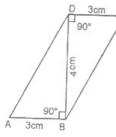
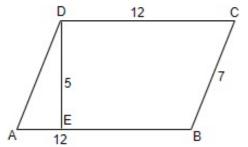
CBSE Test Paper 01 CH-9 Areas of Parallelograms & Triangles

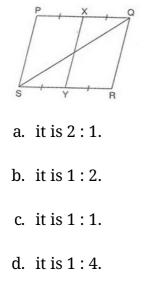
1. The area of the parallelogram ABCD in the figure is :



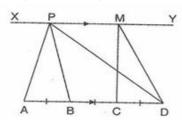
- a. $12 \, cm^2$
- b. $10 \ cm^2$
- c. $9 \ cm^2$
- d. $15 \ cm^2$
- 2. Find the area of parallelogram in the adjoining figure.



- a. 60 square feet
- b. 48 square feet
- c. 1759 feet
- d. 84 square feet
- 3. PQRS is a parallelogram. If X and Y are mid-points of PQ and SR and diagonal SQ is joined, then $ar(\parallel XQRY) : ar(\triangle QSR)$ is equal to



4. Points A, B, C, and D are collinear. AB = BC = CD. $XY \parallel AD$. If P and M lie on XY and $ar(\triangle MCD) = 7 \ cm^2$, then $ar(\triangle APB)$ and $ar(\triangle APD)$ respectively are



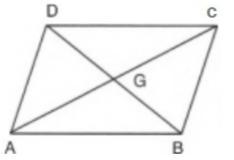
- a. $7 \ cm^2$, $21 \ cm^2$.
- b. $7 \ cm^2, 14 \ cm^2$.
- c. $14 \ cm^2, 14 \ cm^2$.
- d. $14 \ cm^2$, $21 \ cm^2$.
- 5. If the sum of the parallel sides of a trapezium is 7 cm and distance between them is 4 cm, then area of the trapezium is :
 - a. $7 \, cm^2$
 - b. $21 \ cm^2$
 - c. $14 \ cm^2$
 - d. $28 \ cm^2$
- 6. Fill in the blanks:

The area of a rhombus is equal to ______ of the product of its two diagonals.

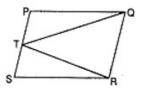
7. Fill in the blanks:

A median of a triangle divides it into ______ triangles of equal areas.

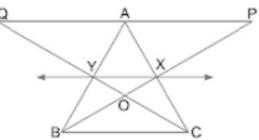
8. In a given figure, it is given that AD || BC. Prove that ar(\triangle CGD) = ar(\triangle ABG).



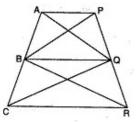
9. Is the given figure lie on the same base and between a same parallels. In such a case, write the common base and the two parallels :



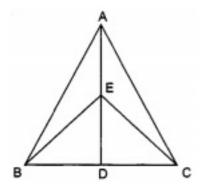
10. In Fig., X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. Prove that ar (\triangle ABP) = ar (\triangle ACQ).



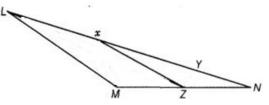
- 11. ABCD is a parallelogram. P is any point on CD. If area(\triangle DPA) = 15 cm² and area (\triangle APC) = 20 cm², find the area(\triangle APB).
- 12. In figure, AP || BQ || CR. Prove that ar(AQC) = ar(PBR).



13. D and E are mid-points of BC and AD respectively. If area of \triangle ABC = 10 cm², find area of \triangle EBD.



14. In the given Fig., X and y are points on the side LN of the triangle LMN such that LX = XY = YN. Through X, a line is drawn parallel to LM to meet MN at Z. Prove that ar (\triangle LZY) = ar (MZYX).



15. If AD is a median of a triangle ABC, then prove that triangles ADB and ADC are equal in area. If G is the mid-point of median AD, prove that $ar(\triangle BGC) = 2ar(\triangle AGC)$.

CBSE Test Paper 01 CH-9 Areas of Parallelograms & Triangles

Solution

1. (a) $12\,cm^2$

Explanation:

Area of parallelogram = Base \times Height

- $= AB \times BD$
- = 3 × 4

 $= 12 \text{ cm}^2$

2. (a) 60 square feet

Explanation:

```
In the figure, Base AB = 12 feet and Correspongin height DE = 5 feet
```

Then

Area of parallelogram ABCD = Base imes Corresponding height

= $AB \times DE$

= 12×5

= 60 square feet

3. (c) it is 1 : 1.

Explanation:

Since parallelogram PQRS and triangle AQS are on the same base QS and between the same parallels, then

```
ar (\triangle PQS) = \frac{1}{2} \times ar (\|gmPQRS) .....(i)

Also, if X and Y are mid-points of PQ and SR and diagonal SQ is joined, then

area (\|gmXQRY) = \frac{1}{2} \times area (\|gmPQRS) .....(ii)

From eq.(i) and (ii), we get

area (\triangle PQS) = area (\|gmXQRY)

\Rightarrow area (\|gmXQRY) : area (\triangle PQS) = 1 : 1

4. (a) 7 cm^2, 21 cm^2.
```

Explanation:

Since triangles MCD and PAB are on the same base and between the same parallels, then

area (\triangle MCD) = area (\triangle PAB) = 7 sq. cm Now, since AB = BC = CD, then AB = $\frac{1}{3}$ AD and BC = $\frac{2}{3}$ AD Then, area (\triangle APB) = $\frac{1}{3} \times \text{area} (\triangle$ APD) $\Rightarrow \frac{1}{3} \times \text{area} (\triangle$ APD) = 7 sq. cm $\Rightarrow \text{ area} (\triangle$ APD) = 21 sq. cm

5. (c)
$$14 \ cm^2$$

Explanation:

Given: Sum of the parallel sides of a trapezium is 7 cm and distance between them is 4 cm.

Area of the trapezium = $\frac{1}{2}$ (Sum of parallel sides) x Height

$$=\frac{1}{2} \ge 7 \ge 4$$

 $= 14 \text{ cm}^2$

6. $\frac{1}{2}$

8. Since \triangle ADC and \triangle ADB are on the same base AD and between the same parallels AD and BC.

 $ar(\triangle ADC) = ar(\triangle ADB)$ $\Rightarrow ar(\triangle ADC) - ar(\triangle ADG) = ar(\triangle ADB) - ar(\triangle ADG)$ $\Rightarrow ar(\triangle CGD) = ar(\triangle ABG)$

9. \triangle TRQ and parallelogram SRQP lie on the same base RQ and between the same parallels RQ and SP.

10. From the given figure it is clear that X and Y are the mid-points of AC and AB respectively.

Therefore, XY \parallel BC

Since \triangle BYC and \triangle BXC are on the same base BC and between the same parallels XY and BC, we can write

ar (\triangle BYC) = ar (\triangle BXC)

 \Rightarrow ar (\triangle BYC) - ar (\triangle BOC) = ar (\triangle BXC) - ar (\triangle BOC)

 \Rightarrow ar (\triangle BOY) = ar (\triangle COX)

 \Rightarrow ar (\triangle BOY) + ar (\triangle XOY) = ar (\triangle COX) + ar (\triangle XOY)

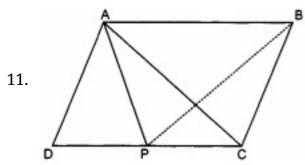
 \Rightarrow ar (\triangle BXY) = ar (\triangle CXY)(i)

Since quadrilaterals XYAP and XYQA are on the same base XY and between the same

parallels XY and PQ, we have

ar(XYAP) = ar (XYQA)(ii) On adding (i) and (ii), we obtain ar (\triangle BXY) + ar (XYAP) = ar (\triangle CXY) + ar (XYQA) \Rightarrow ar (\triangle ABP) = ar (\triangle ACQ)

Hence proved.



From the given figure it is clear that area (\triangle ADC) = area (\triangle ADP)+ area(\triangle APC) = 15 + 20 = 35 cm²

Now in parallelogram opposite sides are equal i.e., CD = AB,

Also AB \parallel CD.

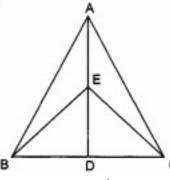
Now, we know that triangles having same base and lie with the same parallels have the same area.

 \therefore area of \triangle ABP = area of \triangle ADC = 35 cm²

12. Given : AP || BQ || CR

To Prove : $ar(\triangle AQC) = ar(\triangle PBR)$ Proof : $ar(\triangle BAQ) = ar(\triangle BPQ) \dots [\triangle s on the base BQ and between the same$ $parallels BQ and AP] \dots (1)$ $<math>ar(\triangle BCQ) = ar(\triangle BQR) \dots [\triangle s on the base BQ and between the same parallels BQ$ $and CR] \dots (2)$ $<math>ar(\triangle BAQ) + ar(\triangle BCQ) = ar(\triangle BPQ) + ar(\triangle BQR) \dots [Adding corresponding sides of$ (1) and (2)] $<math>\Rightarrow ar(\triangle AQC) = ar(\triangle PBR)$

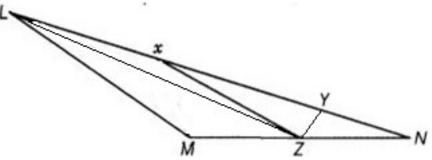
13. It is given that D is the midpoint of BC, therefore we can say that AD is the median.



Now, Area of $\triangle ABD = \frac{1}{2} \times \text{area of } \triangle ABC$ [Median divides a triangle into two triangles of the equal area]

Thus, Area of $\triangle ABD = \frac{1}{2} \times 10 \text{ cm}^2 = 5 \text{ cm}^2$ Again, BE is the median of $\triangle ABD$. \therefore Area of $\triangle EBD = \frac{1}{2} \times \text{ area of } \triangle ABD$ $= \frac{1}{2} \times 5 = 2.5 \text{ cm}^2$

14. From the given figure,



it is clear that \triangle LXZ and \triangle MXZ (adding x and M) lie on the same base XZ and between the same parallels XZ and LM.

 $\therefore \operatorname{ar}(\bigtriangleup \operatorname{LXZ}) = \operatorname{ar}(\bigtriangleup \operatorname{MXZ})$

Adding ar(\triangle XYZ) on both sides, we obtain ar(\triangle LXZ) + ar(\triangle XYZ) = ar(\triangle MXZ) + ar(\triangle XYZ) \Rightarrow ar (\triangle LYZ) = ar(MZYX) Hence proved

