Heat Engines, Entropy, and the
Second Law of Thermodynamics

Chapter Outline

The purpose of a refrigerator is to keep
its contents cool. Beyond the attendant
increase in your electricity bill, there is
another good reason you should not try
to cool the kitchen on a hot day by
leaving the refrigerator door open.
What might this reason be?

(Charles D. Winters)
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CHAPTER 22 Heat Engines, Entropy, and the Second Law of Thermodynamics

he first law of thermodynamics, which we studied in Chapter 20, is a state-
ment of conservation of energy, generalized to include internal energy. This
law states that a change in internal energy in a system can occur as a result of
energy transfer by heat or by work, or by both. As was stated in Chapter 20, the law
makes no distinction between the results of heat and the results of work—either
heat or work can cause a change in internal energy. However, an important distinc-
tion between the two is not evident from the first law. One manifestation of this
distinction is that it is impossible to convert internal energy completely to mechan-
ical energy by taking a substance through a thermodynamic cycle such as in a heat
engine, a device we study in this chapter.

Although the first law of thermodynamics is very important, it makes no dis-
tinction between processes that occur spontaneously and those that do not. How-
ever, we find that only certain types of energy-conversion and energy-transfer
processes actually take place. The second law of thermodynamics, which we study in
this chapter, establishes which processes do and which do not occur in nature. The
following are examples of processes that proceed in only one direction, governed
by the second law:

e When two objects at different temperatures are placed in thermal contact with
each other, energy always flows by heat from the warmer to the cooler, never
from the cooler to the warmer.

e A rubber ball dropped to the ground bounces several times and eventually
comes to rest, but a ball lying on the ground never begins bouncing on its own.

¢ An oscillating pendulum eventually comes to rest because of collisions with air
molecules and friction at the point of suspension. The mechanical energy of the
system is converted to internal energy in the air, the pendulum, and the suspen-
sion; the reverse conversion of energy never occurs.

All these processes are irreversible— that is, they are processes that occur natu-
rally in one direction only. No irreversible process has ever been observed to run
backward —if it were to do so, it would violate the second law of thermodynamics.1

From an engineering standpoint, perhaps the most important implication of
the second law is the limited efficiency of heat engines. The second law states that
a machine capable of continuously converting internal energy completely to other
forms of energy in a cyclic process cannot be constructed.

22.1 _~ HEAT ENGINES AND THE SECOND LAW
OF THERMODYNAMICS

@) A heat engine is a device that converts internal energy to mechanical energy. For
108 instance, in a typical process by which a power plant produces electricity, coal or

some other fuel is burned, and the high-temperature gases produced are used to
convert liquid water to steam. This steam is directed at the blades of a turbine, set-
ting it into rotation. The mechanical energy associated with this rotation is used to
drive an electric generator. Another heat engine—the internal combustion en-
gine in an automobile —uses energy from a burning fuel to perform work that re-
sults in the motion of the automobile.

! Although we have never observed a process occurring in the time-reversed sense, it is possible for it to
occur. As we shall see later in the chapter, however, such a process is highly improbable. From this view-
point, we say that processes occur with a vastly greater probability in one direction than in the opposite
direction.
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Heat Engines and the Second Law of Thermodynamics

Figure 22.1 This steam-driven locomotive runs from Durango to Silverton, Colorado. It ob-
tains its energy by burning wood or coal. The generated energy vaporizes water into steam, which
powers the locomotive. (This locomotive must take on water from tanks located along the route
to replace steam lost through the funnel.) Modern locomotives use diesel fuel instead of wood or
coal. Whether old-fashioned or modern, such locomotives are heat engines, which extract energy
from a burning fuel and convert a fraction of it to mechanical energy.

A heat engine carries some working substance through a cyclic process during
which (1) the working substance absorbs energy from a high-temperature energy
reservoir, (2) work is done by the engine, and (3) energy is expelled by the engine
to a lower-temperature reservoir. As an example, consider the operation of a steam
engine (Fig. 22.1), in which the working substance is water. The water in a boiler
absorbs energy from burning fuel and evaporates to steam, which then does work
by expanding against a piston. After the steam cools and condenses, the liquid wa-
ter produced returns to the boiler and the cycle repeats.

It is useful to represent a heat engine schematically as in Figure 22.2. The en-
gine absorbs a quantity of energy Q) from the hot reservoir, does work W, and
then gives up a quantity of energy Q, to the cold reservoir. Because the working
substance goes through a cycle, its initial and final internal energies are equal, and
so AE;,, = 0. Hence, from the first law of thermodynamics, AE;,, = Q — W, and
with no change in internal energy, the net work W done by a heat engine is
equal to the net energy Q.. flowing through it. As we can see from Figure
22.2, Qhet = Q, — Q,; therefore,

W=0,-Q, (22.1)

In this expression and in many others throughout this chapter, to be consistent
with traditional treatments of heat engines, we take both @, and Q. to be positive
quantities, even though Q, represents energy leaving the engine. In discussions of
heat engines, we shall describe energy leaving a system with an explicit minus sign,
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Lord Kelvin British physicist and
mathematician (1824—1907) Born
William Thomson in Belfast, Kelvin
was the first to propose the use of an
absolute scale of temperature. The
Kelvin temperature scale is named in
his honor. Kelvin's work in thermo-
dynamics led to the idea that energy
cannot pass spontaneously from a
colder body to a hotter body. (J. L.
Charmet /SPL /Photo Researchers, Inc.)

Figure 22.2 Schematic represen-
tation of a heat engine. The engine
absorbs energy Q, from the hot
reservoir, expels energy Q. to the
cold reservoir, and does work W.



672

Area=W

4

Figure 22.3 PV diagram for an
arbitrary cyclic process. The value
of the net work done equals the
area enclosed by the curve.

Kelvin—Planck statement of the
second law of thermodynamics
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as in Equation 22.1. Also note that we model the energy input and output for the
heat engine as heat, as it often is; however, the energy transfer could occur by an-
other mechanism.

The net work done in a cyclic process is the area enclosed by the curve
representing the process on a PV diagram. This is shown for an arbitrary cyclic
process in Figure 22.3.

The thermal efficiency ¢ of a heat engine is defined as the ratio of the net
work done by the engine during one cycle to the energy absorbed at the higher
temperature during the cycle:
w - Q. :
Lol 8L (22.2)

e=—=

Qn Qn Qn

We can think of the efficiency as the ratio of what you get (mechanical work)
to what you give (energy transfer at the higher temperature). In practice, we find
that all heat engines expel only a fraction of the absorbed energy as mechanical
work and that consequently the efficiency is less than 100%. For example, a good
automobile engine has an efficiency of about 20%, and diesel engines have effi-
ciencies ranging from 35% to 40%.

Equation 22.2 shows that a heat engine has 100% efficiency (e = 1) only if
Q.= 0—that is, if no energy is expelled to the cold reservoir. In other words, a
heat engine with perfect efficiency would have to expel all of the absorbed energy
as mechanical work. On the basis of the fact that efficiencies of real engines are
well below 100%, the Kelvin—-Planck form of the second law of thermodynam-
ics states the following:

It is impossible to construct a heat engine that, operating in a cycle, produces
no effect other than the absorption of energy from a reservoir and the perfor-
mance of an equal amount of work.

This statement of the second law means that, during the operation of a heat en-
gine, W can never be equal to Q, or, alternatively, that some energy Q, must be

v

Engine

= Figure 22.4 Schematic diagram of a heat engine
,Cold fesefvoir at that absorbs energy Q; from a hot reservoir and does
e an equivalent amount of work. It is impossible to con-
The impossible engine struct such a perfect engine.
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rejected to the environment. Figure 22.4 is a schematic diagram of the impossible
“perfect” heat engine.

The first and second laws of thermodynamics can be summarized as follows:
The first law specifies that we cannot get more energy out of a cyclic process
by work than the amount of energy we put in, and the second law states that
we cannot break even because we must put more energy in, at the higher
temperature, than the net amount of energy we get out by work.

EXAMPLE 22.1 The Efficiency of an Engine

Find the efficiency of a heat engine that absorbs 2 000 J] of = Equation 22.2:
energy from a hot reservoir and exhausts 1 500 J to a cold
reservoir. e=1— Q. =

Qn

Solution To calculate the efficiency of the engine, we use
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Refrigerators and Heat Pumps

Refrigerators and heat pumps are heat engines running in reverse. Here, we in-
troduce them briefly for the purposes of developing an alternate statement of the
second law; we shall discuss them more fully in Section 22.5.

In a refrigerator or heat pump, the engine absorbs energy Q, from a cold
reservoir and expels energy Q) to a hot reservoir (Fig. 22.5). This can be accom-
plished only if work is done on the engine. From the first law, we know that the en-
ergy given up to the hot reservoir must equal the sum of the work done and the
energy absorbed from the cold reservoir. Therefore, the refrigerator or heat pump
transfers energy from a colder body (for example, the contents of a kitchen refrig-
erator or the winter air outside a building) to a hotter body (the air in the kitchen
or a room in the building). In practice, it is desirable to carry out this process with
a minimum of work. If it could be accomplished without doing any work, then the
refrigerator or heat pump would be “perfect” (Fig. 22.6). Again, the existence of

Engine

U Figure 22.5 Schematic diagram of a refrigerator,
— which absorbs energy Q,from a cold reservoir and ex-
. Coldreservoirat 7, pels energy Q, to a hot reservoir. Work Wis done on the
— refrigerator. A heat pump, which can be used to heat or
Refrigerator cool a building, works the same way.

Q.

- Cold reservoir at 7,

Impossible refrigerator

Figure 22.6 Schematic diagram
of an impossible refrigerator or
heat pump—that is, one that ab-
sorbs energy Q, from a cold reser-
voir and expels an equivalent
amount of energy to a hot reservoir
with W= 0.
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law of thermodynamics
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Figure 22.7 Adiabatic free ex-
pansion of a gas.

CHAPTER 22 Heat Engines, Entropy, and the Second Law of Thermodynamics

such a device would be in violation of the second law of thermodynamics, which in
the form of the Clausius statement? states:

It is impossible to construct a cyclical machine whose sole effect is the continu-
ous transfer of energy from one object to another object at a higher tempera-
ture without the input of energy by work.

In simpler terms, energy does not flow spontaneously from a cold object to a
hot object. For example, we cool homes in summer using heat pumps called air
conditioners. The air conditioner pumps energy from the cool room in the home to
the warm air outside. This direction of energy transfer requires an input of energy
to the air conditioner, which is supplied by the electric power company.

The Clausius and Kelvin—Planck statements of the second law of thermody-
namics appear, at first sight, to be unrelated, but in fact they are equivalent in all
respects. Although we do not prove so here, if either statement is false, then so is
the other.?

22.2_ REVERSIBLE AND IRREVERSIBLE PROCESSES

In the next section we discuss a theoretical heat engine that is the most efficient
possible. To understand its nature, we must first examine the meaning of re-
versible and irreversible processes. In a reversible process, the system undergoing
the process can be returned to its initial conditions along the same path shown on
a PV diagram, and every point along this path is an equilibrium state. A process
that does not satisfy these requirements is irreversible.

All natural processes are known to be irreversible. From the endless number
of examples that could be selected, let us examine the adiabatic free expansion of
a gas, which was already discussed in Section 20.6, and show that it cannot be re-
versible. The system that we consider is a gas in a thermally insulated container, as
shown in Figure 22.7. A membrane separates the gas from a vacuum. When the
membrane is punctured, the gas expands freely into the vacuum. As a result of
the puncture, the system has changed because it occupies a greater volume after
the expansion. Because the gas does not exert a force through a distance on the
surroundings, it does no work on the surroundings as it expands. In addition, no
energy is transferred to or from the gas by heat because the container is insulated
from its surroundings. Thus, in this adiabatic process, the system has changed but
the surroundings have not.

For this process to be reversible, we need to be able to return the gas to its
original volume and temperature without changing the surroundings. Imagine
that we try to reverse the process by compressing the gas to its original volume. To
do so, we fit the container with a piston and use an engine to force the piston in-
ward. During this process, the surroundings change because work is being done by
an outside agent on the system. In addition, the system changes because the com-
pression increases the temperature of the gas. We can lower the temperature of
the gas by allowing it to come into contact with an external energy reservoir. Al-
though this step returns the gas to its original conditions, the surroundings are

2 First expressed by Rudolf Clausius (1822-1888).

3 See, for example, R. P. Bauman, Modern Thermodynamics and Statistical Mechanics, New York, Macmillan
Publishing Co., 1992.
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again affected because energy is being added to the surroundings from the gas. If
this energy could somehow be used to drive the engine that we have used to com-
press the gas, then the net energy transfer to the surroundings would be zero. In
this way, the system and its surroundings could be returned to their initial condi- Sand
tions, and we could identify the process as reversible. However, the Kelvin—Planck
statement of the second law specifies that the energy removed from the gas to re- —
turn the temperature to its original value cannot be completely converted to me-
chanical energy in the form of the work done by the engine in compressing the
gas. Thus, we must conclude that the process is irreversible.

We could also argue that the adiabatic free expansion is irreversible by relying
on the portion of the definition of a reversible process that refers to equilibrium
states. For example, during the expansion, significant variations in pressure occur
throughout the gas. Thus, there is no well-defined value of the pressure for the en-
tire system at any time between the initial and final states. In fact, the process cannot  Figure 22.8 A gas in thermal
even be represented as a path on a PV diagram. The PV diagram for an adiabatic ~ contact with an energy reservoir is
free expansion would show the initial and final conditions as points, but these points compressed slowly as individual

. . .. grains of sand drop onto the pis-
would not be connected by a path. Thus, because the intermediate conditions be- " ", compression is isothermal
tween the initial and final states are not equilibrium states, the process is irreversible. and reversible.

Although all real processes are always irreversible, some are almost reversible.
If a real process occurs very slowly such that the system is always very nearly in an
equilibrium state, then the process can be approximated as reversible. For exam-
ple, let us imagine that we compress a gas very slowly by dropping some grains of
sand onto a frictionless piston, as shown in Figure 22.8. We make the process
isothermal by placing the gas in thermal contact with an energy reservoir, and we
transfer just enough energy from the gas to the reservoir during the process to
keep the temperature constant. The pressure, volume, and temperature of the gas
are all well defined during the isothermal compression, so each state during the
process is an equilibrium state. Each time we add a grain of sand to the piston, the
volume of the gas decreases slightly while the pressure increases slightly. Each
grain we add represents a change to a new equilibrium state. We can reverse the
process by slowly removing grains from the piston.

A general characteristic of a reversible process is that no dissipative effects
(such as turbulence or friction) that convert mechanical energy to internal energy
can be present. Such effects can be impossible to eliminate completely. Hence, it is
not surprising that real processes in nature are irreversible.

Energy reservoir

22.3 _~ THE CARNOT ENGINE

2> In 1824 a French engineer named Sadi Carnot described a theoretical engine,

109 now called a Carnot engine, that is of great importance from both practical and .
theoretical viewpoints. He showed that a heat engine operating in an ideal, re- Sadi Carnot French physicist
versible cycle—called a Carnot cycle—between two energy reservoirs is the most (1796-1832) Carnot was the first to

. . . . . . .. show the quantitative relationship be-
efficient engine possible. Such an ideal engine establishes an upper limit on the — wo?k and heat. In 1824 he gub-

efficiencies of all other engines. That is, the net work done by a working substance lished his only work— Reflections on
taken through the Carnot cycle is the greatest amount of work possible for a given the Motive Power of Heat—which
amount of energy supplied to the substance at the upper temperature. Carnot’s reviewed the industrial, political, and

economic importance of the steam
engine. In it, he defined work as
“weight lifted through a height.”
No real heat engine operating between two energy reservoirs can be more effi- (FPG)

cient than a Carnot engine operating between the same two reservoirs.

theorem can be stated as follows:
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To argue the validity of this theorem, let us imagine two heat engines operating
between the same energy reservoirs. One is a Carnot engine with efficiency e¢, and
the other is an engine with efficiency ¢, which is greater than ¢;. We use the more
efficient engine to drive the Carnot engine as a Carnot refrigerator. Thus, the out-
put by work of the more efficient engine is matched to the input by work of the

A A—> B
Isothermal
__________ expansion

Qy

Energy reservoir at T,

(a)

- __ 3 DA B->C [T
il Adiabatic | Adiabatic
i . ‘ Cycle .
compression expansion
Q=0 Q=0

(b)

C—>D v
Isothermal
compression

Q.

Energy reservoir at T,
()

Figure 22.9 The Carnot cycle. In process A — B, the gas expands isothermally while in contact
with a reservoir at 7},. In process B— C, the gas expands adiabatically (Q = 0). In process C— D,
the gas is compressed isothermally while in contact with a reservoir at 7, < T},. In process D — A,
the gas is compressed adiabatically. The upward arrows on the piston indicate that weights are be-
ing removed during the expansions, and the downward arrows indicate that weights are being
added during the compressions.
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Carnot refrigerator. For the combination of the engine and refrigerator, then, no
exchange by work with the surroundings occurs. Because we have assumed that
the engine is more efficient than the refrigerator, the net result of the combina-
tion is a transfer of energy from the cold to the hot reservoir without work being
done on the combination. According to the Clausius statement of the second law,
this is impossible. Hence, the assumption that ¢ > e must be false. All real en-
gines are less efficient than the Carnot engine because they do not operate
through a reversible cycle. The efficiency of a real engine is further reduced by
such practical difficulties as friction and energy losses by conduction.

To describe the Carnot cycle taking place between temperatures 7, and 7;, we
assume that the working substance is an ideal gas contained in a cylinder fitted
with a movable piston at one end. The cylinder’s walls and the piston are ther-
mally nonconducting. Four stages of the Carnot cycle are shown in Figure 22.9,
and the PV diagram for the cycle is shown in Figure 22.10. The Carnot cycle con-
sists of two adiabatic processes and two isothermal processes, all reversible:

1. Process A — B (Fig. 22.9a) is an isothermal expansion at temperature 7},. The
gas is placed in thermal contact with an energy reservoir at temperature 75,
During the expansion, the gas absorbs energy Q) from the reservoir through
the base of the cylinder and does work Wy in raising the piston.

2. In process B— C (Fig. 22.9b), the base of the cylinder is replaced by a ther-
mally nonconducting wall, and the gas expands adiabatically— that is, no en-
ergy enters or leaves the system. During the expansion, the temperature of
the gas decreases from 7T), to T, and the gas does work Wj in raising the
piston.

3. In process C— D (Fig. 22.9c), the gas is placed in thermal contact with an en-
ergy reservoir at temperature 7, and is compressed isothermally at temperature
T,. During this time, the gas expels energy Q. to the reservoir, and the work
done by the piston on the gas is Wgp.

4. In the final process D — A (Fig. 22.9d), the base of the cylinder is replaced by a
nonconducting wall, and the gas is compressed adiabatically. The temperature
of the gas increases to T}, and the work done by the piston on the gasis Wpy.

The net work done in this reversible, cyclic process is equal to the area en-
closed by the path ABCDA in Figure 22.10. As we demonstrated in Section 22.1,
because the change in internal energy is zero, the net work W done in one cycle
equals the net energy transferred into the system, Q, — Q.. The thermal efficiency
of the engine is given by Equation 22.2:

e:l: Qh_ Qc =1- Qc
Qi Qh Qn
In Example 22.2, we show that for a Carnot cycle
. T.
L _ I (22.3)
Qn T,

Hence, the thermal efficiency of a Carnot engine is

T,
1,

ec=1-— (22.4)

This result indicates that all Carnot engines operating between the same two
temperatures have the same efficiency.

©
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Figure 22.10 PV diagram for the
Carnot cycle. The net work done,
W, equals the net energy received
in one cycle, @, — Q.. Note that
AE;, = 0 for the cycle.

Ratio of energies for a Carnot

cycle

Efficiency of a Carnot engine



678

CHAPTER 22

Heat Engines, Entropy, and the Second Law of Thermodynamics

Equation 22.4 can be applied to any working substance operating in a Carnot
cycle between two energy reservoirs. According to this equation, the efficiency is
zero if T, = T}, as one would expect. The efficiency increases as 7, is lowered and
as T}, is raised. However, the efficiency can be unity (100%) only if 7, = 0 K. Such
reservoirs are not available; thus, the maximum efficiency is always less than 100%.
In most practical cases, T, is near room temperature, which is about 300 K. There-
fore, one usually strives to increase the efficiency by raising 7j,.

EXAMPLE 22.2 Efficiency of the Carnot Engine

Show that the efficiency of a heat engine operating in a
Carnot cycle using an ideal gas is given by Equation 22.4.

Solution During the isothermal expansion (process A — B
in Figure 22.9), the temperature does not change. Thus, the
internal energy remains constant. The work done by a gas
during an isothermal expansion is given by Equation 20.13.
According to the first law, this work is equal to Q, the energy
absorbed, so that

Vs

Qh = WAB = nRT,, In—

Vi

In a similar manner, the energy transferred to the cold reser-
voir during the isothermal compression C— Dis

Ye

Q,z: = |WCI)| = ’I’LRT[;IH
Vb

We take the absolute value of the work because we are defin-
ing all values of Q for a heat engine as positive, as mentioned
earlier. Dividing the second expression by the first, we find
that
a e I n0c/Vp)
Qn  Th n(Vg/Vy)

We now show that the ratio of the logarithmic quantities is
unity by establishing a relationship between the ratio of vol-
umes. For any quasi-static, adiabatic process, the pressure and
volume are related by Equation 21.18:

(2) PV?Y = constant

During any reversible, quasi-static process, the ideal gas must
also obey the equation of state, PV = nRT. Solving this ex-

pression for Pand substituting into (2), we obtain

nRT

V7 = constant

which we can write as
TVY~! = constant

where we have absorbed nRinto the constant right-hand side.
Applying this result to the adiabatic processes B— C and
D — A, we obtain

T,V ' = T,V
LV = TV
Dividing the first equation by the second, we obtain
(Vg/ V)™t = (Ve/ V)"

Substituting (3) into (1), we find that the logarithmic terms
cancel, and we obtain the relationship

Q _ I

Qn T
Using this result and Equation 22.2, we see that the thermal
efficiency of the Carnot engine is

e _ L
Q T,

which is Equation 22.4, the one we set out to prove.

ec—l

EXAMPLE 22.3  The Steam Engine

A steam engine has a boiler that operates at 500 K. The en-
ergy from the burning fuel changes water to steam, and this
steam then drives a piston. The cold reservoir’s temperature
is that of the outside air, approximately 300 K. What is the
maximum thermal efficiency of this steam engine?

Solution Using Equation 22.4, we find that the maximum
thermal efficiency for any engine operating between these
temperatures is

T, _, _ 300K

T, 500 K

ec=1-— =04, or 40%
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Exercise Determine the maximum work that the engine Answer 380 ].
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You should note that this is the highest theoretical efficiency of ~ can perform in each cycle if it absorbs 200 J of energy from
the engine. In practice, the efficiency is considerably lower. the hot reservoir during each cycle.

EXAMPLE 22.4  The Carnot Efficiency

Solution We use the Carnot efficiency to find 7},:

The highest theoretical efficiency of a certain engine is 30%. —1- T,

If this engine uses the atmosphere, which has a temperature ‘c= W

of 300 K, as its cold reservoir, what is the temperature of its

hot reservoir? T, = T, _ 300 K _
1 — e 1-0.30

430 K

22.4 _ GASOLINE AND DIESEL ENGINES

In a gasoline engine, six processes occur in each cycle; five of these are illustrated
in Figure 22.11. In this discussion, we consider the interior of the cylinder above
the piston to be the system that is taken through repeated cycles in the operation
of the engine. For a given cycle, the piston moves up and down twice. This repre-
sents a fourstroke cycle consisting of two upstrokes and two downstrokes. The
processes in the cycle can be approximated by the Otto cycle, a PV diagram of
which is illustrated in Figure 22.12:

1. During the intake stroke O — A (Fig. 22.11a), the piston moves downward, and a
gaseous mixture of air and fuel is drawn into the cylinder at atmospheric pres-
sure. In this process, the volume increases from V; to V;. This is the energy in-
put part of the cycle, as energy enters the system (the interior of the cylinder)
as internal energy stored in the fuel. This is energy transfer by mass transfer—
that is, the energy is carried with a substance. It is similar to convection, which
we studied in Chapter 20.

2. During the compression stroke A— B (Fig. 22.11b), the piston moves upward, the
air—fuel mixture is compressed adiabatically from volume V; to volume V5, and
the temperature increases from 74 to Ty. The work done by the gas is negative,
and its value is equal to the area under the curve ABin Figure 22.12.

3. In process B— C, combustion occurs when the spark plug fires (Fig. 22.11c).
This is not one of the strokes of the cycle because it occurs in a very short
period of time while the piston is at its highest position. The combustion repre-
sents a rapid transformation from internal energy stored in chemical bonds in
the fuel to internal energy associated with molecular motion, which is related
to temperature. During this time, the pressure and temperature in the cylinder
increase rapidly, with the temperature rising from 73 to T;. The volume, how-
ever, remains approximately constant because of the short time interval. As a re-
sult, approximately no work is done by the gas. We can model this process in
the PV diagram (Fig. 22.12) as that process in which the energy Q) enters the
system. However, in reality this process is a transformation of energy already in
the cylinder (from process O — A) rather than a transfer.

4. In the power stroke C— D (Fig. 22.11d), the gas expands adiabatically from Vs to
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Figure 22.12 PV diagram for the
Otto cycle, which approximately
represents the processes occurring
in an internal combustion engine.

Efficiency of the Otto cycle

Compression Spark Power Exhaust

(b) (c) (d) (e)

Figure 22.11 The fourstroke cycle of a conventional gasoline engine. (a) In the intake
stroke, air is mixed with fuel. (b) The intake valve is then closed, and the air—fuel mixture is
compressed by the piston. (c) The mixture is ignited by the spark plug, with the result that the
temperature of the mixture increases. (d) In the power stroke, the gas expands against the pis-
ton. (e) Finally, the residual gases are expelled, and the cycle repeats.

Vi. This expansion causes the temperature to drop from 7 to Tp. Work is
done by the gas in pushing the piston downward, and the value of this work is
equal to the area under the curve CD.

5. In the process D — A (not shown in Fig. 22.11), an exhaust valve is opened as
the piston reaches the bottom of its travel, and the pressure suddenly drops for
a short time interval. During this interval, the piston is almost stationary and
the volume is approximately constant. Energy is expelled from the interior of
the cylinder and continues to be expelled during the next process.

6. In the final process, the exhaust stroke A— O (Fig. 22.11e), the piston moves up-
ward while the exhaust valve remains open. Residual gases are exhausted at at-
mospheric pressure, and the volume decreases from V; to V. The cycle then
repeats.

If the air—fuel mixture is assumed to be an ideal gas, then the efficiency of the
Otto cycle is

1

=1- (V]/—Vg)y_l (22.5)

where vy is the ratio of the molar specific heats Cp/Cy for the fuel-air mixture and
Vi / Vo is the compression ratio. Equation 22.5, which we derive in Example 22.5,
shows that the efficiency increases as the compression ratio increases. For a typical
compression ratio of 8 and with y = 1.4, we predict a theoretical efficiency of 56%
for an engine operating in the idealized Otto cycle. This value is much greater
than that achieved in real engines (15% to 20%) because of such effects as fric-
tion, energy transfer by conduction through the cylinder walls, and incomplete
combustion of the air—fuel mixture.

Diesel engines operate on a cycle similar to the Otto cycle but do not employ a
spark plug. The compression ratio for a diesel engine is much greater than that



22.4 Gasoline and Diesel Engines 681

for a gasoline engine. Air in the cylinder is compressed to a very small volume,
and, as a consequence, the cylinder temperature at the end of the compression
stroke is very high. At this point, fuel is injected into the cylinder. The temperature
is high enough for the fuel—-air mixture to ignite without the assistance of a spark
plug. Diesel engines are more efficient than gasoline engines because of their
greater compression ratios and resulting higher combustion temperatures.

EXAMPLE 22.5 - Efficiency of the Otto Cycle

Show that the thermal efficiency of an engine operating in an
idealized Otto cycle (see Figs. 22.11 and 22.12) is given by
Equation 22.5. Treat the working substance as an ideal gas.

Solution First, let us calculate the work done by the gas
during each cycle. No work is done during processes B— C
and D — A. The work done by the gas during the adiabatic
compression A — Bis negative, and the work done by the gas
during the adiabatic expansion C— D is positive. The value
of the net work done equals the area of the shaded region
bounded by the closed curve in Figure 22.12. Because the
change in internal energy for one cycle is zero, we see from
the first law that the net work done during one cycle equals
the net energy flow through the system:

W= Qh - QL‘

Because processes B— C and D— A take place at constant
volume, and because the gas is ideal, we find from the defini-
tion of molar specific heat (Eq. 21.8) that

Qh = "CV(TC - TB) Q( = nCV(Tl) - TA)

Using these expressions together with Equation 22.2, we ob-
tain for the thermal efficiency

- l =1- & =1-
Qi Qi
We can simplify this expression by noting that processes
A— Band C— D are adiabatic and hence obey the relation-
ship TV?~! = constant, which we obtained in Example 22.2.

For the two adiabatic processes, then,

and

Tp — Ty

1
1 e To— T,

A— B: TAV, Y™ = TyVr!

C—D: TV = TpVpr!

Using these equations and relying on the fact that

Vy=Vp= Viand V3 = V= Vs, we find that

Tt = Tl !

2 Ty = Tg\—

(2) A B< W

TpVY 1 = TV !
V2>7*1

3 Ty = Tel —

(3) D C< W

Subtracting (2) from (3) and rearranging, we find that

)
\y

Substituting (4) into (1), we obtain for the thermal efficiency

1
(Vi / V)7t

T, — Ty

(4) To— T,

B)  e=1

which is Equation 22.5.
We can also express this efficiency in terms of tempera-
tures by noting from (2) and (3) that

<&>’71 L Ty
Wi Ty T¢
Therefore, (5) becomes
T T,
6) e=1--4=1--2
Ty Tc

During the Otto cycle, the lowest temperature is 74 and the
highest temperature is 7. Therefore, the efficiency of a
Carnot engine operating between reservoirs at these two
temperatures, which is given by the expression e¢g =
1 — (Ty/T¢), is greater than the efficiency of the Otto cycle
given by (6), as expected.

APPLICATION ~ Models of Gasoline and Diesel Engines

We can use the thermodynamic principles discussed in this
and earlier chapters to model the performance of gasoline
and diesel engines. In both types of engine, a gas is first com-
pressed in the cylinders of the engine and then the fuel-air
mixture is ignited. Work is done on the gas during compres-
sion, but significantly more work is done on the piston by the

mixture as the products of combustion expand in the cylinder.
The power of the engine is transferred from the piston to the
crankshaft by the connecting rod.

Two important quantities of either engine are the displace-
ment volume, which is the volume displaced by the piston as it
moves from the bottom to the top of the cylinder, and the com-
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Figure 22.13 PV diagram for an ideal diesel engine.

pression ratio 7, which is the ratio of the maximum and mini-
mum volumes of the cylinder (see p. 680). In our notation,
r = Vy/ Vg, or V;/Vyin Eq. 22.5. Most gasoline and diesel en-
gines operate with a four-cycle process (intake, compression,
power, exhaust), in which the net work of the intake and ex-
haust cycles can be considered negligible. Therefore, power
is developed only once for every two revolutions of the crank-
shaft.

In a diesel engine, only air (and no fuel) is present in the
cylinder at the beginning of the compression. In the ideal-
ized diesel cycle of Figure 22.13, air in the cylinder under-
goes an adiabatic compression from A to B. Starting at B, fuel
is injected into the cylinder in such a way that the fuel-air
mixture undergoes a constant-pressure expansion to an inter-
mediate volume V;(B— C). The high temperature of the
mixture causes combustion, and the power stroke is an adia-
batic expansion back to Vj = V4(C— D). The exhaust valve
is opened, and a constantvolume output of energy occurs
(D— A) as the cylinder empties.

To simplify our calculations, we assume that the mixture
in the cylinder is air modeled as an ideal gas. We use specific
heats ¢ instead of molar specific heats C and assume con-
stant values for air at 300 K. We express the specific heats
and the universal gas constant in terms of unit masses rather
than moles. Thus, ¢y = 0.718 k] /kg K, ¢p = 1.005 kJ/kg K,
Y= CP/CV: 140, and R= Cp— Cy= 0287 kJ/kgK:
0.287 kPa-m?%/kg K.

A 3.00-L Gasoline Engine

Let us calculate the power delivered by a six-cylinder gasoline
engine that has a displacement volume of 3.00 L operating at
4 000 rpm and having a compression ratio of r = 9.50. The
air—fuel mixture enters a cylinder at atmospheric pressure
and an ambient temperature of 27°C. During combustion,
the mixture reaches a temperature of 1 350°C.

First, let us calculate the work done by an individual cylin-
der. Using the initial pressure P4 = 100 kPa and the initial
temperature Ty = 300 K, we calculate the initial volume and
the mass of the air—fuel mixture. We know that the ratio of
the initial and final volumes is the compression ratio,
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v
A =r=950
v,

B
We also know that the difference in volumes is the displace-
ment volume. The 3.00-L rating of the engine is the total
displacement volume for all six cylinders. Thus, for one
cylinder,

3.00 L 3.00 X 1073 m?3

= =0.500 X 107*m?®
6 6

Vi— V=

Solving these two equations simultaneously, we find the initial
and final volumes:

V, = 0.559 X 1073 m? Vg = 0.588 X 104 m?

Using the ideal gas law (in the form PV = mRT, because we
are using the universal gas constant in terms of mass rather
than moles), we can find the mass of the air—fuel mixture:

_ PV, (100 kPa)(0.559 X 1073 m?)
RT,  (0.287 kPa-m3/kg-K) (300 K)
=6.49 X 10 kg

Process A — B (see Fig. 22.12) is an adiabatic compression,
and this means that PVY = constant; hence,

PpVpY = P,V
Va )’ 1.40
Py= Py 1) = Pa(n)7 = (100 kPa) (9.50)"
B
= 92.34 X 10° kPa

Using the ideal gas law, we find that the temperature after the

compression is
T, = PgVg (234 X 10%kPa) (0.588 X 10™* m?)

BT mR (649 X 1071 kg) (0.287 kPa-m?/kg - K)

= 739K

In process B— C, the combustion that transforms the in-
ternal energy in chemical bonds into internal energy of mo-
lecular motion occurs at constant volume; thus, Vi = Vj.
Combustion causes the temperature to increase to T¢ =
1 350°C = 1 623 K. Using this value and the ideal gas law, we
can calculate Pg:

mRT
Ve
(6.49 X 10~ * kg) (0.287 kPa-m3/kg-K) (1 623 K)
(0.588 X 10~4m?)
5.14 X 103 kPa

PC:

Process C— D is an adiabatic expansion; the pressure after
the expansion is

Ve Y Ve \Y 1\
VD VA r

1 1.40
= (5.14 X 10% kPa)<%> = 220 kPa



22.4

Using the ideal gas law again, we find the final temperature:
T = PyVp (220 kPa) (0.559 X 1073 m?)
D7 mR (6.49 X 10~*kg) (0.287 kPa-m?3/kg-K)

= 660 K

Now that we have the temperatures at the beginning and
end of each process of the cycle, we can calculate the net en-
ergy transfer and net work done by each cylinder every two
cycles. From Equation 21.8, we can state

Q= Qin = mey(Te — Tp)
— (6.49 X 10 kg) (0.718 k] /kg-K) (1 623 K — 739 K)
= 0412

Q.= Qou = mey(Tp — Ty)

= (6.49 X 10 *kg) (0.718 k] /kg-K) (660 K — 300 K)
= 0.168 k]

Wnet = Qin - Qout = 0.244 kJ

From Equation 22.2, the efficiency is ¢ = W,/ Qi = 59%.
(We can also use Equation 22.5 to calculate the efficiency di-
rectly from the compression ratio.)

Recalling that power is delivered every other revolution of
the crankshaft, we find that the net power for the six-cylinder
engine operating at 4 000 rpm is

P et = 6<#> (4 000 rev/min) (1 min/60 s) (0.244 KkJ)
2 rev

= 49 kW = 66 hp

A 2.00-L Diesel Engine

Let us calculate the power delivered by a four-cylinder diesel
engine that has a displacement volume of 2.00 L and is
operating at 3000 rpm. The compression ratio is
r=V,/Vp=22.0, and the cutoff ratio, which is the ratio
of the volume change during the constant-pressure process
B— C in Figure 22.13, is r, = V;/Vp = 2.00. The air enters
each cylinder at the beginning of the compression cycle at at-
mospheric pressure and at an ambient temperature of 27°C.

Our model of the diesel engine is similar to our model of
the gasoline engine except that now the fuel is injected at
point B and the mixture self-ignites near the end of the com-
pression cycle A — B, when the temperature reaches the igni-
tion temperature. We assume that the energy input occurs in
the constant-pressure process B— C, and that the expansion
process continues from Cto D with no further energy transfer
by heat.

Let us calculate the work done by an individual cylinder
that has an initial volume of V,; = (2.00 X 1073 m3)/4 =
0.500 X 1073 m® Because the compression ratio is quite
high, we approximate the maximum cylinder volume to be
the displacement volume. Using the initial pressure P4 =
100 kPa and initial temperature T4 = 300 K, we can calculate
the mass of the air in the cylinder using the ideal gas law:
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PV, 100 kPa) (0.500 X 10~? m®
¥ /S Il M) 581 % 10 kg
RT, (0.287 kPa-m°/kg-K) (300 K)

Process A— B is an adiabatic compression, so PVY = con-
stant; thus,

PpV¥ = P4V
Va)" 1.40 3
Pp= P, 7 = (100 kPa) (22.0)'* = 7.57 X 10° kPa
B

Using the ideal gas law, we find that the temperature of the
air after the compression is

(7.57 X 10% kPa) (0.500 X 1073 m3)<L>

T — PV 22.0
BT mR (5.81 X 10~*kg) (0.287 kPa-m?/kg-K)
=1.03 X 10K

Process B— C is a constant-pressure expansion; thus,
Pr = Pp. We know from the cutoff ratio of 2.00 that the vol-
ume doubles in this process. According to the ideal gas law, a
doubling of volume in an isobaric process results in a dou-
bling of the temperature, so

Process C— Dis an adiabatic expansion; therefore,

Ve \Y Ve V) 1\
VD VB V]) r

1.40
= (7.57 X 103 kPa)<Z'2—Og> = 264 kPa

We find the temperature at D from the ideal gas law:
T — PpVp (264 kPa) (0.500 X 1073 m?)
P mR T (5.81 X 10~*kg) (0.287 kPa- m®/kg-K)

= 792K

Now that we have the temperatures at the beginning and the
end of each process, we can calculate the net energy transfer
by heat and the net work done by each cylinder every two cy-
cles:

Q= Qin = mep(Te — Tg) = 0.601 k]
Q(' = Qoul = ch(TD - TA) = 0.205 kJ
Wnet = Qin - Qout = 0.396 k_]

The efficiency is ¢ = W,/ Qin = 66%.
The net power for the four-cylinder engine operating at
3 000 rpm is

1
Pret = (7) (83 000 rev/min) (1 min/60 s) (0.396 KJ)
2 rev
= 39.6 kW = 53 hp
Of course, modern engine design goes beyond this simple
thermodynamic treatment, which uses idealized cycles.
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Figure 22.14 The coils on the
back of a refrigerator transfer en-
ergy by heat to the air. The second
law of thermodynamics states that
this amount of energy must be
greater than the amount of energy
removed from the contents of the
refrigerator (or from the air in the
kitchen, if the refrigerator door is
left open).
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22.5_~ HEAT PUMPS AND REFRIGERATORS

In Section 22.1 we introduced a heat pump as a mechanical device that moves en-
ergy from a region at lower temperature to a region at higher temperature. Heat
pumps have long been used for cooling homes and buildings, and they are now
becoming increasingly popular for heating them as well. The heat pump contains
two sets of metal coils that can exchange energy by heat with the surroundings:
one set on the outside of the building, in contact with the air or buried in the
ground; and the other set in the interior of the building. In the heating mode, a
circulating fluid flowing through the coils absorbs energy from the outside and re-
leases it to the interior of the building from the interior coils. The fluid is cold and
at low pressure when it is in the external coils, where it absorbs energy by heat
from either the air or the ground. The resulting warm fluid is then compressed
and enters the interior coils as a hot, high-pressure fluid, where it releases its
stored energy to the interior air.

&y An air conditioner is simply a heat pump operating in the cooling mode, with

"™ its exterior and interior coils interchanged. Energy is absorbed into the circulating
fluid in the interior coils; then, after the fluid is compressed, energy leaves the
fluid through the external coils. The air conditioner must have a way to release en-
ergy to the outside. Otherwise, the work done on the air conditioner would repre-
sent energy added to the air inside the house, and the temperature would in-
crease. In the same manner, a refrigerator cannot cool the kitchen if the
refrigerator door is left open. The amount of energy leaving the external coils
(Fig. 22.14) behind or underneath the refrigerator is greater than the amount of
energy removed from the food or from the air in the kitchen if the door is left
open. The difference between the energy out and the energy in is the work done
by the electricity supplied to the refrigerator.

Figure 22.15 is a schematic representation of a heat pump. The cold tempera-
ture is 7,, the hot temperature is 7}, and the energy absorbed by the circulating
fluid is Q.. The heat pump does work Won the fluid, and the energy transferred
from the pump to the building in the heating mode is Q.

The effectiveness of a heat pump is described in terms of a number called the
coefficient of performance (COP). In the heating mode, the COP is defined as
the ratio of the energy transferred to the hot reservoir to the work required to
transfer that energy:

Energy transferred at high temperature Q

(heating mode) Work done by pump W | )

Note that the COP is similar to the thermal efficiency for a heat engine in that it is
a ratio of what you get (energy delivered to the interior of the building) to what
you give (work input). Because Q) is generally greater than W, typical values for the
COP are greater than unity. It is desirable for the COP to be as high as possible, just
as it is desirable for the thermal efficiency of an engine to be as high as possible.

If the outside temperature is 25°F or higher, then the COP for a heat pump is
about 4. That is, the amount of energy transferred to the building is about four
times greater than the work done by the motor in the heat pump. However, as the
outside temperature decreases, it becomes more difficult for the heat pump to ex-
tract sufficient energy from the air, and so the COP decreases. In fact, the COP
can fall below unity for temperatures below the midteens. Thus, the use of heat
pumps that extract energy from the air, while satisfactory in moderate climates, is
not appropriate in areas where winter temperatures are very low. It is possible to
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use heat pumps in colder areas by burying the external coils deep in the ground.
In this case, the energy is extracted from the ground, which tends to be warmer
than the air in the winter.

| Quick Quiz 22.1 g

In an electric heater, electrical energy can be converted to internal energy with an effi-
ciency of 100%. By what percentage does the cost of heating your home change when you
replace your electric heating system with a heat pump that has a COP of 4? Assume that the
motor running the heat pump is 100% efficient.

Theoretically, a Carnot-cycle heat engine run in reverse constitutes the most
effective heat pump possible, and it determines the maximum COP for a given
combination of hot and cold reservoir temperatures. Using Equations 22.1 and
22.3, we see that the maximum COP for a heat pump in its heating mode is

Qn
W
Qn  _ 1 _ 1 1y
Qn— Q. 1 - Q. 1 1, T, — T,
Qn T

For a heat pump operating in the cooling mode, “what you get” is energy re-
moved from the cold reservoir. The most effective refrigerator or air conditioner is
one that removes the greatest amount of energy from the cold reservoir in ex-
change for the least amount of work. Thus, for these devices we define the COP in
terms of Q:

COP¢(heating mode)

Q. (22.7)

COP (cooling mode) = W

A good refrigerator should have a high COP, typically 5 or 6.
The greatest possible COP for a heat pump in the cooling mode is that of a
heat pump whose working substance is carried through a Carnot cycle in reverse:

T,

COP¢ (cooling mode) = ﬁ

As the difference between the temperatures of the two reservoirs approaches zero
in this expression, the theoretical COP approaches infinity. In practice, the low
temperature of the cooling coils and the high temperature at the compressor limit
the COP to values below 10.

22.6_~ ENTROPY

The zeroth law of thermodynamics involves the concept of temperature, and the
first law involves the concept of internal energy. Temperature and internal energy
are both state functions—that is, they can be used to describe the thermodynamic
state of a system. Another state function—this one related to the second law of
thermodynamics—is entropy S. In this section we define entropy on a macro-
scopic scale as it was first expressed by Clausius in 1865.
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Figure 22.15 Schematic diagram
of a heat pump, which absorbs en-
ergy Q. from a cold reservoir and
expels energy Q) to a hot reservoir.
Note that this diagram is the same
as that for the refrigerator shown
in Figure 22.5.

QuickLab —~

Estimate the COP of your refrigerator
by making rough temperature mea-
surements of the stored food and of
the exhaust coils (found either on
the back of the unit or behind a
panel on the bottom). Use just your
hand if no thermometer is available.
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Clausius definition of change in
entropy
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Consider any infinitesimal process in which a system changes from one equi-
librium state to another. If dQ, is the amount of energy transferred by heat when
the system follows a reversible path between the states, then the change in entropy
dS is equal to this amount of energy for the reversible process divided by the ab-
solute temperature of the system:

s = 92 (22.8)
T
We have assumed that the temperature is constant because the process is infinitesi-
mal. Since we have claimed that entropy is a state function, the change in en-
tropy during a process depends only on the end points and therefore is in-
dependent of the actual path followed.

The subscript r on the quantity dQ,is a reminder that the transferred energy is
to be measured along a reversible path, even though the system may actually have
followed some irreversible path. When energy is absorbed by the system, dQ, is
positive and the entropy of the system increases. When energy is expelled by the
system, dQ, is negative and the entropy of the system decreases. Note that Equa-
tion 22.8 defines not entropy but rather the change in entropy. Hence, the mean-
ingful quantity in describing a process is the changein entropy.

Entropy was originally formulated as a useful concept in thermodynamics;
however, its importance grew tremendously as the field of statistical mechanics de-
veloped because the analytical techniques of statistical mechanics provide an alter-
native means of interpreting entropy. In statistical mechanics, the behavior of a
substance is described in terms of the statistical behavior of its atoms and mole-
cules. One of the main results of this treatment is that isolated systems tend to-
ward disorder and that entropy is a measure of this disorder. For example,
consider the molecules of a gas in the air in your room. If half of the gas mole-
cules had velocity vectors of equal magnitude directed toward the left and the
other half had velocity vectors of the same magnitude directed toward the right,
the situation would be very ordered. However, such a situation is extremely un-
likely. If you could actually view the molecules, you would see that they move hap-
hazardly in all directions, bumping into one another, changing speed upon colli-
sion, some going fast and others going slowly. This situation is highly disordered.

The cause of the tendency of an isolated system toward disorder is easily ex-
plained. To do so, we distinguish between microstates and macrostates of a system. A
microstate is a particular description of the properties of the individual molecules
of the system. For example, the description we just gave of the velocity vectors of
the air molecules in your room being very ordered refers to a particular mi-
crostate, and the more likely likely haphazard motion is another microstate —one
that represents disorder. A macrostate is a description of the conditions of the sys-
tem from a macroscopic point of view and makes use of macroscopic variables
such as pressure, density, and temperature. For example, in both of the mi-
crostates described for the air molecules in your room, the air molecules are dis-
tributed uniformly throughout the volume of the room; this uniform density distri-
bution is a macrostate. We could not distinguish between our two microstates by
making a macroscopic measurement—both microstates would appear to be the
same macroscopically, and the two macrostates corresponding to these microstates
are equivalent.

For any given macrostate of the system, a number of microstates are possible,
or accessible. Among these microstates, it is assumed that all are equally probable.
However, when all possible microstates are examined, it is found that far more of
them are disordered than are ordered. Because all of the microstates are equally
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probable, it is highly likely that the actual macrostate is one resulting from one of
the highly disordered microstates, simply because there are many more of them.
Similarly, the probability of a macrostate’s forming from disordered microstates is
greater than the probability of a macrostate’s forming from ordered microstates.

All physical processes that take place in a system tend to cause the system and
its surroundings to move toward more probable macrostates. The more probable
macrostate is always one of greater disorder. If we consider a system and its sur-
roundings to include the entire Universe, then the Universe is always moving to-
ward a macrostate corresponding to greater disorder. Because entropy is a mea-
sure of disorder, an alternative way of stating this is the entropy of the Universe
increases in all real processes. This is yet another statement of the second law of
thermodynamics that can be shown to be equivalent to the Kelvin—Planck and
Clausius statements.

To calculate the change in entropy for a finite process, we must recognize that
T is generally not constant. If dQ, is the energy transferred by heat when the sys-
tem is at a temperature 7, then the change in entropy in an arbitrary reversible
process between an initial state and a final state is

A S aQ
As=| as=| Tr (reversible path) (22.9)

As with an infinitesimal process, the change in entropy AS of a system going from
one state to another has the same value for all paths connecting the two states.
That is, the finite change in entropy A S of a system depends only on the properties
of the initial and final equilibrium states. Thus, we are free to choose a particular
reversible path over which to evaluate the entropy in place of the actual path, as
long as the initial and final states are the same for both paths.

| Quick Quiz 22.2 4

Which of the following is true for the entropy change of a system that undergoes a re-
versible, adiabatic process? (a) AS < 0. (b) AS= 0. (c) AS> 0.

Let us consider the changes in entropy that occur in a Carnot heat engine op-
erating between the temperatures 7, and 7},. In one cycle, the engine absorbs en-
ergy Q) from the hot reservoir and expels energy Q. to the cold reservoir. These
energy transfers occur only during the isothermal portions of the Carnot cycle;
thus, the constant temperature can be brought out in front of the integral sign in
Equation 22.9. The integral then simply has the value of the total amount of en-
ergy transferred by heat. Thus, the total change in entropy for one cycle is

Ao Qi 0
Th Tc

where the negative sign represents the fact that energy Q. is expelled by the sys-
tem, since we continue to define Q, as a positive quantity when referring to heat
engines. In Example 22.2 we showed that, for a Carnot engine,

Q. _ T.

Q h Th

Using this result in the previous expression for AS, we find that the total change in
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In real processes, the disorder of
the Universe increases

Change in entropy for a finite
process
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The change in entropy for a
Carnot cycle is zero

AS = 0 for any reversible cycle

ExAMPLE 22.6
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entropy for a Carnot engine operating in a cycle is zero:
AS=0

Now let us consider a system taken through an arbitrary (non-Carnot) re-
versible cycle. Because entropy is a state function—and hence depends only on
the properties of a given equilibrium state—we conclude that AS = 0 for any re-
versible cycle. In general, we can write this condition in the mathematical form

jgﬁ =0 (22.10)
T

where the symbol ¢ indicates that the integration is over a closed path.

Quasi-Static, Reversible Process for an Ideal Gas

Let us suppose that an ideal gas undergoes a quasi-static, reversible process from
an initial state having temperature 7; and volume V; to a final state described by 7y
and V. Let us calculate the change in entropy of the gas for this process.

Writing the first law of thermodynamics in differential form and rearranging
the terms, we have dQ, = dE;,, + dW, where dW = P dV. For an ideal gas, recall
that dE;,,, = nCy dT (Eq. 21.12), and from the ideal gas law, we have P = nRT/V.
Therefore, we can express the energy transferred by heat in the process as

av
dQ, = dEi + PdV= nCydT + nRT—~

We cannot integrate this expression as it stands because the last term contains two
variables, T'and V. However, if we divide all terms by 7, each of the terms on the
right-hand side depends on only one variable:

a0, ar av

= nCV + HR_ (22.11)
T \%4

Assuming that Cy is constant over the interval in question, and integrating Equa-
tion 22.11 from the initial state to the final state, we obtain

[ 1 /

AS = = nCyln —= + nRIn —= (22.12)
i T T; Vi

This expression demonstrates mathematically what we argued earlier—that AS de-
pends only on the initial and final states and is independent of the path between
the states. Also, note in Equation 22.12 that AS can be positive or negative, de-
pending on the values of the initial and final volumes and temperatures. Finally,
for a cyclic process (T; = Ty and V; = Vj), we see from Equation 22.12 that AS = 0.
This is evidence that entropy is a state function.

Change in Entropy— Melting

A solid that has a latent heat of fusion L;melts at a tempera- ~ Making use of Equations 22.9 and that for the latent heat of
ture T,. (a) Calculate the change in entropy of this sub-  fusion Q = mL, (Eq. 20.6), we find that
stance when a mass m of the substance melts.

Solution Let us assume that the melting occurs so slowly

aQ, 1 L,
AS:j Q S dQ:gz oy
T T T, T,

m m

that it can be considered a reversible process. In this case the
temperature can be regarded as constant and equal to T,,.




22.7 Entropy Changes in Irreversible Processes 689

Note that we are able to remove T,, from the integral because
the process is isothermal. Note also that AS is positive. This
means that when a solid melts, its entropy increases because
the molecules are much more disordered in the liquid state
than they are in the solid state. The positive value for AS also
means that the substance in its liquid state does not sponta-
neously transfer energy from itself to the surroundings and
freeze because to do so would involve a spontaneous decrease
in entropy.

(b) Estimate the value of the change in entropy of an ice

Solution Let us assume an ice tray makes cubes that are
about 3 cm on a side. The volume per cube is then (very
roughly) 30 cm®. This much liquid water has a mass of 30 g.
From Table 20.2 we find that the latent heat of fusion of ice is
3.33 X 10° J/kg. Substituting these values into our answer for
part (a), we find that

mLy _ (0.03 kg) (3.33 X 105]/kg) B

AS = = 4% 10'J/K
S = 273 K 0y

We retain only one significant figure, in keeping with the na-
ture of our estimations.

cube when it melts.

22.7_~ ENTROPY CHANGES IN IRREVERSIBLE PROCESSES

By definition, calculation of the change in entropy requires information about a re-
versible path connecting the initial and final equilibrium states. To calculate
changes in entropy for real (irreversible) processes, we must remember that entropy
(like internal energy) depends only on the state of the system. That is, entropy is a
state function. Hence, the change in entropy when a system moves between any two
equilibrium states depends only on the initial and final states. We can show that if
this were not the case, the second law of thermodynamics would be violated.

We now calculate the entropy change in some irreversible process between two
equilibrium states by devising a reversible process (or series of reversible
processes) between the same two states and computing AS = [ dQ, /T for the re-
versible process. In irreversible processes, it is critically important that we distin-
guish between Q, the actual energy transfer in the process, and Q,, the energy
that would have been transferred by heat along a reversible path. Only Q, is the
correct value to be used in calculating the entropy change.

As we shall see in the following examples, the change in entropy for a system
and its surroundings is always positive for an irreversible process. In general, the
total entropy—and therefore the disorder—always increase in an irreversible
process. Keeping these considerations in mind, we can state the second law of
thermodynamics as follows:

The total entropy of an isolated system that undergoes a change can never de-
crease.

Furthermore, if the process is irreversible, then the total entropy of an iso-
lated system always increases. In a reversible process, the total entropy of
an isolated system remains constant.

When dealing with a system that is not isolated from its surroundings, remem-
ber that the increase in entropy described in the second law is that of the system
and its surroundings. When a system and its surroundings interact in an irre-
versible process, the increase in entropy of one is greater than the decrease in en-
tropy of the other. Hence, we conclude that the change in entropy of the Uni-
verse must be greater than zero for an irreversible process and equal to zero
for a reversible process. Ultimately, the entropy of the Universe should reach a
maximum value. At this value, the Universe will be in a state of uniform tempera-
ture and density. All physical, chemical, and biological processes will cease because
a state of perfect disorder implies that no energy is available for doing work. This
gloomy state of affairs is sometimes referred to as the heat death of the Universe.
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| Quick Quiz 22.3 4

In the presence of sunlight, a tree rearranges an unorganized collection of carbon dioxide
and water molecules into the highly ordered collection of molecules we see as leaves and
branches. True or false: This reduction of entropy in the tree is a violation of the second law
of thermodynamics. Explain your response.

Entropy Change in Thermal Conduction

Let us now consider a system consisting of a hot reservoir and a cold reservoir in
thermal contact with each other and isolated from the rest of the Universe. A
process occurs during which energy Q is transferred by heat from the hot reservoir
at temperature 7}, to the cold reservoir at temperature 7,. Because the cold reser-
voir absorbs energy Q, its entropy increases by Q /7,. At the same time, the hot
reservoir loses energy Q, and so its entropy change is — Q /T},. Because T, > T,
the increase in entropy of the cold reservoir is greater than the decrease in en-
tropy of the hot reservoir. Therefore, the change in entropy of the system (and of
the Universe) is greater than zero:

—Q

ASy =
U T,

>0

She
_|_

EXAMPLE 22.7  Which Way Does the Energy Flow?

A large, cold object is at 273 K, and a large, hot object is at
373 K. Show that it is impossible for a small amount of
energy—for example, 8.00 J—to be transferred sponta-
neously from the cold object to the hot one without a de-
crease in the entropy of the Universe and therefore a viola-
tion of the second law.

Solution We assume that, during the energy transfer, the
two objects do not undergo a temperature change. This is
not a necessary assumption; we make it only to avoid using in-
tegral calculus in our calculations. The process as described is
irreversible, and so we must find an equivalent reversible
process. It is sufficient to assume that the objects are con-
nected by a poor thermal conductor whose temperature
spans the range from 273 K to 373 K. This conductor trans-
fers energy slowly, and its state does not change during the
process. Under this assumption, the energy transfer to or
from each object is reversible, and we may set Q = Q,. The
entropy change of the hot object is

8.00
AS}L = Qr = J

= 0.021 4]/K
T, 373K 214)/

The cold object loses energy, and its entropy change is

Q,
AS. = =
S T, 273 K

800) _ 09931/

We consider the two objects to be isolated from the rest of
the Universe. Thus, the entropy change of the Universe is just

that of our two-object system, which is
ASy = AS, + AS, = —0.0079]/K

This decrease in entropy of the Universe is in violation of the
second law. That is, the spontaneous transfer of energy
from a cold to a hot object cannot occur.

In terms of disorder, let us consider the violation of the
second law if energy were to continue to transfer sponta-
neously from a cold object to a hot object. Before the trans-
fer, a certain degree of order is associated with the different
temperatures of the objects. The hot object’s molecules have
a higher average energy than the cold object’s molecules. If
energy spontaneously flows from the cold object to the hot
object, then, over a period of time, the cold object will be-
come colder and the hot object will become hotter. The dif-
ference in average molecular energy will become even
greater; this would represent an increase in order for the sys-
tem and a violation of the second law.

In comparison, the process that does occur naturally is the
flow of energy from the hot object to the cold object. In this
process, the difference in average molecular energy de-
creases; this represents a more random distribution of energy
and an increase in disorder.

Exercise Suppose that 8.00 | of energy is transferred from a
hot object to a cold one. What is the net entropy change of

the Universe?

Answer +0.0079]/K.
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Entropy Change in a Free Expansion

Let us again consider the adiabatic free expansion of a gas occupying an initial vol- Insulating
ume V; (Fig. 22.16). A membrane separating the gas from an evacuated region is wall
broken, and the gas expands (irreversibly) to a volume V}. Let us find the changes /
in entropy of the gas and of the Universe during this process. Vacuum

The process is clearly neither reversible nor quasi-static. The work done by the
gas against the vacuum is zero, and because the walls are insulating, no energy is Membrane
transferred by heat during the expansion. That is, W= 0 and Q = 0. Using the
first law, we see that the change in internal energy is zero. Because the gas is ideal, Gas at T

i

Eiy depends on temperature only, and we conclude that AT = 0 or T; = Tj.

To apply Equation 22.9, we cannot use Q = 0, the value for the irreversible
process, but must instead find Q,; that is, we must find an equivalent reversible
path that shares the same initial and final states. A simple choice is an isothermal, Figure 22.16 Adiabatic free ex-
reversible expansion in which the gas pushes slowly against a piston while energy  pansion of a gas. When the mem-
enters the gas by heat from a reservoir to hold the temperature constant. Because ~ brane separating the gas from the

T'is constant in this process, Equation 22.9 gives evacuated region is ruptured, the
gas expands freely and irreversibly.

fd 1 (/f As a result, it occupies a greater fi-
AS:‘[&:?J’dQ1 P g

T nal volume. The container is ther-
mally insulated from its surround-
For an isothermal process, the first law of thermodynamics specifies that f{ dQ,is  ngs thus, Q=0.
equal to the work done by the gas during the expansion from V; to Vj, which is given

by Equation 20.13. Using this result, we find that the entropy change for the gas is

Vi
AS = nRIn —- (22.13)
v,
Because V;> V;, we conclude that AS'is positive. This positive result indicates that
both the entropy and the disorder of the gas increase as a result of the irreversible,
adiabatic expansion.

Because the free expansion takes place in an insulated container, no energy is
transferred by heat from the surroundings. (Remember that the isothermal, re-
versible expansion is only a replacement process that we use to calculate the entropy
change for the gas; it is not the actual process.) Thus, the free expansion has no ef-
fect on the surroundings, and the entropy change of the surroundings is zero. Thus,
the entropy change for the Universe is positive; this is consistent with the second law.

EXAMPLE 22.8  Free Expansion of a Gas

Calculate the change in entropy for a process in which
2.00 mol of an ideal gas undergoes a free expansion to three
times its initial volume.

= 183]J/K

It is easy to see that the gas is more disordered after the ex-

Solution Using Equation 22.13 with n = 2.00 mol and pansion. Instead of being concentrated in a relatively small

V, = 3V, we find that space, the molecules are scattered over a larger region.
‘/f
AS = nRIn 7 = (2.00 mol) (8.31 J/mol-K) (In 3)

Entropy Change in Calorimetric Processes

A substance of mass m;, specific heat ¢;, and initial temperature 77 is placed in
thermal contact with a second substance of mass mgy, specific heat ¢y, and initial
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temperature 75 > 7). The two substances are contained in a calorimeter so that
no energy is lost to the surroundings. The system of the two substances is allowed
to reach thermal equilibrium. What is the total entropy change for the system?

First, let us calculate the final equilibrium temperature 7. Using the tech-
niques of Section 20.2—namely, Equation 20.5, Q.,q = — Qpo» and Equation
20.4, Q = mc AT, we obtain

micy AT] = T Mol ATQ
mycy(Ty— 1Ty) = —moco(Ty— Ty)
Solving for Tf, we have

micqy T] + mQCQTQ

T = (22.14)

micy + Mmocoy

The process is irreversible because the system goes through a series of non-
equilibrium states. During such a transformation, the temperature of the system at
any time is not well defined because different parts of the system have different
temperatures. However, we can imagine that the hot substance at the initial tem-
perature Ty is slowly cooled to the temperature Tyas it comes into contact with a
series of reservoirs differing infinitesimally in temperature, the first reservoir being
at Ty and the last being at 7. Such a series of very small changes in temperature
would approximate a reversible process. We imagine doing the same thing for the
cold substance. Applying Equation 22.9 and noting that dQ = mc dT for an infini-
tesimal change, we have

dQ. d T ar 7 ar
AS = J’ QCOId + f QhOt = micy f _T + MQCQJ —
1 2

T T T TQ T
where we have assumed that the specific heats remain constant. Integrating, we
find that
Change in entropy for : T T
arge th chitropy for a AS = mycyIn L4 moco In =L (22.15)
calorimetric process T] 7“2

where T}is given by Equation 22.14. If Equation 22.14 is substituted into Equation
22.15, we can show that one of the terms in Equation 22.15 is always positive and
the other is always negative. (You may want to verify this for yourself.) The positive
term is always greater than the negative term, and this results in a positive value for
AS. Thus, we conclude that the entropy of the Universe increases in this irre-
versible process.

Finally, you should note that Equation 22.15 is valid only when no mixing of
different substances occurs, because a further entropy increase is associated with
the increase in disorder during the mixing. If the substances are liquids or gases
and mixing occurs, the result applies only if the two fluids are identical, as in the
following example.

EXAMPLE 22.9  Calculating A S for a Calorimetric Process

Suppose that 1.00 kg of water at 0.00°C is mixed with an ~ Solution We can calculate the change in entropy from
equal mass of water at 100°C. After equilibrium is reached, = Equation 22.15 using the values m; = my = 1.00 kg, ¢; =
the mixture has a uniform temperature of 50.0°C. Whatis the ¢y = 4186 J/kg-K, Ty = 273 K, Ty = 373 K, and Ty = 323 K:
change in entropy of the system?



/ Iy
AS = mici In —— + mgco In ——
T T

1.00 kg) (4 186 J/kg-K) 1 (323K>
(1.00 kg) (4186 ] /kg-K) In { oo
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=704]J/K - 602]/K= 102]/K

That is, as a result of this irreversible process, the increase in
entropy of the cold water is greater than the decrease in en-
tropy of the warm water. Consequently, the increase in en-
tropy of the system is 102 J/K.

323K>

+ (1.00 kg) (4 186 J/kg-K) 1n< K

Optional Section

22.8 -~ ENTROPY ON A MICROSCOPIC SCALE*

As we have seen, we can approach entropy by relying on macroscopic concepts
and using parameters such as pressure and temperature. We can also treat entropy
from a microscopic viewpoint through statistical analysis of molecular motions. We
now use a microscopic model to investigate once again the free expansion of an
ideal gas, which was discussed from a macroscopic point of view in the preceding
section.

In the kinetic theory of gases, gas molecules are represented as particles mov-
ing randomly. Let us suppose that the gas is initially confined to a volume V;, as
shown in Figure 22.17a. When the partition separating V; from a larger container
is removed, the molecules eventually are distributed throughout the greater vol-
ume V; (Fig. 22.17b). For a given uniform distribution of gas in the volume, there
are a large number of equivalent microstates, and we can relate the entropy of the
gas to the number of microstates corresponding to a given macrostate.

We count the number of microstates by considering the variety of molecular
locations involved in the free expansion. The instant after the partition is removed
(and before the molecules have had a chance to rush into the other half of the
container), all the molecules are in the initial volume. We assume that each mole-
cule occupies some microscopic volume V,,. The total number of possible loca-
tions of a single molecule in a macroscopic initial volume V; is the ratio
w; = V;/V,,, which is a huge number. We use w; here to represent the number of
ways that the molecule can be placed in the volume, or the number of microstates,
which is equivalent to the number of available locations. We assume that the mole-
cule’s occupying each of these locations is equally probable.

As more molecules are added to the system, the number of possible ways that
the molecules can be positioned in the volume multiplies. For example, in consid-
ering two molecules, for every possible placement of the first, all possible place-
ments of the second are available. Thus, there are w; ways of locating the first mol-
ecule, and for each of these, there are wo ways of locating the second molecule.
The total number of ways of locating the two molecules is wj wo.

Neglecting the very small probability of having two molecules occupy the same
location, each molecule may go into any of the V;/V,, locations, and so the num-
ber of ways of locating N molecules in the volume becomes W; = w~ = (V;/V,,).
(W; is not to be confused with work.) Similarly, when the volume is increased to
Vy, the number of ways of locating N molecules increases to Wy = wa =(V/ V)N
The ratio of the number of ways of placing the molecules in the volume for the

4 This section was adapted from A. Hudson and R. Nelson, University Physics, Philadelphia, Saunders
College Publishing, 1990.

Vacuum

()

(b)

Figure 22.17 1In a free expan-
sion, the gas is allowed to expand
into a region that was previously a
vacuum.
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initial and final configurations is

W (VN (ﬁ)”
W, (Vi/VON T\

If we now take the natural logarithm of this equation and multiply by Boltz-
mann’s constant, we find that

k1<Wf>— Nk1<Vf>
Bnm—nABn‘/i

where we have used the equality N = nN,. We know from Equation 19.11 that
Nj kg is the universal gas constant R; thus, we can write this equation as
Vi
kgIn Wy — kgIn W; = nRIn A (22.16)
i
From Equation 22.13 we know that when »n mol of a gas undergoes a free expan-
sion from V; to Vj, the change in entropy is

Vi

S— 8§ = nRIn|—- (22.17)
Vi

Note that the right-hand sides of Equations 22.16 and 22.17 are identical. Thus, we

make the following important connection between entropy and the number of mi-

crostates for a given macrostate:

S=kyln W (22.18)

The more microstates there are that correspond to a given macrostate, the greater
is the entropy of that macrostate. As we have discussed previously, there are many
more disordered microstates than ordered microstates. Thus, Equation 22.18 indi-
cates mathematically that entropy is a measure of microscopic disorder. Al-
though in our discussion we used the specific example of the free expansion of an
ideal gas, a more rigorous development of the statistical interpretation of entropy
would lead us to the same conclusion.

Imagine the container of gas depicted in Figure 22.18a as having all of its mol-
ecules traveling at speeds greater than the mean value on the left side and all of its
molecules traveling at speeds less than the mean value on the right side (an or-
dered microstate). Compare this with the uniform mixture of fast- and slow-mov-

Faster Slower
molecules molecules
in this in this Fast and slow
half half molecules intermixed

JNY S R N T

e,
o - AT
@ Ordered (b) Disordered

Figure 22.18 A container of gas in two equally probable states of molecular motion. (a) An or-
dered arrangement, which is one of a few and therefore a collectively unlikely set. (b) A disor-
dered arrangement, which is one of many and therefore a collectively likely set.
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Figure 22.19 By tossing a coin into a jar, the carnival-goer can win the fish in the jar. It is more
likely that the coin will land in a jar containing a goldfish than in the one containing the black
fish.

ing molecules in Figure 22.18b (a disordered microstate). You might expect the
ordered microstate to be very unlikely because random motions tend to mix the
slow- and fastmoving molecules uniformly. Yet individually each of these mi-
crostates is equally probable. However, there are far more disordered microstates
than ordered microstates, and so a macrostate corresponding to a large number of
equivalent disordered microstates is much more probable than a macrostate corre-
sponding to a small number of equivalent ordered microstates.

Figure 22.19 shows a real-world example of this concept. There are two possi-
ble macrostates for the carnival game—winning a goldfish and winning a black
fish. Because only one jar in the array of jars contains a black fish, only one possi-
ble microstate corresponds to the macrostate of winning a black fish. A large num-
ber of microstates are described by the coin’s falling into a jar containing a gold-
fish. Thus, for the macrostate of winning a goldfish, there are many equivalent
microstates. As a result, the probability of winning a goldfish is much greater than
the probability of winning a black fish. If there are 24 goldfish and 1 black fish, the
probability of winning the black fish is 1 in 25. This assumes that all microstates
have the same probability, a situation that may not be quite true for the situation
shown in Figure 22.19. If you are an accurate coin tosser and you are aiming for
the edge of the array of jars, then the probability of the coin’s landing in a jar near
the edge is likely to be greater than the probability of its landing in a jar near the
center.

Let us consider a similar type of probability problem for 100 molecules in a
container. At any given moment, the probability of one molecule’s being in the
left part of the container shown in Figure 22.20a as a result of random motion is %
If there are two molecules, as shown in Figure 22.20b, the probability of both be-
ing in the left part is (%)2 or 1 in 4. If there are three molecules (Fig. 22.20c), the
probability of all of them being in the left portion at the same moment is (%)3, orl
in 8. For 100 independently moving molecules, the probability that the 50 fastest
ones will be found in the left part at any moment is (%)50. Likewise, the probability
that the remaining 50 slower molecules will be found in the right part at any mo-
ment is (%)50. Therefore, the probability of finding this fastslow separation
as a result of random motion is the product (%)50(%)50 = (%)100, which corre-
sponds to about 1 in 10%°. When this calculation is extrapolated from 100 mole-
cules to the number in 1 mol of gas (6.02 X 10%%), the ordered arrangement is
found to be extremely improbable!

695

QuickLab »>

Roll a pair of dice 100 times and
record the total number of spots ap-
pearing on the dice for each throw.
Which total comes up most fre-
quently? Is this expected?
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Figure 22.20 (a) One molecule in a two-sided container has a 1-in-2 chance of being on the

left side. (b) Two molecules have a 1-in-4 chance of being on the left side at the same time.
(c) Three molecules have a 1-in-8 chance of being on the left side at the same time.

ExaMpLE 22.10

Let us verify that the macroscopic and microscopic ap-
proaches to the calculation of entropy lead to the same con-
clusion for the adiabatic free expansion of an ideal gas. Sup-
pose that 1 mol of gas expands to four times its initial
volume. As we have seen for this process, the initial and final
temperatures are the same. (a) Using a macroscopic ap-
proach, calculate the entropy change for the gas. (b) Using
statistical considerations, calculate the change in entropy for
the gas and show that it agrees with the answer you obtained
in part (a).

Solution (a) Using Equation 22.13, we have

Vi 1V;
AS = nRIn{—<) = (1)RIn({— | =
Vi Vi

(b) The number of microstates available to a single mole-
cule in the initial volume V;is w; = V;/V,,. For 1 mol (Ny
molecules), the number of available microstates is

. V. Ny
W, = wi‘\A = <7l>
m

RlIn 4

Adiabatic Free Expansion—One Last Time

The number of microstates for all Ny molecules in the final
volume V, = 4V;is

Vf Na 4V, \Na
W= =

Thus, the ratio of the number of final microstates to initial
microstates is

ﬁ — 41\[\
w;

Using Equation 22.18, we obtain

VV/"
AS = kBIH Wf_ kBIHVVi: kBln W

i

= kyIn(4™) = Nykgln4 = RIn4

The answer is the same as that for part (a), which dealt with
mMacroscopic parameters.

CONCePTUAL EXAMPLE 22.11

Suppose you have a bag of 100 marbles. Fifty of the marbles
are red, and 50 are green. You are allowed to draw four mar-
bles from the bag according to the following rules: Draw one
marble, record its color, and return it to the bag. Then draw
another marble. Continue this process until you have drawn
and returned four marbles. What are the possible

Let's Play Marbles!

macrostates for this set of events? What is the most likely
macrostate? What is the least likely macrostate?

Solution Because each marble is returned to the bag be-
fore the next one is drawn, the probability of drawing a red
marble is always the same as the probability of drawing a
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green one. All the possible microstates and macrostates are
shown in Table 22.1. As this table indicates, there is only one
way to draw four red marbles, and so there is only one mi-
crostate. However, there are four possible microstates that
correspond to the macrostate of one green marble and three
red marbles; six microstates that correspond to two green
marbles and two red marbles; four microstates that corre-

Entropy on a Microscopic Scale
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spond to three green marbles and one red marble; and one
microstate that corresponds to four green marbles. The most
likely macrostate—two red marbles and two green marbles—
corresponds to the most disordered microstates. The least
likely macrostates—four red marbles or four green mar-
bles— correspond to the most ordered microstates.

TABLE 22.1 Possible Results of Drawing Four Marbles from a Bag

Total Number

Macrostate Possible Microstates of Microstates
AllR RRRR 1
1G, 3R RRRG, RRGR, RGRR, GRRR
2G, 2R RRGG, RGRG, GRRG, RGGR,
GRGR, GGRR 6
3G, 1R GGGR, GGRG, GRGG, RGGG 4
All G GGGG 1

SUMMARYy

A heat engine is a device that converts internal energy to other useful forms of

energy. The net work done by a heat engine in carrying a working substance

through a cyclic process (AE;,, = 0) is
W= Qh - Q(‘

(22.1)

where ), is the energy absorbed from a hot reservoir and @, is the energy ex-

pelled to a cold reservoir.
The thermal efficiency ¢ of a heat engine is

W, e
Qn Qh

e

(22.2)

The second law of thermodynamics can be stated in the following two ways:

It is impossible to construct a heat engine that, operating in a cycle, produces
no effect other than the absorption of energy from a reservoir and the perfor-
mance of an equal amount of work (the Kelvin-Planck statement).

It is impossible to construct a cyclic machine whose sole effect is the continuous
transfer of energy from one object to another object at a higher temperature
without the input of energy by work (the Clausius statement).

In a reversible process, the system can be returned to its initial conditions
along the same path shown on a PV diagram, and every point along this path is an
equilibrium state. A process that does not satisfy these requirements is irre-
versible. Carnot’s theorem states that no real heat engine operating (irre-
versibly) between the temperatures 7, and 7}, can be more efficient than an en-
gine operating reversibly in a Carnot cycle between the same two temperatures.
The thermal efficiency of a heat engine operating in the Carnot cycle is

1.

T,

ECZI_

(22.4)
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You should be able to use this equation (or an equivalent form involving a ratio of
heats) to determine the maximum possible efficiency of any heat engine.

The second law of thermodynamics states that when real (irreversible)
processes occur, the degree of disorder in the system plus the surroundings in-
creases. When a process occurs in an isolated system, the state of the system be-
comes more disordered. The measure of disorder in a system is called entropy S.
Thus, another way in which the second law can be stated is

* The entropy of the Universe increases in all real processes.
The change in entropy dS of a system during a process between two infinitesi-

mally separated equilibrium states is

= (22.8)

where dQ ,is the energy transfer by heat for a reversible process that connects the
initial and final states. The change in entropy of a system during an arbitrary
process between an initial state and a final state is

/
AS = f A2, (22.9)
;T

The value of AS for the system is the same for all paths connecting the initial and
final states. The change in entropy for a system undergoing any reversible, cyclic
process is zero, and when such a process occurs, the entropy of the Universe re-
mains constant.

From a microscopic viewpoint, entropy is defined as

S=rhyln W (22.18)

where kg is Boltzmann’s constant and Wis the number of microstates available to
the system for the existing macrostate. Because of the statistical tendency of sys-
tems to proceed toward states of greater probability and greater disorder, all nat-
ural processes are irreversible, and entropy increases. Thus, entropy is a measure
of microscopic disorder.

QUESTIONS

1. Isit possible to convert internal energy to mechanical en-
ergy? Describe a process in which such a conversion occurs.

What are some factors that affect the efficiency of auto-
mobile engines?

3. In practical heat engines, which are we able to control
more: the temperature of the hot reservoir, or the tem-
perature of the cold reservoir? Explain.

A steam-driven turbine is one major component of an
electric power plant. Why is it advantageous to have the
temperature of the steam as high as possible?

5. Is it possible to construct a heat engine that creates no
thermal pollution? What does this tell us about environ-
mental considerations for an industrialized society?

6. Discuss three common examples of natural processes that

involve an increase in entropy. Be sure to account for all
parts of each system under consideration.

. Discuss the change in entropy of a gas that expands (a) at

constant temperature and (b) adiabatically.

. In solar ponds constructed in Israel, the Sun’s energy is

concentrated near the bottom of a salty pond. With the
proper layering of salt in the water, convection is pre-
vented, and temperatures of 100°C may be reached. Can
you estimate the maximum efficiency with which useful
energy can be extracted from the pond?

. The vortex tube (Fig. Q22.9) is a T-shaped device that

takes in compressed air at 20 atm and 20°C and gives off
air at — 20°C from one flared end and air at 60°C from
the other flared end. Does the operation of this device vi-



10.

11.

12.

13.

14.

15.

Compressed
air in

Cold air -20°C Hot air + 60°C
Ranque-Hilsch vortex tube

Figure 022.9

olate the second law of thermodynamics? If not, explain
why not.

Why does your automobile burn more gas in winter than
in summer?

Can a heat pump have a coefficient of performance
(COP) less than unity? Explain.

Give some examples of irreversible processes that occur
in nature.

Give an example of a process in nature that is nearly re-
versible.

A thermodynamic process occurs in which the entropy of
a system changes by — 8.0 J/K. According to the second
law of thermodynamics, what can you conclude about the
entropy change of the environment?

If a supersaturated sugar solution is allowed to evaporate
slowly, sugar crystals form in the container. Hence, sugar
molecules go from a disordered form (in solution) to a
highly ordered crystalline form. Does this process violate
the second law of thermodynamics? Explain.

Questions 699

16. How could you increase the entropy of 1 mol of a metal
that is at room temperature? How could you decrease its
entropy?

17. A heat pump is to be installed in a region where the aver-
age outdoor temperature in the winter months is — 20°C.
In view of this, why would it be advisable to place the out-
door compressor unit deep in the ground? Why are heat
pumps not commonly used for heating in cold climates?

18. Suppose your roommate is “Mr. Clean” and tidies up your
messy room after a big party. That is, your roommate is
increasing order in the room. Does this represent a viola-
tion of the second law of thermodynamics?

19. Discuss the entropy changes that occur when you
(a) bake a loaf of bread and (b) consume the bread.

20.] The device shown in Figure Q22.20, which is called a
thermoelectric converter, uses a series of semiconductor
cells to convert internal energy to electrical energy. In the
photograph on the left, both legs of the device are at the
same temperature and no electrical energy is produced.
However, when one leg is at a higher temperature than
the other, as shown in the photograph on the right, elec-
trical energy is produced as the device extracts energy
from the hot reservoir and drives a small electric motor.
(a) Why does the temperature differential produce elec-
trical energy in this demonstration? (b) In what sense
does this intriguing experiment demonstrate the second
law of thermodynamics?

21. A classmate tells you that it is just as likely for all the air
molecules in the room you are both in to be concentrated
in one corner (with the rest of the room being a vacuum)
as it is for the air molecules to be distributed uniformly
about the room in their current state. Is this true? Why
doesn’t the situation he describes actually happen?

Figure 022.20 (Courtesy of PASCO Scientific Company)
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CHAPTER 22

PROBLEMS

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide

WeB = solution posted at http://www.saunderscollege.com/physics/ E = Computer useful in solving problem

e

paired numerical/symbolic problems

Heat Engines, Entropy, and the Second Law of Thermodynamics

i = Interactive Physics

Section 22.1 HeatEngines and the Second Law of
Thermodynamics

Section 22.2 Reversible and Irreversible Processes

1.

A heat engine absorbs 360 J of energy and performs
25.0 ] of work in each cycle. Find (a) the efficiency of
the engine and (b) the energy expelled to the cold
reservoir in each cycle.

. The energy absorbed by an engine is three times

greater than the work it performs. (a) What is its ther-
mal efficiency? (b) What fraction of the energy ab-
sorbed is expelled to the cold reservoir?

A particular engine has a power output of 5.00 kW and

an efficiency of 25.0%. Assuming that the engine expels
8 000 J of energy in each cycle, find (a) the energy ab-
sorbed in each cycle and (b) the time for each cycle.

. A heat engine performs 200 J of work in each cycle and

has an efficiency of 30.0%. For each cycle, how much
energy is (a) absorbed and (b) expelled?

. An ideal gas is compressed to half its original volume

while its temperature is held constant. (a) If 1 000 J of
energy is removed from the gas during the compres-
sion, how much work is done on the gas? (b) What is
the change in the internal energy of the gas during the
compression?

Suppose that a heat engine is connected to two energy
reservoirs, one a pool of molten aluminum (660°C) and
the other a block of solid mercury (— 38.9°C). The en-
gine runs by freezing 1.00 g of aluminum and melting
15.0 g of mercury during each cycle. The heat of fusion
of aluminum is 3.97 X 10° J/kg; the heat of fusion of
mercury is 1.18 X 10* J/kg. What is the efficiency of this

engine?

Section 22.3 The Carnot Engine
One of the most efficient engines ever built (actual effi-

10.

ciency 42.0%) operates between 430°C and 1 870°C.
(a) What is its maximum theoretical efficiency?

(b) How much power does the engine deliver if it ab-
sorbs 1.40 X 10° J of energy each second from the hot
reservoir?

A heat engine operating between 80.0°C and 200°C
achieves 20.0% of the maximum possible efficiency.
What energy input will enable the engine to perform
10.0 KJ of work?

. A Carnot engine has a power output of 150 kW. The en-

gine operates between two reservoirs at 20.0°C and
500°C. (a) How much energy does it absorb per hour?
(b) How much energy is lost per hour in its exhaust?
A steam engine is operated in a cold climate where the
exhaust temperature is 0°C. (a) Calculate the theoreti-

cal maximum efficiency of the engine, using an intake
steam temperature of 100°C. (b) If superheated steam
at 200°C were used instead, what would be the maxi-
mum possible efficiency?

wes An ideal gas is taken through a Carnot cycle. The

12.

13.

14.

15.

16.

17.

isothermal expansion occurs at 250°C, and the isother-
mal compression takes place at 50.0°C. Assuming that
the gas absorbs 1 200 J of energy from the hot reservoir
during the isothermal expansion, find (a) the energy
expelled to the cold reservoir in each cycle and

(b) the net work done by the gas in each cycle.

The exhaust temperature of a Carnot heat engine is
300°C. What is the intake temperature if the efficiency
of the engine is 30.0%?

A power plant operates at 32.0% efficiency during the
summer when the sea water for cooling is at 20.0°C.
The plant uses 350°C steam to drive turbines. Assuming
that the plant’s efficiency changes in the same propor-
tion as the ideal efficiency, what would be the plant’s ef-
ficiency in the winter, when the sea water is at 10.0°C?
Argon enters a turbine at a rate of 80.0 kg/min, a tem-
perature of 800°C, and a pressure of 1.50 MPa. It ex-
pands adiabatically as it pushes on the turbine blades
and exits at a pressure of 300 kPa. (a) Calculate its tem-
perature at the time of exit. (b) Calculate the (maxi-
mum) power output of the turning turbine. (c) The tur-
bine is one component of a model closed-cycle gas
turbine engine. Calculate the maximum efficiency of
the engine.

A power plant that would make use of the temperature
gradient in the ocean has been proposed. The system is
to operate between 5.00°C (water temperature at a
depth of about 1 km) and 20.0°C (surface water temper-
ature). (a) What is the maximum efficiency of such a sys-
tem? (b) If the power output of the plant is 75.0 MW,
how much energy is absorbed per hour? (c) In view of
your answer to part (a), do you think such a system is
worthwhile (considering that there is no charge for
fuel)?

A 20.0%-efficient real engine is used to speed up a train
from rest to 5.00 m/s. It is known that an ideal (Carnot)
engine having the same cold and hot reservoirs would
accelerate the same train from rest to a speed of

6.50 m/s using the same amount of fuel. Assuming that
the engines use air at 300 K as a cold reservoir, find the
temperature of the steam serving as the hot reservoir.

A firebox is at 750 K, and the ambient temperature is
300 K. The efficiency of a Carnot engine doing 150 J of
work as it transports energy between these constant-
temperature baths is 60.0%. The Carnot engine must
absorb energy 150 J/0.600 = 250 J from the hot reser-



voir and release 100 J of energy into the environment.
To follow Carnot’s reasoning, suppose that some other
heat engine S could have an efficiency of 70.0%.

(a) Find the energy input and energy output of engine
S as it does 150 J of work. (b) Let engine S operate as in
part (a) and run the Carnot engine in reverse. Find the
total energy the firebox puts out as both engines oper-
ate together and the total energy absorbed by the envi-
ronment. Show that the Clausius statement of the sec-
ond law of thermodynamics is violated. (c) Find the
energy input and work output of engine S as it exhausts
100 J of energy. (d) Let engine S operate as in (c) and
contribute 150 J of its work output to running the
Carnot engine in reverse. Find the total energy that the
firebox puts out as both engines operate together, the
total work output, and the total energy absorbed by the
environment. Show that the Kelvin—Planck statement
of the second law is violated. Thus, our assumption
about the efficiency of engine S must be false. (e) Let
the engines operate together through one cycle as in
part (d). Find the change in entropy of the Universe.

21.

22.

Problems 701

(b) If the actual efficiency is 15.0%, what fraction of the
fuel is wasted as a result of friction and energy losses by
heat that could by avoided in a reversible engine?
(Assume complete combustion of the air—fuel
mixture.)

A 1.60-L gasoline engine with a compression ratio of
6.20 has a power output of 102 hp. Assuming that the
engine operates in an idealized Otto cycle, find the en-
ergy absorbed and exhausted each second. Assume that
the fuel—air mixture behaves like an ideal gas, with

v = 1.40.

The compression ratio of an Otto cycle, as shown in Fig-
ure 22.12,is V,/ Vg = 8.00. At the beginning A of the
compression process, 500 cm® of gas is at 100 kPa and
20.0°C. At the beginning of the adiabatic expansion,
the temperature is 7 = 750°C. Model the working
fluid as an ideal gas, with E;,, = nCyT = 2.50nRT and

v = 1.40. (a) Fill in the following table to track the
states of the gas:

3
Show that the entropy statement of the second law is T® P (kPa) V tem’) Eine
violated. A 293 100 500

18. At point A in a Carnot cycle, 2.34 mol of a monatomic B
ideal gas has a pressure of 1 400 kPa, a volume of c 1023
10.0 L, and a temperature of 720 K. It expands isother- 2

mally to point B, and then expands adiabatically to
point C, where its volume is 24.0 L. An isothermal com-
pression brings it to point D, where its new volume is
15.0 L. An adiabatic process returns the gas to point A.
(a) Determine all the unknown pressures, volumes, and
temperatures as you fill in the following table:

(b) Fill in the following table to track the processes:

Q w AEim
P v T A—B
B—C
A 1 400 kPa 10.0L 720 K c—D
B D— A
c 9401 ABCDA
D 15.0 L

(b) Find the energy added by heat, the work done, and
the change in internal energy for each of the following
steps: A— B, B— C, C— D, and D — A. (c) Show that
Waet/Qin = 1 — T/ Ty, the Carnot efficiency.

(c) Identify the energy input Q,,, the energy exhaust
Q,, and the net output work W. (d) Calculate the ther-
mal efficiency. (e) Find the number of revolutions per
minute that the crankshaft must complete for a one-
cylinder engine to have an output power of 1.00 kW =
1.34 hp. (Hint: The thermodynamic cycle involves four

Section 22.4 Gasoline and Diesel Engines piston strokes.)

19.| In a cylinder of an automobile engine just after combus-
tion, the gas is confined to a volume of 50.0 cm® and
has an initial pressure of 3.00 X 10° Pa. The piston
moves outward to a final volume of 300 cm?, and the
gas expands without energy loss by heat. (a) If y = 1.40
for the gas, what is the final pressure? (b) How much
work is done by the gas in expanding?

20. A gasoline engine has a compression ratio of 6.00 and
uses a gas for which y = 1.40. (a) What is the efficiency
of the engine if it operates in an idealized Otto cycle?

Section 22.5 Heat Pumps and Refrigerators

23. What is the coefficient of performance of a refrigerator
that operates with Carnot efficiency between the tem-
peratures — 3.00°C and + 27.0°C?

24. What is the maximum possible coefficient of perfor-
mance of a heat pump that brings energy from out-
doors at — 3.00°C into a 22.0°C house? (Hint: The heat
pump does work W, which is also available to warm up
the house.)
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25.| An ideal refrigerator or ideal heat pump is equivalent to
a Carnot engine running in reverse. That is, energy Q,
is absorbed from a cold reservoir, and energy Q) is re-
jected to a hot reservoir. (a) Show that the work that
must be supplied to run the refrigerator or heat pump is
Th - Tﬂ
T <

c

W=

(b) Show that the coefficient of performance (COP) of
the ideal refrigerator is
T
cop=—~—
T, — T,

c

26. A heat pump (Fig. P22.26) is essentially a heat engine
run backward. It extracts energy from colder air outside
and deposits it in a warmer room. Suppose that the ra-
tio of the actual energy entering the room to the work
done by the device’s motor is 10.0% of the theoretical
maximum ratio. Determine the energy entering the
room per joule of work done by the motor when the in-

side temperature is 20.0°C and the outside temperature

is —5.00°C.
Qr Hegf Qh
PP
g
Outside Inside
Tc Th
Figure P22.26

weB How much work does an ideal Carnot refrigerator re-
quire to remove 1.00 J of energy from helium at 4.00 K
and reject this energy to a room-temperature (293-K)
environment?

How much work does an ideal Carnot refrigerator re-
quire to remove energy Q from helium at 7} and reject
this energy to a room-temperature environment at 7;,?

28.

29. A refrigerator has a coefficient of performance equal to
5.00. Assuming that the refrigerator absorbs 120 J of en-
ergy from a cold reservoir in each cycle, find (a) the
work required in each cycle and (b) the energy ex-
pelled to the hot reservoir.

A refrigerator maintains a temperature of 0°C in the
cold compartment with a room temperature of 25.0°C.
It removes energy from the cold compartment at the

rate 8 000 k] /h. (a) What minimum power is required

30.

Heat Engines,

Entropy, and the Second Law of Thermodynamics

to operate the refrigerator? (b) At what rate does the
refrigerator exhaust energy into the room?

Section 22.6 Entropy

31. Anice tray contains 500 g of water at 0°C. Calculate the
change in entropy of the water as it freezes slowly and
completely at 0°C.

32. Ata pressure of 1 atm, liquid helium boils at 4.20 K.
The latent heat of vaporization is 20.5 k] /kg. Determine
the entropy change (per kilogram) of the helium result-
ing from vaporization.

Calculate the change in entropy of 250 g of water

heated slowly from 20.0°C to 80.0°C. (Hint: Note that

dQ = mc dT.)

An airtight freezer holds 2.50 mol of air at 25.0°C and

1.00 atm. The air is then cooled to — 18.0°C. (a) What is

the change in entropy of the air if the volume is held

constant? (b) What would the change be if the pressure
were maintained at 1 atm during the cooling?

34.

Section 22.7 Entropy Changes in Irreversible Processes

35. The temperature at the surface of the Sun is approxi-
mately 5 700 K, and the temperature at the surface of
the Earth is approximately 290 K. What entropy change
occurs when 1 000 J of energy is transferred by radia-
tion from the Sun to the Earth?

A 1.00-kg iron horseshoe is taken from a furnace at

900°C and dropped into 4.00 kg of water at 10.0°C.

Assuming that no energy is lost by heat to the surround-

ings, determine the total entropy change of the system

(horseshoe and water).

weB A1 500-kg car is moving at 20.0 m/s. The driver brakes

to a stop. The brakes cool off to the temperature of the

surrounding air, which is nearly constant at 20.0°C.

What is the total entropy change?

How fast are you personally making the entropy of the

Universe increase right now? Make an order-of-magni-

tude estimate, stating what quantities you take as data

and the values you measure or estimate for them.

39.] One mole of Hy gas is contained in the left-hand side of
the container shown in Figure P22.39, which has equal
volumes left and right. The right-hand side is evacuated.
When the valve is opened, the gas streams into the
right-hand side. What is the final entropy change of the
gas? Does the temperature of the gas change?

36.

38.

Valve

Vacuum

Figure P22.39

40. A rigid tank of small mass contains 40.0 g of argon, ini-
tially at 200°C and 100 kPa. The tank is placed into a
reservoir at 0°C and is allowed to cool to thermal equi-



41.

42.

43.

44.

librium. Calculate (a) the volume of the tank, (b) the
change in internal energy of the argon, (c) the energy
transferred by heat, (d) the change in entropy of the ar-
gon, and (e) the change in entropy of the constant-tem-
perature bath.

A 2.00-L container has a center partition that divides it
into two equal parts, as shown in Figure P22.41. The
left-hand side contains Hy gas, and the right-hand side
contains Oy gas. Both gases are at room temperature
and at atmospheric pressure. The partition is removed,
and the gases are allowed to mix. What is the entropy
increase of the system?

0.044 mol 0.044 mol
Hy Oy

Figure P22.41

A 100 000-kg iceberg at — 5.00°C breaks away from the
polar ice shelf and floats away into the ocean, at 5.00°C.
What is the final change in the entropy of the system af-
ter the iceberg has completely melted? (The specific
heat of ice is 2010 J/kg - °C.)

One mole of an ideal monatomic gas, initially at a pres-
sure of 1.00 atm and a volume of 0.025 0 m?, is heated
to a final state with a pressure of 2.00 atm and a volume
of 0.040 0 m®. Determine the change in entropy of the
gas for this process.

One mole of a diatomic ideal gas, initially having pres-
sure Pand volume V, expands so as to have pressure 2P
and volume 2V. Determine the entropy change of the
gas in the process.

(Optional)
Section 22.8 Entropy on a Microscopic Scale

45.

46.

If you toss two dice, what is the total number of ways in
which you can obtain (a) a 12 and (b) a 7?

Prepare a table like Table 22.1 for the following occur-
rence. You toss four coins into the air simultaneously
and then record the results of your tosses in terms of
the numbers of heads and tails that result. For example,
HHTH and HTHH are two possible ways in which three
heads and one tail can be achieved. (a) On the basis of
your table, what is the most probable result of a toss? In
terms of entropy, (b) what is the most ordered state,
and (c) what is the most disordered?

47.| Repeat the procedure used to construct Table 22.1

(a) for the case in which you draw three marbles from
your bag rather than four and (b) for the case in which
you draw five rather than four.

Problems 703

ADDITIONAL PROBLEMS

48.

49.

50.

Every second at Niagara Falls, some 5 000 m® of water
falls a distance of 50.0 m (Fig. P22.48). What is the in-
crease in entropy per second due to the falling water?
(Assume that the mass of the surroundings is so great
that its temperature and that of the water stay nearly
constant at 20.0°C. Suppose that a negligible amount of
water evaporates.)

Figure P22.48 Niagara Falls. (Jan Kopec/Tony Stone Images)

If a 35.0%-efficient Carnot heat engine is run in reverse
so that it functions as a refrigerator, what would be the
engine’s (that is, the refrigerator’s) coefficient of per-
formance (COP)?

How much work does an ideal Carnot refrigerator use
to change 0.500 kg of tap water at 10.0°C into ice at
—20.0°C? Assume that the freezer compartment is held
at —20.0°C and that the refrigerator exhausts energy
into a room at 20.0°C.

weB Ahouse loses energy through the exterior walls and roof

52,

atarate of 5 000 J/s = 5.00 kW when the interior temper-
ature is 22.0°C and the outside temperature is — 5.00°C.
Calculate the electric power required to maintain the in-
terior temperature at 22.0°C for the following two cases:
(a) The electric power is used in electric resistance
heaters (which convert all of the electricity supplied into
internal energy). (b) The electric power is used to drive
an electric motor that operates the compressor of a heat
pump (which has a coefficient of performance [COP]
equal to 60.0% of the Carnot-cycle value).

A heat engine operates between two reservoirs at Ty =
600 K and 77 = 350 K. It absorbs 1 000 J of energy from
the higher-temperature reservoir and performs 250 J of
work. Find (a) the entropy change of the Universe ASy,
for this process and (b) the work Wthat could have
been done by an ideal Carnot engine operating be-
tween these two reservoirs. (¢) Show that the difference
between the work done in parts (a) and (b) is T1ASy.

weB Figure P22.53 represents n mol of an ideal monatomic

gas being taken through a cycle that consists of two
isothermal processes at temperatures 37; and 7;and two
constant-volume processes. For each cycle, determine,
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54.

55.

56.

57.

58.

CHAPTER 22
P Isothermal 59.
processes
3T,
|
| 4
\ \
I I v
v, 2,
Figure P22.53

in terms of n, R, and T}, (a) the net energy transferred
by heat to the gas and (b) the efficiency of an engine
operating in this cycle.

A refrigerator has a coefficient of performance (COP)
of 3.00. The ice tray compartment is at — 20.0°C, and
the room temperature is 22.0°C. The refrigerator can
convert 30.0 g of water at 22.0°C to 30.0 g of ice at
—20.0°C each minute. What input power is required?
Give your answer in watts.

An ideal (Carnot) freezer in a kitchen has a constant
temperature of 260 K, while the air in the kitchen has a
constant temperature of 300 K. Suppose that the insula-
tion for the freezer is not perfect, such that some en-
ergy flows into the freezer at a rate of 0.150 W. Deter-
mine the average power that the freezer’s motor needs
to maintain the constant temperature in the freezer.
An electric power plant has an overall efficiency of
15.0%. The plant is to deliver 150 MW of power to a
city, and its turbines use coal as the fuel. The burning
coal produces steam, which drives the turbines. The
steam is then condensed to water at 25.0°C as it passes
through cooling coils in contact with river water.

(a) How many metric tons of coal does the plant con-
sume each day (1 metric ton = 103 kg)? (b) What is the
total cost of the fuel per year if the delivered price is
$8.00/metric ton? (c) If the river water is delivered at
20.0°C, at what minimum rate must it flow over the
cooling coils in order that its temperature not exceed
25.0°C? (Note: The heat of combustion of coal is
33.0Kk]/g.)

A power plant, having a Carnot efficiency, produces

1 000 MW of electrical power from turbines that take in
steam at 500 K and reject water at 300 K into a flowing
river. Assuming that the water downstream is 6.00 K
warmer due to the output of the power plant, deter-
mine the flow rate of the river.

A power plant, having a Carnot efficiency, produces
electric power & from turbines that take in energy from
steam at temperature 7}, and discharge energy at tem-
perature T, through a heat exchanger into a flowing
river. Assuming that the water downstream is warmer by
AT due to the output of the power plant, determine the
flow rate of the river.

60.

61.

62.

Heat Engines, Entropy, and the Second Law of Thermodynamics

An athlete whose mass is 70.0 kg drinks 16 oz (453.6 g)
of refrigerated water. The water is at a temperature of
35.0°F. (a) Neglecting the temperature change of her
body that results from the water intake (that is, the body
is regarded as a reservoir that is always at 98.6°F), find
the entropy increase of the entire system. (b) Assume
that the entire body is cooled by the drink and that the
average specific heat of a human is equal to the specific
heat of liquid water. Neglecting any other energy trans-
fers by heat and any metabolic energy release, find the
athlete’s temperature after she drinks the cold water,
given an initial body temperature of 98.6°F. Under these
assumptions, what is the entropy increase of the entire
system? Compare this result with the one you obtained
in part (a).

One mole of an ideal monatomic gas is taken through
the cycle shown in Figure P22.60. The process A — Bis
a reversible isothermal expansion. Calculate (a) the net
work done by the gas, (b) the energy added to the gas,
(c) the energy expelled by the gas, and (d) the effi-
ciency of the cycle.

P(atm)

A

Isothermal
process

1+ B
C
L1 1 1 1 liters)
10 50
Figure P22.60

Calculate the increase in entropy of the Universe when
you add 20.0 g of 5.00°C cream to 200 g of 60.0°C cof-
fee. Assume that the specific heats of cream and coffee
are both 4.20 J/g - °C.

In 1993 the federal government instituted a require-
ment that all room air conditioners sold in the
United States must have an energy efficiency ratio
(EER) of 10 or higher. The EER is defined as the ra-
tio of the cooling capacity of the air conditioner,
measured in Btu/h, to its electrical power require-
ment in watts. (a) Convert the EER of 10.0 to dimen-
sionless form, using the conversion 1 Btu = 1 055 J.
(b) What is the appropriate name for this dimension-
less quantity? (c) In the 1970s it was common to find
room air conditioners with EERs of 5 or lower. Com-
pare the operating costs for 10 000-Btu/h air condi-
tioners with EERs of 5.00 and 10.0 if each air condi-
tioner were to operate for 1 500 h during the
summer in a city where electricity costs 10.0¢ per
kilowatt-hour.



One mole of a monatomic ideal gas is taken through

the cycle shown in Figure P22.63. At point A, the pres-

sure, volume, and temperature are P;, V;, and T, re-

spectively. In terms of Rand 77, find (a) the total energy
entering the system by heat per cycle, (b) the total en-

ergy leaving the system by heat per cycle, (c) the effi-
ciency of an engine operating in this cycle, and
(d) the efficiency of an engine operating in a Carnot
cycle between the same temperature extremes.

QD
IS

3P - ———

<

2P; - > <

<«

Figure P22.63

64. One mole of an ideal gas expands isothermally. (a) If

the gas doubles its volume, show that the work of expan-
sionis W= RT1n 2. (b) Because the internal energy Ej,,

of an ideal gas depends solely on its temperature, no
change in E;,, occurs during the expansion. It follows

from the first law that the heat input to the gas during

the expansion is equal to the energy output by work.
Why does this conversion not violate the second law?

A system consisting of » mol of an ideal gas undergoes a
reversible, isobaric process from a volume V; to a volume
3V;. Calculate the change in entropy of the gas. (Hint:

Imagine that the system goes from the initial state to

the final state first along an isotherm and then along an
adiabatic path—no change in entropy occurs along the

adiabatic path.)

Problems 705

thermodynamic efficiency of 0.61. She explains that it
operates between energy reservoirs at 4°C and 0°C. It is
a very complicated device, with many pistons, gears, and
pulleys, and the cycle involves freezing and melting.
Does her claim that e = 0.61 warrant serious considera-
tion? Explain.

An idealized diesel engine operates in a cycle known as

68.

69.

70.

the air-standard diesel cycle, as shown in Figure 22.13.
Fuel is sprayed into the cylinder at the point of maxi-
mum compression B. Combustion occurs during the ex-
pansion B—> C, which is approximated as an isobaric
process. Show that the efficiency of an engine operating
in this idealized diesel cycle is

1<TD—TA>
e=1-—|—"—"7o%
Y \Tc— Tg

One mole of an ideal gas (y = 1.40) is carried through
the Carnot cycle described in Figure 22.10. At point A,
the pressure is 25.0 atm and the temperature is 600 K.
At point C, the pressure is 1.00 atm and the tempera-
ture is 400 K. (a) Determine the pressures and volumes
at points A, B, C, and D. (b) Calculate the net work
done per cycle. (c) Determine the efficiency of an en-
gine operating in this cycle.

A typical human has a mass of 70.0 kg and produces
about 2 000 kcal (2.00 X 10° cal) of metabolic energy
per day. (a) Find the rate of metabolic energy produc-
tion in watts and in calories per hour. (b) If none of the
metabolic energy were transferred out of the body, and
the specific heat of the human body is 1.00 cal/g- °C,
what is the rate at which body temperature would rise?
Give your answer in degrees Celsius per hour and in de-
grees Fahrenheit per hour.

Suppose that 1.00 kg of water at 10.0°C is mixed with
1.00 kg of water at 30.0°C at constant pressure. When
the mixture has reached equilibrium, (a) what is the fi-
nal temperature? (b) Take cp = 4.19 k] /kg - K for water.
Show that the entropy of the system increases by

293 293
AS =419 ln[<@> <%>} kJ/K

(c) Verify numerically that AS > 0. (d) Is the mixing an
irreversible process?

66. Suppose you are working in a patent office, and an in-
ventor comes to you with the claim that her heat en-
gine, which employs water as a working substance, has a

ANSWERS TO QUICK QuUizzEs

22.3 False. The second law states that the entropy of the Uni-
verse increases in real processes. Although the organiza-
tion of molecules into ordered leaves and branches rep-
resents a decrease in entropy of the tree, this organization
takes place because of a number of processes in which
the tree interacts with its surroundings. If we include the
entropy changes associated with all these processes, the
entropy change of the Universe during the growth of a

22.1 The cost of heating your home decreases to 25% of the
original cost. With electric heating, you receive the same
amount of energy for heating your home as enters it by
electricity. The COP of 4 for the heat pump means that
you are receiving four times as much energy as the en-
ergy entering by electricity. With four times as much en-
ergy per unit of energy from electricity, you need only
one-fourth as much electricity.

22.2 (b) Because the process is reversible and adiabatic,

Q, = 0; therefore, AS = 0.

tree is still positive.



