{12}\right)\right\} + \left\{\frac{7}{5} + \frac{5}{12}\right\}$$

Taking common factor, we get

$$= \frac{7}{5} \times \left(\frac{-3}{12} + \frac{5}{12}\right)$$
$$= \frac{7}{5} \times \left\{\frac{(-3+5)}{12}\right\}$$
$$= \frac{7}{5} \times \frac{2}{12}$$

We get,

$$= \frac{7}{30}$$
(ii) $\left\{\frac{9}{16} \times \frac{4}{12}\right\} + \left\{\frac{9}{16} \times \left(\frac{-3}{9}\right)\right\}$
Taking common factor, we get

$$= \frac{9}{16} \times \left\{\frac{4}{12} + \left(\frac{-3}{9}\right)\right\}$$

$$= \frac{9}{16} \times \left(\frac{1}{3} - \frac{1}{3}\right)$$
We get,

$$= \frac{9}{16} \times 0$$

$$= 0$$

10. Find the sum of additive inverse and multiplication inverse of 9. Solution:

The additive inverse of 9 is -9

The multiplicative inverse of 9 is $\frac{1}{9}$

Hence,

$$-9 + \frac{1}{9} = \frac{(-81 + 1)}{9}$$

We get,
$$= \frac{-80}{9}$$

$$= -8\frac{8}{9}$$

11. Find the product of additive inverse and multiplicative inverse of $\frac{-3}{7}$

Solution:

The additive inverse of $\frac{-3}{7}$ is $\frac{3}{7}$

The multiplicative inverse of $\frac{-3}{7}$ is $\frac{-7}{3}$

Therefore,

$$\frac{3}{7} \times \left(\frac{-7}{3}\right) = -1$$

Exercise 1.4

1. Find the value of the following:

(i)
$$\frac{-3}{7} \div 4$$

(ii) $4\frac{5}{8} \div \left(\frac{-4}{9}\right)$
(iii) $\frac{-8}{9} \div \frac{-3}{5}$

Solution:

$$(i) \frac{-3}{7} \div 4$$
$$= \frac{-3}{7} \times \frac{1}{4}$$

We get,

$$=\frac{-3}{28}$$

Hence, the value of $\frac{-3}{7} \div 4 = \frac{-3}{28}$

(ii)
$$4\frac{5}{8} \div \left(\frac{-4}{9}\right)$$

This can be written as,

$$= \frac{37}{8} \div \left(\frac{-4}{9}\right)$$
$$= \frac{37}{8} \times \frac{9}{-4}$$

We get,

$$=\frac{333}{-32}$$

$$= \frac{\{333 \times (-1)\}}{\{-32 \times (-1)\}}$$

$$= \frac{-333}{32}$$

$$= -10\frac{13}{32}$$
(iii) $-\frac{8}{9} \div -\frac{3}{5}$

$$= -\frac{8}{9} \times \frac{5}{-3}$$

$$= \frac{-40}{-27}$$

$$= \frac{\{-40 \times (-1)\}}{\{-27 \times (-1)\}}$$
We get,
$$= \frac{40}{27}$$

$$=1\frac{13}{27}$$

2. State whether the following statements are true or false:

(i)
$$\frac{-9}{13} \div \frac{2}{7}$$
 is a rational number.
(ii) $\frac{4}{13} \div \frac{11}{12} = \frac{11}{12} \div \frac{4}{13}$
(iii) $\frac{-3}{4} \div \left(\frac{5}{9} \div \frac{-4}{11}\right) = \left(\frac{-3}{4} \div \frac{5}{9}\right) \div \frac{-4}{11}$
(iv) $\frac{13}{14} \div \frac{-5}{7} \neq \frac{-5}{7} \div \frac{13}{14}$
(v) $\left(-7 \div \frac{4}{5}\right) \div \frac{-9}{10} \neq -7 \div \left(\frac{4}{5} \div \frac{-9}{10}\right)$

(vi) $\frac{-7}{24} \div \frac{6}{11}$ is not a rational number.

Solution:

(i) The given statement is **true**

(ii) The given statement is false

Correct: Commutative property is not true for the division

(iii) The given statement is false

Correct: Associative in division is not true

(iv) The given statement is **true**

(v) The given statement is **true**

(vi) The given statement is false

Correct: It is a rational number

3. The product of two rational numbers is $\frac{-11}{12}$. If one of them is $\frac{4}{9}$, find the other.

Solution:

Given

Product of two rational numbers = $\frac{-11}{12}$

One of the number = $2\frac{4}{9} = \frac{22}{9}$

The other number is calculated as below

$$\frac{-11}{12} \div \frac{22}{9} = \frac{-11}{12} \times \frac{9}{22}$$

We get,

$$=\frac{-3}{8}$$

Therefore, the other number is $\frac{-3}{8}$

4. By what rational number should $\frac{-7}{12}$ be multiplied to get the product as $\frac{5}{14}$?

Solution:

Given

Product $=\frac{5}{14}$

The required number can be calculated as below

$$\frac{5}{14} \div \frac{-7}{12}$$

$$= \frac{5}{14} \times \frac{12}{-7}$$
We get,
$$= \frac{30}{-49}$$

$$= \frac{\{30 \times (-1)\}}{\{-49 \times (-1)\}}$$

$$= \frac{-30}{49}$$

Hence, the required number is $\frac{-30}{49}$

5. By what rational number should – 3 is divided to get $\frac{-9}{13}$?

Solution:

The required number can be calculated as follows:

$$-3 \div \frac{-9}{13}$$

= -3 × $\frac{13}{-9}$
We get,
= $\frac{-13}{-3}$
= $\frac{\{-13 \times (-1)\}}{\{-3 \times (-1)\}}$
= $\frac{13}{3}$
= $4\frac{1}{3}$

Therefore, the required number is $4\frac{1}{3}$.

6. Divide the sum of $\frac{-13}{8}$ and $\frac{5}{12}$ by their difference.

Solution:

Given

Sum of
$$\frac{-13}{8}$$
 and $\frac{5}{12}$ is calculated as,
= $\frac{-13}{8} + \frac{5}{12}$

On further calculation, we get

$$=\frac{(-39+10)}{24}$$

We get,

_	-29
	24

Now,

Difference of $\frac{-13}{8}$ and $\frac{5}{12}$ is calculated as,

$$=\frac{-13}{8}-\frac{5}{12}$$

We get,

$$= \frac{(-39 - 10)}{24}$$
$$= \frac{-49}{24}$$

Now,

 $\frac{-29}{24} \div \frac{-49}{24}$ $= \frac{-29}{24} \times \frac{24}{-49}$ $= \frac{-29}{-49}$ $= \frac{\{-29 \times (-1)\}}{\{-49 \times (-1)\}}$ We get,

 $=\frac{29}{49}$

7. Divide the sum of $\frac{8}{3}$ and $\frac{4}{7}$ by the product of $\frac{-3}{7}$ and $\frac{14}{9}$.

Solution:

Sum of $\frac{8}{3}$ and $\frac{4}{7}$ is calculated as below $\frac{8}{3} + \frac{4}{7} = \frac{(56+12)}{21}$ We get,

$$= \frac{68}{21}$$
Product of $\frac{-3}{7}$ and $\frac{14}{9}$ is calculated as follows:
 $\frac{-3}{7} \times \frac{14}{9} = \frac{-2}{3}$

Hence,

 $\frac{68}{21} \div \frac{-2}{3} = \frac{68}{21} \times \frac{3}{-2}$ We get, $= \frac{34}{-7}$ $= \frac{\{34 \times (-1)\}}{\{-7 \times (-1)\}}$ $= \frac{-34}{7}$ $= -4 \frac{6}{-7}$

$$-4\frac{6}{7}$$

8. If
$$p = \frac{-3}{2}$$
, $q = \frac{4}{5}$ and $r = \frac{-7}{12}$, then verify that $(p \div q) \div r \neq p \div (q \div r)$

Solution:

Given

$$p = \frac{-3}{2}, q = \frac{4}{5} \text{ and } r = \frac{-7}{12}$$
$$(p \div q) \div r \neq p \div (q \div r)$$
$$LHS = (p \div q) \div r$$
$$= \left(\frac{-3}{2} \div \frac{4}{5}\right) \div \left(\frac{-7}{12}\right)$$

$$= \left(\frac{-3}{2} \div \frac{5}{4}\right) \div \left(\frac{-7}{12}\right)$$
$$= \frac{-15}{8} \div \frac{-7}{12}$$
$$= \frac{-15}{8} \times \frac{12}{-7}$$
We get,
$$= \frac{-45}{-14}$$
$$= \frac{\{-45 \times (-1)\}}{\{-14 \times (-1)\}}$$
$$= \frac{45}{14}$$

Now,

$$RHS = p \div (q \div r)$$
$$= \frac{-3}{2} \div \left(\frac{4}{5}\right) \div \left(\frac{-7}{12}\right)$$
$$= \frac{-3}{2} \div \left(\frac{4}{5} \times \frac{12}{-7}\right)$$

We get,

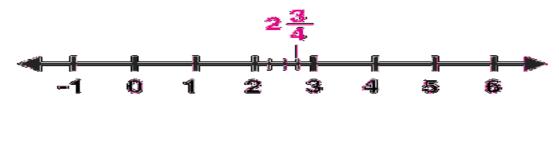
$$= \frac{-3}{2} \div \frac{48}{-35} \\ = \frac{-3}{2} \times \frac{-35}{48}$$

We get,

$$=\frac{35}{32}$$

Therefore, LHS \neq RHS

Exercise 1.5

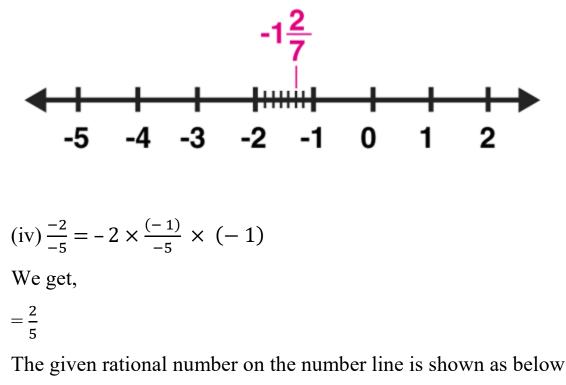

1. Represent the following rational numbers on the number line.

(i) $\frac{11}{4}$ (ii) $4\frac{3}{5}$ (iii) $\frac{-9}{7}$ (iv) $\frac{-2}{-5}$

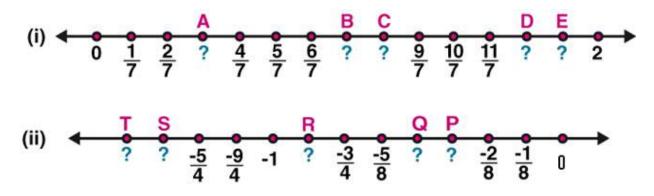
Solution:

(i) $\frac{11}{4} = 2\frac{3}{4}$

The given rational number on the number line is shown as below:


(ii) $4\frac{3}{5}$

The given rational number on the number line is shown as below


 $(iii) \frac{-9}{7} = -1\frac{2}{7}$

The given rational number on the number line is shown as below

2. Write the rational numbers for each point labeled with a letter:

Solution:

(i) The rational numbers for each point labeled with a letter are as follows:

$$A = \frac{3}{7}$$
$$B = \frac{7}{7} = 1$$
$$C = \frac{8}{7} = 1\frac{1}{7}$$
$$D = \frac{12}{7} = 1\frac{5}{7}$$
$$E = \frac{13}{7} = 1\frac{6}{7}$$

(ii) The rational numbers for each point labeled with a letter are as follows:

$$P = -\frac{3}{8}$$

$$Q = -\frac{4}{8} \text{ or } -\frac{1}{2}$$

$$R = -\frac{7}{8}$$

$$S = -\frac{11}{8}$$

$$T = -\frac{12}{8} \text{ or } -\frac{3}{2}$$

3. Find twenty rational numbers between $-\frac{3}{7}$ and $\frac{2}{3}$

Solution:

Twenty rational numbers between $-\frac{3}{7}$ and $\frac{2}{3}$ can be calculated as follows:

We know that,

LCM of 7, 3 = 21

Hence,

$$-\frac{3}{7} = \frac{(-3 \times 3)}{(7 \times 3)}$$

We get,

$$= -\frac{9}{21}$$
$$\frac{2}{3} = \frac{(2 \times 7)}{(3 \times 7)}$$

We get,

$$=\frac{14}{21}$$

Now, twenty rational numbers between $-\frac{9}{21}$ and $\frac{14}{21}$ are,

 $-\frac{8}{21}, -\frac{7}{21}, -\frac{6}{21}, -\frac{5}{21}, -\frac{4}{21}, -\frac{3}{21}, -\frac{2}{21}, -\frac{1}{21}, 0, \frac{1}{21}, \frac{2}{21}, \frac{3}{21}, \frac{4}{21}, \frac{5}{21}, \frac{6}{21}, \frac{7}{21}, \frac{8}{21}, \frac{9}{21}, \frac{10}{21}, \frac{11}{21}, \frac{12}{21}, \frac{12}{21}, \frac{12}{21}, \frac{13}{21}, \frac{13$

4. Find six rational numbers between $\frac{-1}{2}$ and $\frac{5}{4}$

Solution:

Six rational numbers between $\frac{-1}{2}$ and $\frac{5}{4}$ can be calculated as below

LCM of 2, 4 = 4 $\frac{-1}{2} = \frac{(-1 \times 2)}{(2 \times 2)}$ We get, $= \frac{-2}{4}$ Now, six rational numbers between $\frac{-1}{2}$ and $\frac{5}{4}$ are as follows: $-\frac{1}{4}, 0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}$ And $\frac{4}{4}$

5. Find three rational numbers between - 2 and - 1

Solution:

Three rational numbers between -2 and -1 can be calculated as below:

First rational number = $\frac{1}{2}(-1-2)$

We get,

$$=-\frac{3}{2}$$

Second rational number -2 and $\frac{-3}{2}$

$$= \frac{1}{2} \left\{ -2 - \left(\frac{3}{2}\right) \right\}$$
$$= \frac{1}{2} \left(\frac{-7}{2}\right)$$

We get,

$$=\frac{-7}{4}$$

Third rational number between $\frac{-3}{2}$ and -1

$$= \frac{1}{2} \left\{ \left(\frac{-3}{2} \right) - 1 \right\}$$
$$= \frac{1}{2} \left(\frac{-5}{2} \right)$$
$$= \frac{1}{2} \times \frac{-5}{2}$$
We get,
$$= \frac{-5}{4}$$

Therefore, three rational numbers are $\frac{-7}{4}$, $\frac{-3}{2}$, $\frac{-5}{4}$

6. Write ten rational numbers which are greater than 0.

Solution:

Ten rational numbers which are greater than 0

There can be the finite number of a rational number greater than 1.

Here, we shall take only 10 rational numbers.

The numbers are as follows:

$$\left(\frac{1}{2}\right)$$
, 1, $\left(\frac{3}{2}\right)$, 2, $\left(\frac{5}{2}\right)$, 3, $\left(\frac{7}{2}\right)$, 4, $\left(\frac{9}{2}\right)$, 5 etc.

7. Write five rational numbers which are smaller than – 4

Solution:

Five rational numbers which are smaller than -4

These can be finite number of rational numbers smaller than -4

Here, we shall take only 5 rational numbers.

The numbers are as follows:

$$\left(-\frac{9}{2}\right), -5, \left(-\frac{11}{2}\right), -6, \left(-\frac{13}{2}\right),$$
 etc.

8. Identify the rational number which is different from the other three. Explain your reasoning

$$\left(-\frac{5}{11}\right)$$
, $\left(-\frac{1}{2}\right)$, $\left(-\frac{4}{9}\right)$, $\left(-\frac{7}{3}\right)$

Solution:

Given four rational number are,

$$\left(-\frac{5}{11}\right)$$
, $\left(-\frac{1}{2}\right)$, $\left(-\frac{4}{9}\right)$, $\left(-\frac{7}{3}\right)$

Among the given numbers,

 $-\frac{7}{3}$ is different from the other three numbers.

Because in $-\frac{7}{3}$ its denominator is less than its numerator

In other numbers, denominators are greater than their numerators respectively.

Exercise 1.6

1. In a bag, there are 20 kg of fruits. If $7\frac{1}{6}$ kg of these fruits be oranges and $8\frac{2}{3}$ kg of these are apples and rest are grapes. Find the mass of the grapes in the bag.

Solution:

Given

Total fruits in a bag = 20 kg Oranges = $7\frac{1}{6}$ kg i.e. $\frac{43}{6}$ kg Apples = $8\frac{2}{3}$ kg i.e. $\frac{26}{3}$ kg

Remaining fruits in a bag = $20 - \left\{ \left(\frac{43}{6}\right) + \left(\frac{26}{3}\right) \right\}$ kg

$$=20-\left\{\frac{43+52}{6}\right\}$$

On further calculation, we get

$$= 20 - \left(\frac{95}{6}\right)$$
$$= \frac{(120 - 95)}{6}$$
$$= \frac{25}{6}$$
$$= 4\frac{1}{6}$$
 kg

Therefore, the mass of the grapes in the bag is $4\frac{1}{6}$ kg.

2. The population of a city is 6, 63,432. If $\frac{1}{2}$ of the population are adult males and $\frac{1}{3}$ of the population are adult females, then find the number of children in the city.

Solution:

Given

Population of a city = 6, 63, 432

Population of adult males = $\left(\frac{1}{2}\right)$ of 6,63,432

= 3,31,716

Population of adult females = $\left(\frac{1}{3}\right)$ of 6,63,432

= 2,21,144

Remaining population can be calculated as below

Remaining population = 6,63,432 - (3,31,716 + 2,21,144)

```
= 6,63,432 - 5,52,860
```

We get,

= 1,10,572

Therefore, number of children in a city are 1,10,572

3. In an election of housing society, there are 30 voters. Each of them gives the vote. Three persons X, Y and Z are standing for the post of Secretary. If Mr. X got $\frac{2}{5}$ of the total votes and Mr. Z got $\frac{1}{3}$ of the total votes, then find the number of votes which Mr. Y got.

Solution:

Given

Number of votes = 30
Number of person for election = X, Y, Z
X got
$$\left(\frac{2}{5}\right)$$
 of total votes = $\left(\frac{2}{5}\right)$ of 30
= $\left(\frac{2}{5}\right) \times 30$
= 12
Z got $\frac{1}{3}$ of total votes = $\frac{1}{3}$ of 30
= $\left(\frac{1}{3}\right) \times 30$
= 10

Remaining votes can be calculated as below

$$= 30 - (12 + 10)$$

= 30 - 22
We get,
= 8

Therefore, Mr. Y got 8 votes

4. A person earns Rs 100 in a day. If he spent Rs $14\frac{2}{7}$ on food and Rs. $30\frac{2}{3}$ on petrol. How much did he save on that day?

Solution:

Given

A person's earning in a day = Rs 100

Money spent on food = Rs $14\frac{2}{7}$ = Rs $\frac{100}{7}$

Money spent on petrol = Rs. $30\frac{2}{3} = \text{Rs}\frac{92}{3}$

The savings of a person is calculated as follows:

Savings = Rs
$$100 - \left\{ \left(\frac{100}{7} + \frac{92}{3} \right) \right\}$$

= Rs $100 - \left\{ \frac{(300 + 644)}{21} \right\}$

On further calculation, we get

 $= \text{Rs } 100 - \left(\frac{944}{21}\right)$ $= \frac{(2100 - 944)}{21}$ $= \text{Rs } \frac{1156}{21}$ $= \text{Rs. } 55\frac{1}{21}$

Hence, a person saved Rs. $55\frac{1}{21}$ on that day.

5. In an examination, 400 students appeared. If $\frac{2}{3}$ of the boys and all 130 girls passed in the examination, then find how many boys failed in an examination?

Solution:

Given

Number of students appeared exams = 400

 $\left(\frac{2}{3}\right)$ of total boys and all 130 girls passed in the examination

Hence,

Number of total boys = 400 - 130

= 270

Number of boys passed = $\left(\frac{2}{3}\right)$ of 270

$$= \left(\frac{2}{3}\right) \times 270$$
$$= 180$$

So, number of boys failed = 270 - 180

= 90

Hence, 90 boys failed in an examination.

6. A car is moving at the speed of $40\frac{2}{3}$ km / h. Find how much distance will it cover in $\frac{9}{10}$ hrs.

Solution:

Given

Speed of a car = $40\frac{2}{3}$ km / h = $\frac{122}{3}$ km / h Distance covered in $\frac{9}{10}$ hour can be calculated as follows: Distance = $\left(\frac{122}{3}\right) \times \left(\frac{9}{10}\right)$ = $\frac{366}{10}$ We get, = 36.6 km = $36\frac{3}{5}$ km

Therefore, the distance covered by the car in $\frac{9}{10}$ hours is $36\frac{3}{5}$ km

7. Find the area of a square lawn whose one side is $5\frac{7}{9}$ m long.

Solution:

Given

One side of a square lawn = $5\frac{7}{9}m = \frac{52}{9}m$

The area of a square lawn can be calculated as follows:

Area = (side)²
=
$$\left(\frac{52}{9}\right)^2$$

We get,
= $\frac{2704}{81}$ sq. m
= $33\frac{31}{81}$ sq. m

Therefore, the area of a square lawn is $33\frac{31}{81}$ sq. m

8. Perimeter of a rectangle is $15\frac{3}{7}$ m. If the length is $4\frac{2}{7}$ m, find its breadth.

Solution:

Given

Perimeter of a rectangle = $15\frac{3}{7}$ m

$$=\frac{108}{7}$$
 m

So,

Length + Breadth =
$$\left(\frac{108}{7}\right) \div 2$$

$$= \left(\frac{108}{7}\right) \times \left(\frac{1}{2}\right)$$

We get,
$$= \frac{54}{7} m$$

Given length = $4\frac{2}{7}$
$$= \frac{30}{7} m$$

Hence, breadth of a rectangle can be calculated as,

Breadth =
$$\left(\frac{54}{7}\right) - \left(\frac{30}{7}\right)$$

= $\frac{24}{7}$
= $3\frac{3}{7}$ m

Therefore, the breadth of a rectangle is $3\frac{3}{7}$ m

9. Rahul had a rope of $325\frac{4}{5}$ m long. He cut off a $150\frac{3}{5}$ m long piece, then he divided the rest of the rope into 3 parts of equal length. Find the length of each part.

Solution:

Given

Length of a rope = $325\frac{4}{5}$ m

Length of one piece of rope after cut off = $150\frac{3}{5}$ m

Remaining length of a rope can be calculated as below

$$=325\frac{4}{5}-150\frac{3}{5}$$

We get,
=
$$175 \frac{1}{5} \text{ m}$$

= $\frac{876}{5} \text{ m}$

This length divided into three equal parts

So, length of each part can be calculated as follows:

Length of each part =
$$\left(\frac{876}{5}\right) \div 3$$

= $\left(\frac{876}{5}\right) \times \left(\frac{1}{3}\right)$
We get,
= $\frac{292}{5}$ m
= $58\frac{2}{5}$ m

Therefore, the length of each part of a rope is $58\frac{2}{5}$ m

10. If $3\frac{1}{2}$ litre of petrol costs Rs. $270\frac{3}{8}$ then find the cost of 4 litre of petrol.

Solution:

Given

Cost of
$$3\frac{1}{2}$$
 litre $=\frac{7}{2}$ litre of petrol = Rs. $270\frac{3}{8}$
= Rs $\frac{2163}{8}$

Hence, the cost of one litre can be calculated as below:

Cost of one litre = Rs
$$\frac{(2163 \times 2)}{(8 \times 7)}$$

The cost of 4 litre of petrol can be calculated as below Cost of 4 litre = Rs $\frac{(2163 \times 2 \times 4)}{(8 \times 7)}$ We get, = Rs 309

Therefore, the cost of 4 litre of petrol is Rs 309

11. Ramesh earns Rs 40,000 per month. He spends $\frac{3}{8}$ of the income on food, $\frac{1}{5}$ of the remaining on LIC premium and then $\frac{1}{2}$ of the remaining on other expenses. Find how much money is left with him?

Solution:

Ramesh earnings per month = Rs 40,000 Expenditure on food = $\left(\frac{3}{8}\right)$ of Rs 40,000 = Rs 15,000 Remaining amount = 40,000 - 15,000 = Rs 25,000 Expenditure on LIC premium = $\left(\frac{1}{5}\right)$ of Rs 25,000 = Rs 5000 Remaining amount = Rs 25000 - Rs 5000 = Rs 20,000 Expenditure on other expenses = $\left(\frac{1}{2}\right)$ of Rs 20,000 = Rs 10,000 Remaining amount left = Rs 20,000 - Rs 10,000 = Rs 10,000 Therefore, the remaining amount left with Ramesh is Rs 10,000 12. A, B, C, D and E went to a restaurant for dinner. A paid $\frac{1}{2}$ of the bill, B paid $\frac{1}{5}$ of the bill and rest of the bill was shared equally by C, D and E. What fractions of the bill was paid by each?

Solution:

Let us consider the total bill of the restaurant = 1

Bill paid by $A = \frac{1}{2}$ Bill paid by $B = \frac{1}{5}$

Remaining bill can be calculated as below:

Remaining bill = $1 - \left\{ \left(\frac{1}{2}\right) + \left(\frac{1}{5}\right) \right\}$

$$= 1 - \left\{ \frac{(5+2)}{10} \right\}$$
$$= 1 - \left(\frac{7}{10} \right)$$

We get,

$$=\frac{3}{10}$$

Shares of the three persons = $\left(\frac{3}{10}\right) \div 3$

$$= \left(\frac{3}{10}\right) \times \left(\frac{1}{3}\right)$$
$$= \frac{1}{10}$$

Therefore, each paid $\left(\frac{1}{10}\right)$ of the bill.

13. $\frac{2}{5}$ of total number of students of a school come by car while $\frac{1}{4}$ of students come by bus to school. All the other students walk to school of which $\frac{1}{3}$ walk on their own and the rest are escorted by their parents. If 224 students come to school walking on their own, how many students study in the school?

Solution:

Let total number of students be 1 Students who come by car = $\frac{2}{5}$ Students who come by bus $=\frac{1}{a}$ Students who come by walking $=\frac{1}{3}$ of remaining Rest students = $1 - \left(\frac{2}{5} + \frac{1}{4}\right)$ $=1-\frac{(8+5)}{20}$ $=1-\left(\frac{13}{20}\right)$ We get, $=\frac{7}{20}$ Number of students who come by walking can be calculated as below Number of students who come by walking $=\frac{1}{3}$ of $\frac{7}{20} = \frac{7}{60}$ Now, $\frac{7}{60}$ of total students = 224 Total students = $\frac{(224 \times 60)}{7}$ $= 32 \times 60$

= 1920

Hence, 1920 students study in the school

14. A mother and her two sons got a room constructed for Rs 60,000. The elder son contributes $\frac{3}{8}$ of his mother's contribution while the younger son contributes $\frac{1}{2}$ of his mother's share. How much do the three contribute individually?

Solution:

The cost of a room = Rs 60,000Elder son contribution = $\frac{3}{8}$ of his mother's contribution Younger son contribution = $\frac{1}{2}$ of his mother's share Let the mother contribution be 1 Elder son's contribution = $\frac{3}{8}$ Younger son's contribution $=\frac{1}{2}$ Now, Ratios in their share = 1: $\left(\frac{3}{8}\right)$: $\left(\frac{1}{2}\right)$ = 8: 3: 4 Sum of ratios = 8 + 3 + 4 = 15Therefore, Mother's share $=\frac{(60000 \times 8)}{15} = \text{Rs} 32000$ Elder son's share $=\frac{(60000 \times 3)}{15} = \text{Rs} \ 12000$ Younger son's share = $\frac{(60000 \times 4)}{15}$ = Rs 16000

15. In a class of 56 students, the number of boys is $\frac{2}{5}$ th of the number of girls. Find the number of boys and girls.

Solution:

Total number of students in a class = 56

Let the number of girls be 1

Then number of boys will be $=\frac{2}{5}$ of $1 = \frac{2}{5}$

Ratios in girls and boys = 1: $\left(\frac{2}{5}\right)$ = 5: 2

Number of girls =
$$\left\{\frac{56}{(5+2)}\right\} \times 5$$

= $\left(\frac{56}{7}\right) \times 5 = 40$

And number of boys = $\left(\frac{56}{7}\right) \times 2 = 16$

Therefore, number of boys = 16 and number of girls = 40

16. A man donated $\frac{1}{10}$ of his money to a school, $\frac{1}{6}$ th of the remaining to a church and the remaining money he distributed equally among his three children. If each child gets Rs 50000, how much money did the man originally have?

Solution:

Let the money of a man be 1 Money donated to a school = $\frac{1}{10}$ Remaining money $= 1 - \left(\frac{1}{10}\right) = \frac{9}{10}$ Money donated to a church $= \frac{1}{6}$ of $\frac{9}{10} = \frac{3}{20}$ Hence, remaining money = $\left(\frac{9}{10}\right) - \left(\frac{3}{20}\right)$

$$=\frac{(18-3)}{20}=\frac{15}{20}$$

A man divides equally to his three children

Hence,

Share of each child = $\left(\frac{15}{20}\right) \div 3$

$$= \left(\frac{15}{20}\right) \times \left(\frac{1}{3}\right) = \frac{1}{4}$$

Here, each child gets Rs 50000

Therefore, his total money = Rs 50000 × $\left(\frac{4}{1}\right)$ = Rs 200000

17. If $\frac{1}{4}$ of a number is added to $\frac{1}{3}$ of that number, the result is 15 greater than half of that number. Find the number.

Solution:

Let us consider the number as x

Then as per the condition,

$$\left(\frac{1}{4}\right)x + \left(\frac{1}{3}\right)x - \left(\frac{1}{2}\right)x = 15$$

$$\frac{(3x + 4x - 6x)}{12} = 15$$

$$\left(\frac{1}{12}\right)x \text{ of a number} = 15$$

$$x = 15 \times \frac{12}{1}$$

$$x = 180$$

Therefore, the required number is 180

18. A student was asked to multiply a given number by $\frac{4}{5}$. By mistake, he divided the given number by $\frac{4}{5}$. His answer was 36 more than the correct answer. What was the given number?

Solution:

Let the given number be x

According to the condition,

$$x \times \frac{4}{5} = \left(\frac{4}{5}\right)x$$

But by mistake a student divides the given number

Then,

$$x \div \frac{4}{5} = x \times \frac{5}{4} = \left(\frac{5}{4}\right) x$$

Hence,

$$\left(\frac{5}{4}\right)x - \left(\frac{4}{5}\right)x = 36$$
$$\frac{(25x - 16x)}{20} = 36$$
$$\frac{9x}{20} = 36$$
$$9x = 36 \times 20$$
$$x = \frac{(36 \times 20)}{9}$$
We get,
$$x = 80$$

Therefore, the given number is 80

Mental Maths

Question 1.

Fill in the blanks:

(i) The product of two rational numbers is a

(ii) Subtraction of rational numbers is Commutative.

(iii) The rational number $\frac{-7}{4}$ lies of zero on the number line.

(iv) Division of rational numbers is associative.

(v) $\frac{p}{q} \div 0$ is

(vi) Negative of a rational number is called its

(vii) Multiplicative identity of rational numbers is

(viii) Multiplication of rational numbers is over addition.

(ix) Division of a rational number by a non-zero rational number is a

(x) The rational number which is additive inverse of itself is Solution:

(i) The product of two rational numbers is a rational number.

(ii) Subtraction of rational numbers is not commutative.

(iii) The rational number $\frac{-7}{4}$ lies left side of zero on the number line.

(iv) Division of rational numbers is not associative.

(v) $\frac{p}{a} \div 0$ is not defined.

(vi) Negative of a rational number is called its additive inverse.

(vii) Multiplicative identity of rational numbers is 1.

(viii) Multiplication of rational numbers is distributive over addition.(ix) Division of a rational number by a non-zero rational number is a rational number.

(x) The rational number which is additive inverse of itself is 0.

Question 2: State whether the following statements are true (T) or false (F):

(i) $\frac{-5}{9}$ is the additive inverse of $\frac{5}{9}$.

(ii) Every integer is a rational number.

(iii) Zero has its multiplicative inverse.

(iv) Every rational number is an integer.

(v) Division of two rational numbers is always closed.

(vi) Non-terminating, non-recurring decimal numbers are rational numbers.

(vii) 0 is the multiplicative identity of rational numbers.

(viii) Non-terminating recurring decimal numbers are not rational numbers.

(ix) Subtraction of two rational numbers is not associative.

(x) Reciprocal of 1 is 1.

(xi) The multiplicative inverse is also called a reciprocal.

(xii) Between two different rational numbers, there are infinitely many number of rational numbers.

Solution:

(i) $\frac{-5}{9}$ is the additive inverse of $\frac{5}{9}$. (True)

(ii) Every integer is a rational number. (True)

(iii) Zero has its multiplicative inverse. (False)

Correct:

Zero has no multiplicative inverse.

(iv) Every rational number is an integer. (False)

Correct:

Rational numbers are not integers.

(v) Division of two rational numbers is always closed. (False)

Correct:

Division by zero is not defined.

(vi) Non-terminating, non-recurring decimal numbers are rational numbers. (False)

Correct:

Non-terminating, recurring numbers are rationales.

(vii) 0 is the multiplicative identity of rational numbers. (False) Correct:

1 is the multiplicative identity.

(viii) Non-terminating recurring decimal numbers are not rational numbers. (False)

Correct:

These are rational numbers.

(ix) Subtraction of two rational numbers is no associative. (True)

(x) Reciprocal of 1 is 1. (True)

(xi) The multiplicative inverse is also called a reciprocal. (True)

(xii) Between two different rational numbers,

there is infinitely many numbers of rational numbers. (True)

Multiple Choice Questions

Choose the correct answer from the given four options (3 to 18):

Question 3: Additive inverse of
$$\frac{-2}{-5}$$
 is

(a)
$$\frac{2}{5}$$

(b) $\frac{5}{2}$
(c) $\frac{2}{-5}$
(d) $\frac{-2}{5}$

Solution:

Additive inverse of $\frac{-2}{-5}$ is $\frac{2}{-5}$. (c)

Question 4: Multiplicative inverse of $\frac{-3}{7}$ is

(a)
$$\frac{7}{3}$$

(b) $\frac{-7}{3}$

(c) ³/₇ (d) None of these Solution:

Multiplicative inverse of $\frac{-3}{7}$ is $\frac{-7}{3}$. (b)

Question 5: Sum of a rational number and its additive inverse is

(a) 1
(b) 0
(c) -1
(d) None of these
Solution:
Sum of a rational number and its additive inverse is 0. (b)

Question 6: Rational numbers are not closed under

- (a) addition
- (b) subtraction
- (c) multiplication
- (d) division

Solution:

Rational numbers are not closed under division. (d)

Question 7: $0 \div \frac{2}{3}$ is equal to (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ (c) 0 (d) not defined Solution: $0 \div \frac{2}{3}$ is equal to 0. (c) Question 8: $\frac{2}{3} \div 0$ is equal to (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ (c) 0 (d) not defined Solution: $\frac{2}{3} \div 0$ is equal to 0. (c)

Question 9: $\frac{p}{q} + \left(\frac{r}{s} + \frac{t}{u}\right) = \left(\frac{p}{q} + \frac{r}{s}\right) + \frac{t}{u}$ is called (a) commutative property (b) associative property (c) distributive property (d) None of these Solution: $\frac{p}{q} + \left(\frac{r}{s} + \frac{t}{u}\right) = \left(\frac{p}{q} + \frac{r}{s}\right) + \frac{t}{u}$ is called associative property. (b)

Question 10: Multiplication of a non-zero rational number and its reciprocal is

- (a) 0
- (b) 1
- (c) -1
- (d) None of these

Solution:

Multiplication of a non-zero rational number and its reciprocal is 1. (b)

Question 11: Product of rational number $\frac{-2}{5}$ and its additive inverse

- is
- (a) 0
- (b) 1 (c) $\frac{-4}{25}$ (d) $\frac{-5}{2}$

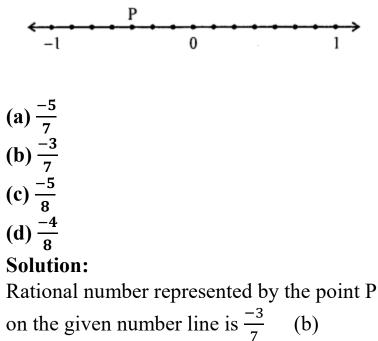
Solution:

Product of a rational number $\frac{-2}{5}$ and its additive inverse is $\frac{-4}{25}$. (c)

Question 12: Sum of rational number $\frac{4}{7}$ and its reciprocal is

(a) $\frac{28}{65}$ (b) $\frac{65}{28}$ (c) $\frac{-28}{65}$ (d) $\frac{-65}{28}$ Solution:

Sum of rational number $\frac{4}{7}$ and its reciprocal is $\frac{65}{28}$. (b)


Question 13: Sum of two rational numbers is 0, if one of them is $\frac{-4}{5}$, then other is

(a) $\frac{5}{4}$ (b) $\frac{4}{5}$ (c) $\frac{-5}{4}$ (d) $\frac{-4}{5}$ Solution: Sum of two rational numbers is 0, if one of them is $\frac{-4}{5}$, then other will be $\frac{4}{5}$. (b)

Question 14: Product of two rational numbers is 1, if one of them is $\frac{10}{3}$, then other is

(a) $\frac{3}{10}$ (b) $\frac{-3}{10}$ (c) $\frac{10}{3}$ (d) None of these Solution: Product of two rational numbers is 1. If one of them is $\frac{10}{3}$, then the other is $\frac{3}{10}$. (a)

Question 15: Rational number represented by the point P on the number line is

Question 16: What should be subtracted from $\frac{-5}{3}$ to get $\frac{-2}{7}$?

(a) $\frac{29}{21}$ (b) $\frac{-21}{29}$ (c) $\frac{-29}{21}$ (d) $\frac{21}{29}$ Solution:

Required number
$$=$$
 $\frac{-5}{3} - \left(\frac{-2}{7}\right) = \frac{-35+6}{21} = \frac{-29}{21}$ (c)

Question 17: Reciprocal of a negative number is

- (a) positive
- (b) negative
- (c) cannot say
- (d) does not exist

Solution:

Reciprocal of a negative number is negative. (b)

Question 18: Which of the following statement is true?

(a)
$$\frac{-4}{5} \div \frac{3}{11} = \frac{3}{11} \div \frac{-4}{5}$$

(b) $\frac{2}{3} \div \left(\frac{5}{8} \div \frac{-4}{7}\right) = \left(\frac{2}{3} \div \frac{5}{8}\right) \div \frac{-4}{7}$
(c) $\frac{-3}{17} \div \left(\frac{4}{5} + \frac{-2}{3}\right) = \left(\frac{-3}{17} \div \frac{4}{5}\right) + \left(\frac{-3}{17} \div \frac{-2}{3}\right)$
(d) $\left(\frac{4}{5} + \frac{-2}{3}\right) \div \frac{-3}{17} = \left(\frac{4}{5} + \frac{-3}{17}\right) + \left(\frac{-2}{3} \div \frac{-3}{17}\right)$

Solution:

$$\left(\frac{4}{5} + \frac{-2}{3}\right) \div \frac{-3}{17} = \left(\frac{4}{5} + \frac{-3}{17}\right) + \left(\frac{-2}{3} \div \frac{-3}{17}\right)$$
 is true. (d)

Value Based Questions

Question 1: Ram donated $\frac{1}{10}$ of his salary to an orphanage, $\frac{1}{3}$ of his salary spent on food, $\frac{1}{4}$ of salary on rent and electricity and $\frac{1}{20}$ of his salary on telephone. This month he donated ₹ 5000 in Prime Minister Relief fund for Uttarakhand victims. He was left with ₹ 3000 with him, find his monthly salary. Should we donate the money for needy people? What values are being promoted?

Solution:

Let Ram's salary = x Then donation to orphanage = $x \times \frac{1}{10} = \frac{x}{10}$ Amount spent on food = $\frac{x}{3}$ Spend on rent and electricity = $\frac{x}{4}$ Spent on telephone = $\frac{x}{20}$ Amount left = $x - (\frac{x}{10} + \frac{x}{3} + \frac{x}{4}) + \frac{x}{20}$ = $\frac{60x - (6x + 20x + 15x + 3x)}{60}$ = $\frac{60x - 44x}{60} = \frac{16}{20}x$ Amount given to PM relief fund = ₹5000 And amount left = ₹3000

 $\therefore \frac{16}{20}x = 5000 + 3000 = 8000$

 $x = \frac{8000 \times 60}{16} = 30,000$ Donation to a needy institution is good, also donation to PM relief fund is an act of kindness.

Question 2: In an Examination $\frac{1}{3}$ of the total students used unfair means and out of which $\frac{1}{4}$ caught red handed while cheating. If 5 students caught red handed then find the total number of students appeared in exam.

Why should we not use unfair means in an examination?

What values are being promoted?

Solution:

Let total number of students who appeared in the exam = x Number of students who cheat = $\frac{x}{3}$ Number of students who were caught red handed = $\frac{x}{3} \times \frac{x}{4} = \frac{x}{12}$ $\frac{x}{12} = 5$ $x = 12 \times 5 = 60$

Total number of students = 60Cheating in the examination is a bad babbit and its ruins the life of a student. So, it should be avoided.

Higher Order Thinking Skills (HOTS)

Question 1: Area of a square is 4 sq. in more than $\frac{2}{3}$ of the area of a rectangle. If the area of square is 64 sq. m, then find the dimensions of rectangle, given that breadth is $\frac{2}{5}$ of length.

Solution:

Area of a square = 64 sq. m Area of rectangle = 64 - 4 = $60 \times \frac{3}{2} = 90$ sq. m Breadth = $\frac{2}{5}$ of length Let length = x m then breadth = $\frac{2}{5}x$ Area = $x \times \frac{2}{5}x = 90$ $\Rightarrow \frac{2}{5}x^2 = 90$ $\Rightarrow x^2 = 90 \times \frac{5}{2} = 225 = (15)^2$ $\Rightarrow x = 15$ Length = 15 m and breadth = $\frac{2}{5} \times 15 = 6m$ Hence, length of rectangle = 15 m and breadth = 6 m

Question 2: Rahul can do $\frac{2}{7}$ of a certain work in 6 days while Suresh can do $\frac{3}{5}$ of the same work in 9 days. They started work together but after 7 days Rahul left the work. Find in how many days Suresh can complete the remaining work?

Solution:

Rahul's 6 days' work $=\frac{2}{7}$ His 1 day's work $=\frac{2}{7\times 6} = \frac{2}{42} = \frac{1}{21}$ Suresh's 1 day's work $=\frac{3}{5} \times \frac{1}{9} = \frac{1}{15}$ Both's 1 day work = $\frac{1}{21} + \frac{1}{15}$ = $\frac{5+7}{105} = \frac{12}{105}$ Both's 7 day's work = $\frac{12}{105} \times 7 = \frac{4}{5}$ Remaining work = 1 $-\frac{4}{5} = \frac{1}{5}$ Suresh will do $\frac{1}{5}$ of work in = $\frac{15}{1} \times \frac{1}{5} = 3$ days.

Check Your Progress

Question 1: Evaluate the following:

(i)
$$4\frac{2}{5} + 3\frac{7}{8}$$

(ii) $7\frac{3}{4} - 4\frac{3}{5}$
(iii) $6\frac{8}{5} - (\frac{-7}{3})$
(iv) $(-16\frac{2}{3}) \times 14\frac{1}{2}$
(v) $\frac{-7}{8} \div 15\frac{3}{4}$
(vi) $\frac{-12}{13} \times 1$
(vii) $\frac{4}{9} \times 0$
(viii) $0 \div (-4\frac{7}{10})$

Solution:

(i)
$$4\frac{2}{5} + 3\frac{7}{8}$$

 $=\frac{22}{5} + \frac{31}{8}$
 $=\frac{176+155}{40}$ (LCM of 5, 8 = 40)
 $=\frac{331}{40} = 8\frac{11}{40}$
(ii) $7\frac{3}{4} - 4\frac{3}{5}$
 $=\frac{31}{4} - \frac{23}{5}$
 $=\frac{155-92}{20}$ (LCM of 4, 5 = 20)
 $=\frac{63}{20} = 3\frac{3}{20}$

(iii) $6\frac{8}{5} - \left(\frac{-7}{3}\right)$

$$=\frac{62}{9} + \frac{7}{3}$$

$$=\frac{62+21}{9} = \frac{83}{9} = 9\frac{2}{9}$$
(iv) $\left(-16\frac{2}{3}\right) \times 14\frac{1}{2}$

$$=\frac{-50}{3} \times \frac{29}{2} = \frac{-25 \times 29}{3 \times 1}$$

$$=\frac{-725}{3} = -241\frac{2}{3}$$
(v) $\frac{-7}{8} \div 15\frac{3}{4}$

$$=\frac{-7}{8} \div \frac{63}{4}$$
(vi) $\frac{-12}{13} \times 1 = \frac{-12}{13}$
(vii) $\frac{4}{9} \times 0 = 0$
(viii) $0 \div \left(-4\frac{7}{10}\right) = 0$

Question 2: What number should be added to $\frac{-4}{11}$ to get $\frac{-3}{8}$?

Solution:

Required number
$$= \frac{-3}{8} - \frac{-4}{11}$$

 $= \frac{-3}{8} + \frac{4}{11}$
 $= \frac{-33+32}{88} = \frac{-1}{88}$

Question 3: What rational number should be subtracted from the sum of $\frac{3}{14}$ and $\frac{-4}{7}$ to get $\frac{13}{21}$? Solution:

Sum of $\frac{3}{14}$ and $\frac{-4}{7} = \frac{3}{14} + \frac{-4}{7}$ = $\frac{3-8}{14} = \frac{-5}{14}$ \therefore Required number = $\frac{-5}{14} - \frac{31}{21}$ = $\frac{-15-26}{42} = \frac{-41}{42}$

Question 4: If the product of two rational numbers is $\frac{25}{42}$ and one of them $-2\frac{6}{7}$, find the other. Solution:

Product of two numbers $=\frac{25}{42}$ One number $= -2\frac{6}{7} = \frac{-20}{7}$ Then second number $=\frac{25}{42} \div \left(\frac{-20}{7}\right)$ $=\frac{25}{42} \times \frac{7}{-20} = \frac{5}{-24}$ $=\frac{5 \times (-1)}{-24 \times (-1)} = \frac{-5}{24}$

Question 5: Divide the sum of $\frac{4}{13}$ and $\frac{-3}{2}$ by their product. Solution:

Sum of $\frac{4}{13}$ and $\frac{-3}{2} = \frac{4}{13} + \left(\frac{-3}{2}\right)$

$$= \frac{4}{13} - \frac{3}{2}$$

$$= \frac{8 - 39}{26} = \frac{-31}{26}$$
And product $= \frac{4}{13} + \left(\frac{-3}{2}\right) = \frac{-6}{13}$

$$\therefore \frac{-31}{26} \div \left(\frac{-6}{13}\right) = \frac{-31}{26} \times \frac{13}{-6}$$

$$= \frac{-31}{-2} = \frac{-31 \times (-1)}{-2 \times (-1)} = \frac{31}{12} = 2\frac{7}{12}$$

Question 6: Using the appropriate properties of operations of rational numbers, evaluate the following:

(i)
$$\frac{3}{13} \times \frac{4}{5} - \frac{7}{5} - \frac{4}{5} \times \frac{5}{13}$$

(ii) $\frac{5}{7} + \frac{2}{11} + \frac{-8}{7} + \frac{6}{11}$

Solution:

(i)
$$\frac{3}{13} \times \frac{4}{5} - \frac{7}{5} - \frac{4}{5} \times \frac{5}{13}$$

$$= \frac{12}{65} - \frac{7}{5} - \frac{4}{13}$$

$$= \frac{12 - 91 - 20}{65} = \frac{12 - 111}{65}$$

$$= \frac{-99}{65} = -1\frac{34}{65}$$
(ii) $\frac{5}{7} + \frac{2}{11} + \frac{-8}{7} + \frac{6}{11}$

$$= \left(\frac{5}{7} + \frac{-8}{7}\right) + \left(\frac{2}{11} + \frac{6}{11}\right)$$

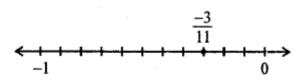
Question 7: Find the additive inverse of the following:

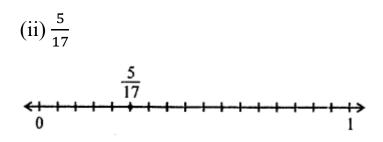
(i) $-13\frac{7}{8}$ (ii) $4\frac{3}{6}$ Solution: (i) Additive inverse of $-13\frac{7}{8}$ is $13\frac{7}{8}$. (ii) Additive inverse of $4\frac{3}{6}$ is $-4\frac{3}{6}$.

Question 8: Find the multiplicative inverse of the following:

(i) $\frac{-23}{46}$

(ii) **0**


Solution:


- (i) Multiplicative inverse of $\frac{-23}{46}$ is $\frac{-46}{23} = -2$.
- (ii) Multiplicative inverse of 0 is not defined.

Question 9: Represent the following rational numbers on the number line:

(i) $\frac{-3}{11}$ (ii) $\frac{5}{17}$ Solution:

(i)
$$\frac{-3}{11}$$

Question 10: Insert five rational numbers between $\frac{-3}{7}$ and $\frac{2}{5}$ Solution:

5 rational numbers between $\frac{-3}{7}$ and $\frac{2}{5}$

LCM of 7, 5 = 35

$$\therefore \frac{-3}{7} = \frac{-3 \times 5}{7 \times 5} = \frac{-15}{35}$$
$$\frac{2}{5} = \frac{2 \times 7}{5 \times 7} = \frac{14}{35}$$

Now, 5 rational numbers will be

 $\frac{-14}{35}, \frac{-13}{35}, \dots, 0, \frac{-1}{35}, \frac{2}{35}, \dots$

Question 11: If $p = \frac{-4}{9}$, $q = \frac{2}{3}$ and $r = \frac{-8}{11}$, then verily the following: (i) p + (q + r) = (p + q) + r(ii) $p \times q = q \times p$ (iii) $p \times (q + r) = p \times q + p \times r$ (iv) $(p + q) \div r = p \div r + q \div r$. Solution:

$$p = \frac{-4}{9}, q = \frac{2}{3} \text{ and } r = \frac{-8}{11}$$

(i) p + (q + r) = (p + q) + r
L.H.S. = p + (q + r) = \frac{-4}{9} + \left(\frac{2}{3} + \frac{-8}{11}\right)

$$= \frac{-4}{9} + \left(\frac{22-24}{33}\right) = \frac{-4}{9} - \frac{2}{33}$$
$$= \frac{-44-6}{99} = \frac{-50}{99}$$
R.H.S. = (p + q) + r
$$= \left(\frac{-4}{9} + \frac{2}{3}\right) + \frac{-8}{11}$$
$$= \left(\frac{-4+6}{9}\right) + \frac{-8}{11}$$
$$= \frac{2}{9} + \frac{-8}{11}$$
$$= \frac{22-72}{99} = \frac{-50}{99}$$
$$\therefore LHS = RHS$$

(ii)
$$p \times q = q \times p$$

L.H.S. = $p \times q = \frac{-4}{9} \times \frac{2}{3} = \frac{-8}{27}$
R.H.S. = $q \times p = \frac{2}{3} \times \frac{-4}{9} = \frac{-8}{27}$
 \therefore LHS = RHS

(iii)
$$p \times (q + r) = p \times q + p \times r$$

L.H.S. $= p \times (q + r) = \frac{-4}{9} \times \left(\frac{2}{3} + \frac{-8}{11}\right)$
 $= \frac{-4}{9} \times \left(\frac{22-24}{33}\right)$
 $= \frac{-4}{9} \times \left(\frac{-2}{33}\right) = \frac{8}{297}$
R.H.S. $= p \times q + p \times r$
 $= \frac{-4}{9} \times \frac{2}{3} + \frac{-4}{9} \times \frac{-8}{11}$

$$= \frac{-8}{27} + \frac{32}{99}$$

$$= \frac{-88+96}{297} = \frac{8}{297}$$

$$\therefore LHS = RHS$$

(iv) (p + q) \div r = p \div r + q
L.H.S. = $\left(\frac{-4}{9} + \frac{2}{3}\right) \div \frac{-8}{11}$

$$= \frac{-4+6}{9} \div \frac{-8}{11}$$

$$= \frac{2}{9} \div \frac{-8}{11} = \frac{2}{9} \times \frac{11}{-8}$$

$$= \frac{11}{-36} = \frac{-11}{36}$$

R.H.S. = p \div r + q \div r

$$= \frac{-4}{9} \div \frac{-8}{11} + \frac{-4}{9} \div \frac{-8}{11}$$

$$= \frac{-4}{9} \div \frac{11}{-8} + \frac{-4}{9} \div \frac{11}{-8}$$

$$= \frac{11}{18} + \frac{11}{-12}$$

$$= \frac{22-33}{36} = \frac{-11}{36}$$

 \therefore LHS = RHS

÷r.

Question 12: A wedding cake weighed 8 kg. If $\frac{2}{5}$ th of its weight was flour, $\frac{5}{6}$ th was sugar, $\frac{1}{4}$ th was cream and the rest were nuts, find the weight of nuts.

Solution:

Weight of a wedding cake = 8 kg

Weight of Hour in it $=\frac{2}{5}$ th of 8 kg $=\frac{16}{5}$ kg Sugar $=\frac{5}{16}$ of 8 $=\frac{5}{2}$ kg Cream $=\frac{1}{4}$ of 8 =2 kg Nuts = Rest $= 8 - (\frac{16}{5} + \frac{5}{2} + 2)$ $= 8 - (\frac{32 + 25 + 20}{10})$ $= \frac{8}{1} - \frac{77}{10}$ $= \frac{80 - 77}{10} = \frac{3}{10}$ kg = 300 grams