Class-XII Session - 2022-23

Subject - Mathematics (041) Sample Question Paper - 24 With Solution

Ç.	Chandra Mann	Per	Section-A (1 Mark)	¥ ¥	Section-B (2 Marks)	Section-C (3 Marks)	Section-D (5 Marks)	Section-E (4 Marks)	Marks
No.		Marks	MCQ	AVR	VSA	SA	5	Case-Study	
-	Relations and Functions	100					0.32		ĸ
2	Inverse Trigonometry Functions	8		0.20	Q.21				ю
3	Matrices	ç	0.1,4						2
4	Determinants	2	Q.7,10,14				0.33		8
LC .	Continuity and Differentiability		0.2,5		0.23	Q27			80
9	Applications of Derivatives		Q.17		0.22	Q.28		Q.38	6
7	Integrals	35	Q.6, 18			Q.26,29			8
8	Applications of Integrals						0.34		2
6	Differential Equations		Q.12,16			0.31			10
10	Vector Algebra		Q.3,8,13		0.25				ıo
÷	Three Dimensional Geometry	4	0.9	Q.19	0.24		Q.35		6
12	Linear Programming	2	Q.15					0.36	2
13	Probability	8	0.11			0.30		0.37	8
	Total Marks (Total Questions)		18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)

General Instructions

- This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal 1 choices in some questions.
- 2 Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub 6. parts.

SECTION-A (Multiple Choice Questions)

Each question carries 1 mark.

- If A is a square matrix such that $A^2 = A$, then $(I + A)^3 7A$ is equal to (a) A (b) I A (c) I

(d) 3A

2. Let
$$f(x) = \begin{cases} \frac{1-\sin^3 x}{3\cos^2 x}, & x < \frac{\pi}{2} \\ p, & x = \frac{\pi}{2} \\ \frac{q(1-\sin x)}{(\pi-2x)^2}, & x > \frac{\pi}{2} \end{cases}$$

If f(x) is continuous at $x = \frac{\pi}{2}$, (p, q) =

- (a) (1,4)
- (b) $(\frac{1}{2}, 2)$
- (c) $\left(\frac{1}{2}, 4\right)$
- (d) None of these
- If ā is a non-zero vector of magnitude a and λ a non-zero scalar, then λ ā is a unit vector if.
 - (a) $\lambda = 1$
- (b) $\lambda = -1$
- (c) a=|\lambda|
- (d) $a = \frac{1}{121}$

- 4. If $A = \begin{bmatrix} 1 \\ -4 \\ 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$, then (AB)' is equal to,
 - (a) $\begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & 4 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & 4 & -3 \\ 2 & 8 & 6 \\ 1 & -4 & 3 \end{bmatrix}$

- 5. The value of $\frac{d}{dx} \left[\tan^{-1} \left(\frac{a-x}{1+ax} \right) \right]$ is:

 - (a) $-\frac{1}{1+x^2}$ (b) $\frac{1}{1+a^2} \frac{1}{1+x^2}$ (c) $\frac{1}{1+x^2}$
- (d) None of these

- 6. The integral $\int_{0}^{\pi/2} |\sin x \cos x| dx$ is equal to:
 - (a) 2√2
- (b) $2(\sqrt{2}-1)$
- (c) $\sqrt{2}+1$
- (d) None of these

- The equations 2x + 3y + 4 = 0; 3x + 4y + 6 = 0 and 4x + 5y + 8 = 0 are
 - (a) consistent with unique solution

- (b) inconsistent
- (c) consistent with infinitely many solutions
- (d) None of the above

8.	If the vectors $a\hat{i} + 2\hat{j} + 3\hat{k}$	and -i+5j+ak are	perpendicular to each other then a is	equal to:	
	(a) 5	(b) -6	(c) -5	(d) 6	
9.	The shortest distance betw	een the lines $x = y + 2$	= 6z - 6 and $x + 1 = 2y = -12z$ is		
	(a) $\frac{1}{2}$	(b) 2	(c) 1	(d) $\frac{3}{2}$	
	[1 0 3]				
10.	If $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$, then the	value of adj (adj A)	is		
	(a) 14	(b) 16	(c) 15	(d) 12	
11.	Three persons P, Q and R	independently try to h	it a target. If the probabilities of the	eir hitting the target are $\frac{3}{4}$, $\frac{1}{2}$ and $\frac{5}{8}$	
	respectively, then the prob	ability that the target i	s hit		
	by P or Q but not by R is:				
	(a) $\frac{21}{64}$	(b) $\frac{9}{64}$	(c) 15/64	(d) $\frac{39}{64}$	
12.	The order and degree of th	e differential equation	$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/3} + x^{1/4} = 0$ is		
			ree = 3 (c) order = 2, degree =	= 2 (d) order = 3, degree = 3	
13.	If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{a}.\vec{b} = 1$ and	$d\vec{a} \times \vec{b} = \vec{j} - \vec{k}$, then	β is		
	(a) $\hat{i} - \hat{j} + \hat{k}$	(b) $2\hat{j} - \hat{k}$	(c) 2î	(d) i	
14.	If the area of a triangle AB	C, with vertices A(1, 3), B(0, 0) and C(k, 0) is 3 sq. units, th	nen the value of k is	
	(a) 2	(b) 3	(c) 4	(d) 5	
15.	The maximum vale of P = (a) 10	x + 3y such that 2x + y (b) 60	y≤20, x+2y≤20 x≥0, y≥0 is (c) 30	(d) None	
16.	If the I.F. of the differential	equation $\frac{dy}{dy} + 5y = 0$	os x is $\int e^{Adx}$, then A=		
	(a) 0	(b) 1 dx	(c) 3	(d) 5	
17.	The radius of a sphere initial (a) 50π	lly at zero increases at th (b) 5 π	ne rate of 5 cm/sec. Then its volume after (c) 500π	r 1 sec is increasing at the rate of: (d) None of these	
18.	$\int \frac{x^2 \tan^{-1} x^3}{1+x^6} dx \text{ is equal}$	to			
	(a) $\tan^{-1}x^3 + C$	(b) $\frac{1}{6} (\tan^{-1}x^3)^2 + \frac{1}{6} (\tan^{-1}x^3)^2 + $	-C (c) $-\frac{1}{2} (\tan^{-1}x^3)^2 + C$	(d) $\frac{1}{2} (\tan^{-1} x^2)^3 + C$	
S <u>G</u> (482			-REASON BASED QUESTIONS)		
		tement of Assertion (A) is followed by a statement of Reaso	on (R). Choose the correct answer ou	t
1	e following choices. Roth A and R are true and	l R is the correct aval	anation of 4		
(a)	Both A and R are true and Both A and R are true but				
(b) (c)	A is true but R is false.	A is not the correct e.	epianation of A.		

(d) A is false but R is true.

19. Assertion: Lines
$$\frac{x+2}{-2} = \frac{y-1}{3} = \frac{z-2}{1}$$
 and $\frac{x-3}{-3} = \frac{y}{-2} = \frac{z+1}{2}$ are perpendicular.

Reason: Two lines
$$\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
 and $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ are perpendicular if $l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$

20. Assertion: The value of
$$\sin \left[\tan^{-1} \left(-\sqrt{3} \right) + \cos^{-1} \left(-\frac{\sqrt{3}}{2} \right) \right]$$
 is 1.

Reason:
$$tan^{-1}(-x) = tan \ x \ and \ cos^{-1}(-x) = cos^{-1}x$$

SECTION-B

This section comprises of very short answer type-questions (VSA) of 2 marks each.

21. Find the principal value of $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$.

OR

Find the principal value of
$$\sin^{-1}\left(\sin\frac{5\pi}{3}\right)$$
.

- 22. Find points at which marginal cost $c(x) = x^3 3x^2 9x + 7$ is zero.
- 23. Show that cot x is a continuous function in its domain.

OR

Examine the continuity of f, where f is defined by
$$f(x) = \begin{cases} \sin x - \cos x, & \text{if } x \neq 0 \\ -1, & \text{if } x = 0 \end{cases}$$

- 24. The coordinates of two points A and B are respectively (-2, 2, 3) and (13, -3, 13). A point P moves in the space such that 3PA = 2PB, find the locus of P.
- 25. If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 676$ and $|\vec{b}| = 2$, then find $|\vec{a}|$.

SECTION-C

This section comprises of short answer type questions (SA) of 3 marks each.

26. Evaluate:
$$\int \frac{1}{\cos(x-a)\cos(x-b)} dx$$

27. If
$$x = a \cos \theta + b \sin \theta$$
, $y = a \sin \theta - b \cos \theta$, show that $y^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 0$.

- 28. A window is in the form of rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimension of the window to admit maximum sunlight through the whole opening.
- 29. Evaluate: ∫xcos⁻¹x dx

OR

$$\int_{0}^{\pi} \log(1 + \cos x) dx$$

30. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accident involving a scooter, a car and a truck are 0.01, 0.03 and 0.15, respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver?

OR

Events A and B are such that
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{7}{12}$ and $P(\text{not A or not B}) = \frac{1}{4}$. State whether A and B are independent.

31. Solve the following differential equation: $ye^{x/y} dx = (xe^{x/y} + y)dy$.

OR

Solve the following differential equation: $(1+y+x^2y)dx+(x+x^3)dy=0$, where y=0 when x=1.

SECTION-D

This section comprises of long answer-type questions (LA) of 5 marks each.

- 32. Let $A = R \{3\}$ and $B = R \{1\}$. Let $f: A \to B$ defined as $f(x) = \frac{x-2}{x-3} \forall x \in A$. Then show that f is bijective.
- 33. If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, find A^{-1} and hence prove that $A^2 4A 5I = 0$

OR

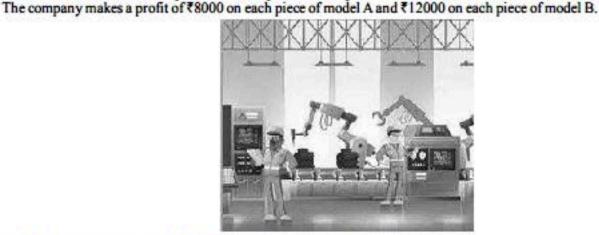
Given that $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$. Find AB, use this to solve the following system of equations:

x-y=3, 2x+3y+4z=17, y+2z=7.

- 34. Find area of the region $\{x, y\}$; $x^2 + y^2 \le 4$, $x + y \ge 2$.
- 35. Find the foot of the perpendicular drawn from the point $2\hat{i} \hat{j} + 5\hat{k}$ to the line

 $\vec{r} = (11\hat{i} - 2\hat{j} - 8\hat{k}) + \lambda (10\hat{i} - 4\hat{j} - 11\hat{k})$. Also, find the length of the perpendicular.

OR


Find the length intercepted by a line with direction ratios 2, 7, -5 between the lines

$$\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1}$$
 and $\frac{x+3}{-3} = \frac{y-3}{2} = \frac{z-6}{4}$

SECTION-E

This section comprises of 3 case study/passage - based questions of 4 marks each with two sub-parts. First two case study questions have three sub-parts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two sub-parts of 2 marks each.

36. Case - Study 1: Read the following passage and answer the questions given below. Students of class-XII are given a practical problem to convert into mathematical problem and then to find the solution. Manufacturing problem: A manufacturing company makes two models A and B of a product. Each piece of model A requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of model B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum labour hours available are 180 and 30 respectively.

Let x be the number of pieces of model A and y be the piece of model B.

- (i) Find the objective function.
- (ii) What is the fabricating and finishing constraints?
- (iii) How many pieces of model A and model B should be manufactured per week to realise maximum profit?

37. Case - Study 2: Read the following passage and answer the questions given below.
Deepa and Radhika playing ludo. Deepa is known to speak truth 3 out of 4 times and Radhika is known to speak truth 2 out of 3 times. Both throws a die one by one and report the number occurs.

- (i) When Deepa reports that it is a six, then find the probability of getting six and speak truth.
- (ii) When Deepa reports that it is a six, then find the probability that it is actually a six.
- (iii) When Radhika reports that it is even prime number, then find the probability of getting even prime number and speak truth.

OR

When Radhika report that is a six, then find the probability that it is actually a six.

38. Case - Study 3: Read the following passage and answer the questions given below.
Pollution in the Delhi city increases with the increase in number of vehicles. If the amount of pollution content in air in city due to x vehicles is given by

 $P(x) = 0.003x^2 - 0.006x + 100$

- (i) Find the marginal increase in pollution content when 10 vehicles are increases.
- (ii) Find the number of vehicles when pollution level is minimum.

Solutions

SAMPLE PAPER-4

1. (c) We have,
$$A^2 = A$$
 ...(i)
Now, $(I + A)^3 - 7A = I^3 + A^3 + 3A^2I + 3AI^2 - 7A$
 $= I + A^2A + 3A^2I + 3AI - 7A$
 $= I + AA + 3A + 3A - 7A$ {using (i)}
 $= I + A^2 - A = I + A - A$ {using (i)}

2. (c)
$$f[(\pi/2)^{-}] = \lim_{h \to 0} \frac{1 - \sin^{3}[(\pi/2) - h]}{3\cos^{2}[(\pi/2) - h]} = \lim_{h \to 0} \frac{1 - \cos^{3}h}{3\sin^{2}h} = \frac{1}{2}$$

 $f[(\pi/2)^{+}] = \lim_{h \to 0} \frac{q[1 - \sin\{(\pi/2) + h\}]}{[\pi - 2\{(\pi/2) + h\}]^{2}} = \lim_{h \to 0} \frac{q(1 - \cosh)}{4h^{2}} = \frac{q}{8}$
 $\therefore p = \frac{1}{2} = \frac{q}{8} \Rightarrow p = \frac{1}{2}, q = 4.$

(d) ā is a non-zero, vector of magnitude a ⇒ |ā|= a
 Now, λā is a unit vector if |λā|=1 or |λ||ā|=1
 or |λ|a=1 ⇒ a= 1/|λ|

4. (a)
$$A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix}$$

$$\therefore (AB)' = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix}$$

5. (a)
$$\frac{d}{dx} \left[\tan^{-1} \left(\frac{a - x}{1 + ax} \right) \right]$$

= $\frac{d}{dx} \left(\tan^{-1} a - \tan^{-1} x \right) = 0 - \frac{1}{1 + x^2} = -\frac{1}{1 + x^2}$

6. (b) We have $\cos x \ge \sin x$ for $0 \le x \le \frac{\pi}{4}$

and
$$\sin x \ge \cos x$$
 for $\frac{\pi}{4} \le x \le \frac{\pi}{2}$

$$\int_{0}^{\frac{\pi}{2}} |\sin x - \cos x| dx$$

$$= \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x - \cos x) dx$$

$$= [\sin x + \cos x]_{0}^{\frac{\pi}{4}} + [-\cos x - \sin x]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 0 - 1 \right] - \left[0 + 1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right]$$
$$= \sqrt{2} - 1 - 1 + \sqrt{2} = 2\sqrt{2} - 2$$

7. (a) Consider first two equations: 2x+3y=-4 and 3x+4y=-6

We have
$$\Delta = \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = -1 \neq 0$$

$$\Delta_x = \begin{vmatrix} -4 & 3 \\ -6 & 4 \end{vmatrix} = 2$$
 and $\Delta_y = \begin{vmatrix} 2 & -4 \\ 3 & -6 \end{vmatrix} = 0$

Now this solution satisfies all the equations, so the equations are consistent with unique solution.

8. (c) Let $\vec{X} = a\hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{Y} = -\hat{i} + 5\hat{j} + a\hat{k}$

Note: If \vec{X} and \vec{Y} are perpendicular to each other, then $\vec{X} \cdot \vec{Y} = 0$ $\Rightarrow -a + 10 + 3a = 0 \Rightarrow 2a + 10 = 0$ Thus, a = -5.

9. **(b)** The lines are
$$\frac{x}{6} = \frac{y+2}{6} = \frac{z-1}{1}$$

and
$$\frac{x+1}{12} = \frac{y}{6} = \frac{z}{-1}$$

Here,
$$\vec{a}_1 = -2\hat{j} + \hat{k}$$
, $b_1 + 6\hat{i} + 6\hat{j} + \hat{k}$, $\vec{a}_2 = -\hat{i}$, $\vec{b}_2 = 12\hat{i} + 6\hat{i} - \hat{k}$

$$\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & k \\ 6 & 6 & 1 \\ 12 & 6 & -1 \end{vmatrix} = -12\hat{i} + 18\hat{j} - 36\hat{k}$$

Shortest distance =
$$\frac{\left|\left(\bar{a}_2 - \bar{a}_1\right) \cdot \left(\bar{b}_1 - \bar{b}_2\right)\right|}{\left|\bar{b}_1 \times \bar{b}_2\right|}$$

$$= \frac{\left| \left(-\hat{i} + 2\hat{j} - \hat{k} \right) \cdot \left(-12\hat{i} + 18\hat{j} - 36\hat{k} \right) \right|}{\sqrt{(-12)^2 + (18)^2 + (-36)^2}}$$

$$=\frac{|+12+36+36|}{\sqrt{1764}}=\frac{84}{42}=2$$

10. **(b)**
$$|A| = \begin{vmatrix} 1 & 0 & 3 \\ 2 & 1 & 1 \\ 0 & 0 & 2 \end{vmatrix} = 2$$

:.
$$|adj(adj A)| = |A|^{(n-1)^2} = |A|^{2^2}$$
 [:: Here n = 3]
= 2⁴ = 16

11. (a) Required probability =
$$P(P) P(\overline{Q}) P(\overline{R}) + P(\overline{P}) P(Q)$$

 $P(\overline{R}) + P(P) P(Q) P(\overline{R})$

$$= \left(\frac{3}{4}\right)\left(\frac{1}{2}\right)\left(\frac{3}{8}\right) + \left(\frac{1}{4}\right)\left(\frac{1}{2}\right)\left(\frac{3}{8}\right) + \left(\frac{3}{4}\right)\left(\frac{1}{2}\right)\left(\frac{3}{8}\right)$$

$$=\frac{12+9}{64}=\frac{21}{64}$$

12. (b) Clearly order of the differential equation is 2.

Again
$$\frac{d^2y}{dx^2} + x^{1/4} = -\left(\frac{dy}{dx}\right)^{1/3} \Rightarrow \left(\frac{d^2y}{dx^2} + x^{1/4}\right)^3 = -\frac{dy}{dx}$$

which shows that degree of the differential equation is 3.

13. (d) Given
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{a} \cdot \vec{b} = 1$$

only
$$\vec{b} = \hat{i}$$
 satisfies that $\vec{a} \cdot \vec{b} = 1$

14. (a) Area of ΔABC = 3 sq. units

$$\Rightarrow \frac{1}{2} \begin{vmatrix} 1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1 \end{vmatrix} = \pm 3 \Rightarrow \begin{vmatrix} 1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1 \end{vmatrix} = \pm 6$$

$$\Rightarrow 1(0-0)-3(0-k)+1(0-0)=\pm 6$$

$$\Rightarrow$$
 $3k = \pm 6 \Rightarrow k = \pm 2$

15. (d)

(d) The I.F. of the differential equation

$$\frac{dy}{dx}$$
 + Py = Q is $e^{\int Pdx}$. Here P = 5 therefore I.F. = $e^{\int 5dx}$.
Hence A = 5.

(c) Let 'r' be the radius and V be the volume of the sphere.
 Given: Radius increases at the rate of 5cm/sec.

$$\frac{dr}{dt} = 5cm/sec$$

Now,
$$V = \frac{4}{3}\pi r^3$$
 : $\frac{dV}{dt} = \frac{4}{3}\pi (3r^2)\frac{dr}{dt} = 4\pi r^2 (5) = 20\pi r^2$

Now, after one second, r = 5

$$\frac{dV}{dt} \text{ after 1 sec} = 20\pi(5)^2 = 500\pi.$$

18. (b) Hint: Let tan-1 x3 = t

19. (d)
$$l_1 l_2 + m_1 m_2 + n_1 n_2 = 6 - 6 + 2 = 2 \neq 0$$

20. (c)
$$\sin \left[\tan^{-1} \left(-\sqrt{3} \right) + \cos^{-1} \left(\frac{-\sqrt{3}}{2} \right) \right]$$

$$= \sin \left[-\tan^{-1} \sqrt{3} + \pi - \cos^{-1} \frac{\sqrt{3}}{2} \right]$$
$$= \sin \left[-\frac{\pi}{3} + \pi - \frac{\pi}{6} \right] = \sin \frac{\pi}{2} = 1$$

Hence, Assertion is correct but Reason is incorrect.

21. Let
$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \theta$$
 [1 Mark]

$$\cos\left(2\pi + \frac{\pi}{6}\right) = \cos\theta \ [\because 0 \le \cos^{-1} x \le \pi]$$

$$\cos\frac{\pi}{6} = \cos\theta \Rightarrow \theta = \frac{\pi}{6}$$
 [1 Mark]

OR

Let
$$\theta = \sin^{-1} \left[\sin \frac{5\pi}{3} \right]$$

$$\Rightarrow \sin \theta = \sin \frac{5\pi}{3} = \sin \left[2\pi - \frac{\pi}{3} \right]$$
 [1 Mark]

$$\Rightarrow \sin\theta = -\sin\frac{\pi}{3} = \sin\left(\frac{-\pi}{3}\right) \quad (\because \sin(-\theta) = -\sin\theta)$$

$$\theta = \frac{-\pi}{3}$$
 [1 Mark]

22. Differentiating w.r.t. x; c'(x) = 3(x-3)(x+1)

or
$$c'(x)=0 \Rightarrow 3(x+3)(x+1)=0 \Rightarrow x=-1,3$$
 [1 Mark]
when $x=-1$, $y=12$ & when $x=3$, $y=-20$

When
$$x = -1$$
, $y = 12$ & when $x = 3$, $y = -20$
Hence the points $(-1, -12)$, $(3 - 20)$. [½ Mark]

23. Let $f(x) = \cot x, x \neq n \pi, n \in \mathbb{Z}$

Then
$$f(x) = \frac{\cos x}{\sin x}$$
 [½ Mark]

Since sin x and cos x are continuous functions, therefore

 $\frac{\cos x}{\sin x}$ i.e., $\cot x$ will be a continuous function at all points where $\sin x \neq 0$ i.e., at all points where $x \neq n\pi$, $n \in \mathbb{Z}$.

[1 Mark]

Hence f(x) i.e., cot x is a continuous function in its domain.

[½ Mark]

OR

L.H.L. =
$$\lim_{x\to 0^-} (\sin x - \cos x) = -1$$
 [1 Mark]

R.H.L. =
$$\lim_{x\to 0^+} (\sin x - \cos x) = -1$$

$$f(0) = -1$$
 [1 Mark]
 \therefore L,H,L,=R,H,L,=f(0)

Thus, f is continuous at x = 0

24. Let P(x, y, z) be any point on the locus then 3 PA = 2 PB ⇒ 9 (PA)² = 4 (PB)²

$$\Rightarrow 9[(x+2)^2 + (y-2)^2 + (z-3)^2]$$
= 4[(x-13)^2 + (y+3)^2 + (z-13)^2] [1 Mark]

$$\Rightarrow 5(x^2+y^2+z^2)+140x-60y+50z-1235=0$$

$$\Rightarrow x^2 + y^2 + z^2 + 28x - 12y + 10z - 247 = 0$$
 [1 Mark]

25. Since,
$$(\bar{\mathbf{a}} \times \bar{\mathbf{b}})^2 + (\bar{\mathbf{a}}.\bar{\mathbf{b}})^2 = 676$$

$$\Rightarrow (|\bar{\mathbf{a}}|.|\bar{\mathbf{b}}|\sin\theta\hat{\mathbf{n}})^2 + (|\bar{\mathbf{a}}|.|\bar{\mathbf{b}}|\cos\theta)^2 = 676 \qquad [1 \text{ Mark}]$$

$$\Rightarrow |\bar{\mathbf{a}}|^2.|\bar{\mathbf{b}}|^2 (\sin^2\theta + \cos^2\theta) = 676$$

$$\Rightarrow |\bar{\mathbf{a}}|^2 (2)^2 = 676 \Rightarrow |\bar{\mathbf{a}}|^2 = 169$$

$$\Rightarrow |\bar{\mathbf{a}}| = 13 \qquad [1 \text{ Mark}]$$

$$\Rightarrow |\vec{a}| = 13$$
 [1 Mark]

$$26. \quad \text{Consider } \int \frac{1}{\cos(x-a)\cos(x-b)} dx$$

$$= \frac{1}{\sin(a-b)} \int \frac{\sin(a-b)}{\cos(x-a)\cos(x-b)} dx$$
 [1 Mark]

$$= \frac{1}{\sin(a-b)} \int \frac{\sin\{(x-b)-(x-a)\}}{\cos(x-a)\cos(x-b)} dx$$
 [½ Mark]

$$= \frac{1}{\sin(a-b)} \int \frac{\sin(x-b)\cos(x-a)-\cos(x-b)\sin(x-a)}{\cos(x-a)\cos(x-b)} dx$$
 [½ Mark]

$$= \frac{1}{\sin(a-b)} \int \{\tan(x-b) - \tan(x-a)\} dx$$

$$= \frac{1}{\sin(a-b)} \{\log|\sec(x-b)| - \log|\sec(x-a)|\} + c$$
[1 Mark]

27. We have

$$x = a \cos \theta + b \sin \theta$$
(i)

$$y = a \sin \theta - b \cos \theta$$
(ii)

Squaring and adding (i) and (ii), we get

$$x^{2} + y^{2} = (a \cos \theta + b \sin \theta)^{2} + (a \sin \theta - b \sin \theta)^{2}$$

$$= a^{2} \cos^{2} \theta + b^{2} \sin \theta^{2} + 2ab \cos \theta \sin \theta + a^{2} \sin^{2} \theta$$

$$+ b^{2} \cos^{2} \theta - 2ab \cos \theta \sin \theta$$

$$= a^{2} (\cos^{2} \theta + \sin^{2} \theta) + b^{2} (\sin^{2} \theta + \cos^{2} \theta)$$

$$\Rightarrow x^{2} + y^{2} = a^{2} + b^{2} \qquad \dots (iii)$$
[1 Mark]

Differentiating both sides of (iii) w.r.t x, we get

$$2x + 2y \frac{dy}{dx} = 0$$

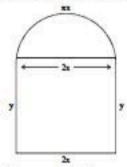
$$\Rightarrow 2y \frac{dy}{dx} = -2x$$

$$\Rightarrow \frac{dy}{dx} = -\frac{x}{y} \qquad (iv) \qquad [\frac{1}{2} Mark]$$

Differentiating both sides of (iv) w.r.t. x, we get

$$\frac{d^2y}{dx^2} = -\left(\frac{y \times 1 - x \times \frac{dy}{dx}}{y^2}\right)$$

$$= -\frac{\left[\frac{y - x\left(-\frac{x}{y}\right)}{y^2}\right]}{y^2} \quad [From (iv)]$$


$$= -\frac{x^2 + y^2}{y^3} \quad (v) \quad [1 \text{ Mark}]$$
Now, $y^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y$

$$= y^2 \left(-\frac{x^2 + y^2}{y^3}\right) - x \left(-\frac{x}{y}\right) + y \quad [From (iv) \text{ and } (v)]$$

$$= -\frac{x^2 + y^2}{y} + \frac{x^2}{y} + y$$

$$= \frac{-x^2 - y^2 + x^2 + y^2}{y} = 0 \quad [\frac{1}{2} \text{ Mark}]$$

28. Let 2x m and y m be dimensions of the window

: 10 m is perimeter of window

∴
$$10 = 2x + 2y + \pi x \Rightarrow y = \frac{10 - 2x - \pi x}{2}$$

Let A be area of the window through which light admit.

$$A = 2xy + \frac{1}{2}\pi x^2$$
 [½ Mark]

Put the value of v. we have

$$A = 2x \frac{(10 - 2x - \pi x)}{2} + \frac{1}{2}\pi x^2$$

$$\Rightarrow A = 10x - 2x^2 - \frac{1}{2}\pi x^2$$

$$\Rightarrow \frac{dA}{dx} = 10 - 4x - \pi x$$
 [1 Mark]

Put
$$\frac{dA}{dx} = 0 \Rightarrow 10 - 4x - \pi x = 0 \Rightarrow x = \frac{10}{4 + \pi}$$

Now,
$$\frac{d^2A}{dx^2} = -4 - \pi = -(4 + \pi)$$

At
$$x = \frac{10}{4 + \pi}, \frac{d^2A}{dx^2} < 0$$

∴ A is maximum when
$$x = \frac{10}{4+\pi}$$
 [½ Mark]

$$y = \frac{10-2x-\pi x}{2} = \frac{10-\frac{20}{4+\pi}-\frac{10\pi}{4+\pi}}{2} = \frac{10}{4+\pi}$$
∴ Dimensions of window are $\frac{2\times10}{4+\pi}$ and $\frac{10}{4+\pi}$

i.e., $\frac{20}{4+\pi}$ and $\frac{10}{4+\pi}$ [1 Mark]

29. Let $I = \int x \cos^{-1} x \, dx = \int (\cos^{-1} x) x \, dx$

$$= \left(\cos^{-1} x\right) \left(\frac{x^2}{2}\right) - \int \frac{-1}{\sqrt{1-x^2}} \left(\frac{x^2}{2}\right) \, dx$$
 [½ Mark]
$$= \frac{x^2}{2} \cos^{-1} x + \frac{1}{2} I_1, \text{ where } I_1 = \int \frac{x^2}{\sqrt{1-x^2}} \, dx$$
 [½ Mark]
Put $x = \cos \theta$, so that $dx = -\sin \theta \, d\theta$ [½ Mark]
$$\therefore I_1 = \int \frac{\cos^2 \theta(-\sin \theta)}{\sqrt{1-\cos^2 \theta}} \, d\theta$$

$$= -\frac{1}{2} \int (1+\cos 2\theta) \, d\theta = -\frac{1}{2} \left(\theta + \frac{\sin 2\theta}{2}\right) + C_1$$
 [½ Mark]
$$= -\frac{1}{2} (\theta + \cos \theta \sqrt{1-\cos^2 \theta}) + C_1$$

$$= -\frac{1}{2} (\cos^{-1} x + x \sqrt{1-x^2}) + C_1$$
 [½ Mark]
$$\therefore I = \frac{\cos^{-1} x}{4} (2x^2 - 1) - \frac{x}{4} \sqrt{1-x^2} + C$$
 [½ Mark]
OR

Let $I = \int_0^{\pi} \log(1+\cos x) \, dx$...(i)
Then, $I = \int_0^{\pi} \log[1+\cos(\pi-x)] \, dx$

$$I = \int_0^{\pi} \log(1-\cos^2 x) \, dx = 2\int_0^{\pi} \log\sin x \, dx$$

$$\Rightarrow I = \int_0^{\pi} \log(1-\cos^2 x) \, dx = 2\int_0^{\pi} \log\sin x \, dx$$

$$\Rightarrow I = \int_0^{\pi} \log\sin x \, dx = 2\int_0^{\pi/2} \log\sin x \, dx = 2I_1$$
[½ Mark]
Now, $I_1 = \int_0^{\pi} \log\sin x \, dx = 2\int_0^{\pi/2} \log\sin x \, dx = 2I_1$
[½ Mark]
Now, $I_1 = \int_0^{\pi} \log\sin x \, dx = 2\int_0^{\pi/2} \log\sin x \, dx = 2I_1$
[½ Mark]
Now, $I_1 = \int_0^{\pi/2} \log\sin x \, dx = 2\int_0^{\pi/2} \log\sin x \, dx = 2I_1$
[½ Mark]
Now, $I_1 = \int_0^{\pi/2} \log\sin x \, dx = 2\int_0^{\pi/2} \log\cos x \, dx$
...(ii)

Adding (iii) and (iv), we get

$$2I_1 = \int_0^{\pi/2} \log\left(\frac{2(\sin x \cos x)}{2}\right) dx = \int_0^{\pi/2} \log\left(\frac{\sin 2x}{2}\right) dx$$

$$= \int_0^{\pi/2} \log \sin 2x dx - \int_0^{\pi/2} \log 2 dx \qquad [1/2] Mark]$$

$$= \int_0^{\pi/2} \log \sin 2x dx - \log 2[x]_0^{\pi/2}$$

$$= \int_0^{\pi/2} \log \sin 2x dx - \frac{\pi}{2} \log 2 \qquad ...(v)$$

$$[1/2] Mark]$$
Let $I_2 = \int_0^{\pi/2} \log \sin 2x dx$;
Put $2x = t$, so that $2dx = dt$

When $x = 0$, $t = 0$; when $x = \frac{\pi}{2}$, $t = \pi$

$$\therefore I_2 = \int_0^{\pi} \log \sin t \frac{dt}{2} = \frac{1}{2} \int_0^{\pi} \log \sin t dt$$

$$= \frac{1}{2} \cdot 2 \int_0^{\pi/2} \log \sin t dt = \int_0^{\pi/2} \log \sin t dt$$

$$\therefore From(v), we get; I_1 = -\frac{\pi}{2} \log 2$$

$$\therefore I = 2x \left(-\frac{\pi}{2} \log 2\right) = -\pi \log 2.$$
Let us define the events as
$$E_1 : \text{insured person is a caor driver}$$

$$E_2 : \text{insured person is a crack driver}$$

$$A : \text{insured person is a truck driver}$$

$$A : \text{insured person meets with an accident}$$
To find $P\left(\frac{E_1}{A}\right)$.

By Baye's theorem, we have
$$P\left(\frac{E_1}{A}\right)$$

$$= \frac{P(E_1) \cdot P\left(\frac{A}{E_1}\right) + P(E_2) \cdot P\left(\frac{A}{E_2}\right) + P(E_3) \cdot P\left(\frac{A}{E_3}\right)}{P(E_1) \cdot P\left(\frac{A}{E_1}\right) + P(E_2) \cdot P\left(\frac{A}{E_2}\right) + P(E_3) \cdot P\left(\frac{A}{E_3}\right)}$$
[½ Mark]

Here, total number of insured vehicles

 $P(E_1) = \frac{2000}{12000} = \frac{1}{6}, \ P(E_2) = \frac{4000}{12000} = \frac{1}{3}$

[1/2 Mark]

and $P(E_3) = \frac{6000}{12000} = \frac{1}{2}$

[1/2 Mark]

Given,
$$P\left(\frac{A}{E_1}\right) = 0.01$$

 $P\left(\frac{A}{E_2}\right) = 0.03$

$$P\left(\frac{A}{E_3}\right) = 0.15$$

$$P\left(\frac{E_1}{A}\right) = \frac{\frac{1}{6} \times 0.01}{\left(\frac{1}{6} \times 0.01\right) + \left(\frac{1}{3} \times 0.03\right) + \left(\frac{1}{2} \times 0.15\right)}$$

$$= \frac{\frac{1}{6} \times \frac{1}{100}}{\left(\frac{1}{6} \times \frac{1}{100}\right) + \left(\frac{1}{3} \times \frac{3}{100}\right) + \left(\frac{1}{2} \times \frac{15}{100}\right)}$$

$$= \frac{1/6}{\frac{1}{6} + 1 + \frac{15}{2}} = \frac{1/6}{\frac{1+6+45}{6}} = \frac{1}{52}$$
 [1 Mark]

$$P(\overline{A} \cup \overline{B}) = 1 - P(A \cap B) \Rightarrow \frac{1}{4} = 1 - P(A \cap B)$$

$$\Rightarrow P(A \cap B) = 1 - \frac{1}{4} = \frac{3}{4}, P(A) = \frac{1}{2}, P(B) = \frac{7}{12}$$

[1 Mark]

[1/2 Mark]

$$P(A). P(B) = \frac{1}{2} \times \frac{7}{12} = \frac{7}{24}, P(A \cap B) = \frac{3}{4}$$
 [1 Mark]

$$\Rightarrow P(A \cap B) \neq P(A) \times P(B)$$
 [1 Mark]

Hence A and B are not independent events.

31. Consider equation $y.e^{x/y} dx = (xe^{x/y} + y) dy$

$$\Rightarrow \frac{dx}{dy} = \frac{xe^{x/y} + y}{ye^{x/y}} \qquad ...(i)$$
 [½ Mark]

Let
$$x = vy \Rightarrow \frac{dx}{dv} = v + y \frac{dv}{dv}$$
 [½ Mark]

Substituting in (i), we get

$$v + y\frac{dv}{dy} = \frac{vye^v + y}{ye^v} = \frac{ve^v + 1}{e^v}$$

$$\Rightarrow y \frac{dv}{dy} = \frac{ve^{v} + 1}{e^{v}} - v = \frac{ve^{v} + 1 - ve^{v}}{e^{v}}$$

[1/2 Mark]

$$\Rightarrow y \frac{dv}{dy} = \frac{1}{e^{v}} \Rightarrow e^{v} dv = \frac{dy}{v}$$
 [½ Mark]

Integrating both sides, we get

$$\int e^{v} dv = \int \frac{dy}{y}$$

 $\Rightarrow e^{v} = \log |y| + c, c$ is constant of integration

[1/2 Mark]

 $\Rightarrow \epsilon^{x/y} = \log y + c \text{ is the required solution.} \quad [\frac{1}{2} \text{ Mark}]$ OR

Consider equation,

$$(1+y+x^2y) dx + (x+x^3) dy = 0$$

 $\Rightarrow \{1+y(1+x^2)\} dx = -(x+x^3) dy$

$$\Rightarrow \frac{dy}{dx} = -\frac{1 + y(1 + x^2)}{x(1 + x^2)} = -\frac{1}{x(1 + x^2)} - \frac{y}{x}$$

$$\Rightarrow \frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x(1+x^2)}$$
 [½ Mark]

$$\Rightarrow \text{ Here } P(x) = \frac{1}{x}, \ Q(x) = -\frac{1}{x(1+x^2)}$$
 [½ Mark]

$$\therefore \text{ Integrating factor} = e^{\int \frac{1}{x} dx} = e^{\log x} = x \quad [\frac{1}{2} \text{ Mark}]$$

$$\therefore \text{ Solution is, } x \cdot y = \int \left\{ x \cdot \frac{-1}{x(1+x^2)} \right\} dx$$

$$\Rightarrow x \cdot y = -\int \frac{1}{1+x^2} dx \Rightarrow xy = -\tan^{-1}x + c \qquad ...(i)$$

[1/2 Mark]

Given y = 0, when x = 1

$$\Rightarrow 0 = -\tan^{-1}1 + c \Rightarrow c = \frac{\pi}{4}$$
 [½ Mark]

Substituting in (i), we get:

$$xy = -\tan^{-1}x + \frac{\pi}{4}$$
 is the required solution [½ Mark]

One-one/Many-one: Let x₁, x₂ ∈ R – {3} are the elements such that

$$f(x_1) = f(x_2)$$
: then $f(x_1) = f(x_2)$

$$\Rightarrow \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$$
 [1 Mark]

$$\Rightarrow$$
 $(x_1-2)(x_2-3)=(x_2-2)(x_1-3)$

$$\Rightarrow x_1 x_2 - 2x_2 - 3x_1 + 6 = x_2 x_1 - 2x_1 - 3x_2 + 6$$

$$\Rightarrow -2x_2 - 3x_1 = -2x_1 - 3x_2$$

$$\Rightarrow x_2 = x_1$$
, $\therefore f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Onto/Into: Let y ∈ R-{1} (co-domain)

Then one element $x \in R - \{3\}$ in domain is such that

$$f(x) = y \Rightarrow \frac{x-2}{x-3} = y \Rightarrow x-2 = xy-3y$$

$$\Rightarrow x = \left(\frac{3y - 2}{y - 1}\right)$$
 [1½ Marks]

∴ The pre-image of each element of co-domain R – {1} exists in domain R – {3}.

⇒ f is onto

Hence f is bijective [11/2 Marks]

33.
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \Rightarrow |A| = -3 + 4 + 4 = 5 \neq 0$$

$$\Rightarrow A^{-1} \text{ exists}$$

$$A_{11} = -3 \quad A_{21} = 2 \quad A_{31} = 2$$

$$A_{12} = 2 \quad A_{22} = -3 \quad A_{32} = 2$$

$$A_{13} = 2 \quad A_{23} = 2 \quad A_{33} = -3$$

$$adj A = \begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix}$$
[1 Mark]

$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{5} \operatorname{adj} A$$

$$A^{-1} = \frac{1}{5} \begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix},$$
 [1 Mark]

$$5A^{-1} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} - \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = A - 4I$$

[1 Mark]

$$\Rightarrow$$
 5A⁻¹·A = (A-4I) A \Rightarrow A²-4A-5I=0.

[1 Mark]

$$AB = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$$

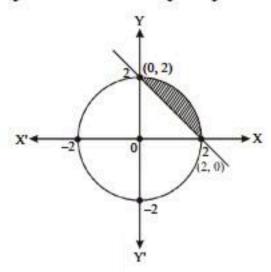
$$\Rightarrow A \frac{1}{6}B = I \Rightarrow A^{-1} = \frac{1}{6}B. \qquad ...(1)$$

Matrix form of given equations [11/2 Marks]

$$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$$

$$AX = D$$

 $X = A^{-1}D$ [1½ Marks] $\begin{bmatrix} 2 & 2 & -4 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$


$$=\frac{1}{6}\begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}\begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$$
[From i]

$$= \frac{1}{6} \begin{bmatrix} 6+34-28 \\ -12+34-28 \\ 6-17+35 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 12 \\ -6 \\ 24 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$

∴ x = 2, y = -1, z = 4. [2 Marks]

34. Let
$$x^2+y^2=4$$
 ...(i)
with centre (0, 0) and radius 2 and line whose equation is
 $x+y=2$...(ii)

Rough sketch for the above region is given as

[2 Marks]

On solving eqns (i) and (ii), we get ⇒ x=0 or 2

Required area of region

$$= \int_{0}^{2} [ydx \text{ from circle}] - (ydx \text{ from line}) dx$$

$$= \int_{0}^{2} \left[\sqrt{4 - x^{2}} - (2 - x) \right] dx$$
 [1 Mark]

$$[\because x^2 + y^2 = 4, y^2 = 4 - x^2, y = \sqrt{4 - x^2}]$$

$$= \int_0^2 \sqrt{4 - x^2} dx - \int_0^2 (2 - x) dx$$

$$= \left[\frac{x}{2}\sqrt{4 - x^2} + \frac{4}{2}\sin^{-1}\frac{x}{2}\right]_0^2 - \left[2x - \frac{x^2}{2}\right]_0^2$$

$$\left[\because \sqrt{a^2 - x^2} \, dx = \left\{ \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) \right\} \right]$$

[1 Mark]

$$= \left[\frac{x}{2}\sqrt{4-x^2} + 2\sin^{-1}\frac{x}{2}\right]_0^2 - \left[2x - \frac{x^2}{2}\right]_0^2$$

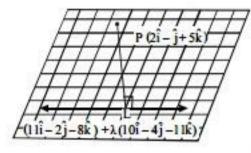
$$=(2\sin^{-1}1-0)-\left[4-\frac{4}{2}\right]=2\sin^{-1}\sin\frac{\pi}{2}-2$$

$$= 2 \cdot \frac{\pi}{2} - 2 = \pi - 2$$
 [1 Mark

35. Let L be the foot of the perpendicular drawn from

$$P(2\hat{i}-\hat{j}+5\hat{k})$$
 on the line

$$\vec{r} = 11\hat{i} - 2\hat{j} - 8\hat{k} + \lambda \left(10\hat{i} - 4\hat{j} - 11\hat{k}\right).$$


Let the position vector of L be

$$= 11\hat{i} - 2\hat{j} - 8\hat{k} + \lambda (10\hat{i} - 4\hat{j} - 11\hat{k})$$

=
$$(11+10\lambda)\hat{i}+(-2-4\lambda)\hat{j}+(-8-11\lambda)\hat{k}$$
 [½ Mark]

Then,
$$\overrightarrow{PL}$$
 = Position vector of L - Position vector of P

$$\Rightarrow \overrightarrow{PL} = \left[(11+10\lambda)\hat{i} + (-2-4\lambda)\hat{j} + (-8-11\lambda)\hat{k} \right] - \left[2\hat{i} - \hat{j} + 5\hat{k} \right] \left[\frac{1}{2} Mark \right]$$

[1/2 Mark]

$$\Rightarrow \overrightarrow{PL} = (9+10\lambda)\hat{i} + (-1-4\lambda)\hat{j} + (-13-11\lambda)\hat{k}$$
[½ Mark]

Since PL is perpendicular to the given line which is parallel

to
$$\vec{b} = 10\hat{i} - 4\hat{j} - 11\hat{k}$$
 [½ Mark]

$$\therefore \overrightarrow{PL} \perp \overrightarrow{b} \Rightarrow \overrightarrow{PL} \cdot \overrightarrow{b} = 0$$

$$\Rightarrow \left[(9+10\lambda)\hat{i} + (-1-4\lambda)\hat{j} + (-13-11\lambda)\hat{k} \right].$$

$$\left(10\hat{i} - 4\hat{j} - 11\hat{k} \right) = 0$$

$$\Rightarrow 10(9+10\lambda)-4(-1-4\lambda)$$

$$-11(-13-11\lambda)=0$$

$$-11(-13-11\lambda) = 0$$

$$\Rightarrow 90+100\lambda+4+16\lambda+143+121\lambda = 0$$

$$\Rightarrow$$
 237λ = -237 \Rightarrow λ = -1 [1 Mark]
Putting the value of λ, we obtain the position vector of L
as $\hat{i} + 2\hat{i} + 3\hat{k}$ [½ Mark]

Now.

$$PL = (\hat{i} + 2\hat{j} + 3\hat{k}) - (2\hat{i} - \hat{j} + 5\hat{k}) = -\hat{i} + 3\hat{j} - 2\hat{k}$$
[½ Mark]

$$\Rightarrow |\overrightarrow{PL}| = \sqrt{1+9+4} = \sqrt{14}$$

Hence, length of the perpendicular from P on the give line is $\sqrt{14}$ units. [½ Mark]

OR

The general points on the given lines are respectively P(5+3t, 7-t, -2+t) and Q(-3-3s, 3+2s, 6+4s).

[1/2 Mark]

Direction ratios of PO are

$$<-3-3s-5-3t$$
, $3+2s-7+t$, $6+4s+2-t>$ i.e.,
 $<-8-3s-3t$, $-4+2s+t$, $8+4s-t>$ [½ Mark]
If PQ is the desired line then direction ratios of PQ should
be proportional to <2 , 7 , $-5>$, therefore,

$$\frac{-8-3s-3t}{2} = \frac{-4+2s+t}{7} = \frac{8+4s-t}{-5}$$
 [½ Mark]

Taking first and second numbers, we get

$$-56-21s-21t=-8+4s+2t \Rightarrow 25s+23t=-48$$
 ...(i)
[½ Mark]

Taking second and third members, we get

$$20-10s-5t=56+28s-7t$$

Solving (i) and (ii) for t and s, we get

$$s=-1$$
 and $t=-1$. [½ Mark]

The coordinates of P and Q are respectively

$$(5+3(-1), 7-(-1), -2-1) = (2, 8, -3)$$
 and

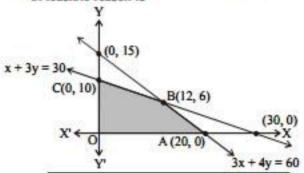
[1/2 Mark]

$$(-3-3(-1), 3+2(-1), 6+4(-1)) = (0, 1, 2)$$
 [½ Mark]

∴ The required line intersects the given lines in the points (2, 8, -3) and (0, 1, 2) respectively.

[1/4 Mark]

Length of the line intercepted between the given lines


=
$$|PQ| = \sqrt{(0-2)^2 + (1-8)^2 + (2+3)^2} = \sqrt{78} [\frac{1}{2} Mark]$$

6. (i) Z=8000x+12000y [1 Mark]

 Since, each piece of model A requires 9 labour hours for fabricating and each piece of model B requires 12 labour hours for fabricating. But for fabricating available hour is 180.

For finishing, each piece of model A requires 1 hour and each piece of model requires 3 hours. But, maximum available hour for finishing is 30.

 (iii) The value of objective function Z at each corner point of feasible reason is

Corner Point	Z = 8000x + 12000y
O(0, 0)	0
A(20, 0)	160000
B(12, 6)	168000
C(0, 10)	120000

So, Z is maximum corresponding to corner point B(x, y) = B(12, 6).

Hence, company should produce 12 pieces of model A and 6 pieces of model B to realise maximum profit. Since, Z is maximum at (12, 6). [1 Mark] .: Z(12, 6) = 8000 × 12 + 12000 × 6 = 168000

Hence, maximum profit is ₹168000.

[2 Marks]

37. (i) P(getting 6) = $\frac{1}{6}$

 $P(Deepa speak truth) = \frac{3}{4}$

 $\therefore P(\text{getting 6 and speak truth}) = \frac{1}{6} \times \frac{3}{4}$ $= \frac{1}{8}$ [1 Mark]

(ii) P(actually 6) = $\frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{4}}$

 $=\frac{\frac{3}{24}}{\frac{3}{24} + \frac{5}{24}} = \frac{3}{8}$ [1 Mark]

(iii) P[Even prime number (2)] = $\frac{1}{6}$

 $P(Radhika speak truth) = \frac{2}{3}$ [1 Mark]

P(Even prime number and speak truth)

 $=\frac{1}{6} \times \frac{2}{3} = \frac{1}{9}$. [1 Mark]

OR

P (actually 6) = $\frac{\frac{5}{6} \times \frac{1}{4}}{\frac{1}{6} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{4}}$

 $=\frac{\frac{5}{24}}{\frac{3}{24} + \frac{5}{24}} = \frac{5}{8}$ [2 Marks]

38. (i) P'(x)=0.006x-0.006 P'(10)=0.006(10)-0.006

=0.06-0.006

=0.054 [1 Mark]

(ii) P'(x)=0.006(x-1)= 0.006 (x-1)=0

x=1 [1 Mark] P''(x)=0.006>0

.. Pollution is minimum when x = 1. [1 Mark]