CHAPTER §

SOLUTIONS, ESPECIALLY DILUTE SOLUTIONS

§5.01 Introduction

There is no fundamental difference between a liquid mixture and a
solution. The difference is in the manner of description. In the description
of mixtures in the previous chapter all the constituent species were treated in
a like manner. In the description of solutions in the present chapter we
shall on the contrary single out one species which we call the solvent. All
the remaining species are called solutes. There is no rigid rule to determine
which species shall be regarded as solvent, but it is usually the species present
in the highest proportion, at least among those species which are liquid in
the pure state at the given temperature and pressure. For example we should
at room temperature speak of water as solvent and urea as solute, even if
the urea were in excess, because pure urea at room temperature is a solid.

We shall always denote the solvent by the subscript ; and the solutes by
the subscripts ,, 3, ... in particular or by the general subscript ;.

§5.02 Mole ratios and molalities

We consider a phase containing an amount n, of the species 1, an amount n,
of the species 2, and so on. When considering such a phase as a mixture we
described the composition by the fractions n,/Z;n;, n,/Z;n; and so on.
When considering this phase as a solution we shall on the contrary describe
its composition by the ratios n,/n,, n3/n, and so on.

While the fractions n,/Z;n;, n,/Z,n; were denoted by x,, Xj,..
and were called mole fractions, the fractions n,/n,, n3/n,, . . . will be denoted
by r,, r3, ... and will be called solute-solvent mole ratios. In a phase of ¢
component species there are ¢ different mole fractions, which we recall are
related by T, x;=1 so that only c—1 are independent. There are only c—1
mole ratios r,, r3, . . . r, and these are all independent. We shall use these as
the independent variables together with T and P.
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For all purposes of general theory we shall use the variables r,, rs, ... r,
together with T, P. For practical purposes, it is customary to use instead of
r, a quantity m; directly proportional to r, defined by

my=r,/r° 5.02.1
where r° is a standard value of r, customarily and here defined by
r®=M,/kgmole ™! 5.02.2

where M, is the proper mass of the solvent. It follows that r,=r® when there
is one mole of the solute s for each kilogramme of solvent. Thus defined,
re, r°, and my are all dimensionless. This quantity m, is called molality.
We shall derive most of our formulae in terms of the mole ratios r and shall
transcribe only a few important ones into terms of molalities m by use of
(1). The mole fractions x and mole ratios r are interrelated by
ra=X3/x;=X,/(1=3 x) 5.02.3

s

x;=ry/(1+Y 1) 5.02.4

and similar relations for the other solute species. We also note the relation

A+ r)(1=-Y x)=1. 5.02.5

§5.03 Partial and apparent quantities

If X denotes any extensive property such as V, U, S, &, G then the correspond-
ing partial quantities are defined in §4.03 by

X1=(6X'/an])1"p’n2'ns, PO 5-03-1
Xo=(0X/ON)T p,nyimar -+ 5.03.2
According to (4.03.6) these are interrelated by
n,dX,+Y ndX,=0 (T, P const.). 5.03.3
Dividing (3) by n, we have
dX;+)Y rdx,=0 (T, P const.). 5.03.4
In particular, if there is only one solute species 2 formula (4) reduces to

0X,[or+rdX,/or=0 (T, P const.). 5.03.5

When there is only one solute species 2 the quantity X, defined by
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n2X¢=X"'n1X? 5-03.6

where X7 denotes the proper X of the pure solvent, is called the apparen:
proper X of the solute*. We can obtain the relation between X, and X, by
differentiating (6) with respect to n, keeping n; constant. We find

Xz =aX/an2=X¢+ nz(aX¢/an2)nl = X¢+rdX¢/dr. 5.03.7

There is no such quantity as X, when there is more than one solute species.
We recall the important relations between the several partial quantities in
§4.04. These apply both to the partial quantities of the solvent and to those
of the solute species.
We also recall the important equality (1.28.11) which holds both for the
solvent and for the solute species

H1=G, Us=Gy 5.03.8
with the consequent relations
Oy joT= -8, Ou,/oT=—S; 5.03.9
dln A,/0T=—H,/[RT? 8In i /0T=—H,/RT? 5.03.10
oy, /oP=V, ou,/oP=V,. 5.03.11

§5.04 Gibbs-Duhem relation

We recall the Gibbs—Duhem relation

n du,+Y ndp,=0 (T, P const.) 5.04.1
or ’
ndlni +) ndlni=0 (T, P const.). 5.04.2
Dividing through by n; we obtain the alternative form
dp +Y rdu,=0 (T, P const.) 5.04.3
or )
dini;+Y rdlni;=0 (T, P const.). 5.04.4
In the case of a single solute (3) reduces to
du,/dr+rdu,/dr=0 (T, P const.) 5.04.5
or
dini,jdr+rdln 2,/ dr=0 (T, P const.). 5.04.6

* The notation ¢, used by some authors instead of Ve is deplorable.
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§5.05 Partial quantities at high dilution

If X denotes any extensive property, so that X, X, are the corresponding
partial quantities in a solution of a single solute, we have according to

(5.03.5)
0X,/or+rdX,/or=0 (T, P const.). 5.05.1

It follows that when r—0 either 8X,/0r—0 or 8X,/dr— 0. The former case
occurs when X denotes V or U or H; the latter occurs when X denotes S or &

or G.

§5.06 Ideal dilute solutions

Let us consider a solution of a volatile solute 2 in the solvent 1 so dilute that
n,&n;. It is then physically obvious that, if the vapour may be regarded
as a perfect gas, the partial pressure y,P,,, of the solute will be directly
proportional to n,. More generally, whether or not the vapour may be
regarded as a perfect gas, the fugacity p, of 2 will be directly proportional
to n,, that is to say

p2Xn,. 5.06.1

This however raises the question whether the proportionality (1) holds at
constant n; +n,, that is to say

P2CX, 5.06.2

or at constant ny, that is to say
paocr,. 5.06.3

The answer is that in the limit as x, and r, tend to zero (2) and (3) become
equivalent and it is only in this limit that either is obviously true. At finite
values of x, and r, we must not expect either (2) or (3) to be accurate, but
we may use either as a basis for comparison with the actual behaviour of
solutions. It is true that (2) can under favourable conditions hold for all
values of x from 0 to 1 in which case we have an ideal mixture as described
in §4.18. Formula (3) on the contrary becomes untenable as we approach
the state of the pure liquid 2, when r,— 1, since it would lead to the absurd
conclusion that pj is infinite. We must however remember that in this chapter
our convention that the species 1 is the solvent implies that this species is
present in excess and we are consequently not concerned with conditions
approaching that of the pure liquid 2. In fact we are concerned mainly with
the condition r,<1. Bearing in mind this implied restriction we are free to
choose either (2) or (3) as a basis of comparison with actual behaviour.
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In practice it has been found that (3) is more convenient than (2) because the
value of r, is unaffected by the addition to a given solution of other solute
species. This practical advantage will become clearer in the next chapter
when we consider chemical reactions between solute species.

We shall accordingly choose as a basis of comparison with actual behaviour
formula (3) after we have generalized it for several solute species when it
becomes

PsCTg (T, P const.). 5.06.4

It is clear from the relations in §4.12 that (4) is equivalent to
isocrs (T, P const.) 5.06.5

and (5) is applicable to solute species of immeasurably low volatility. We
shall now adopt (5) as our basis of comparison with actual behaviour and
we define a solution as being ideal dilute when the proportionality (5) is
obeyed for all values of r, less than or equal to that of the solution under
consideration.

We can write (5) in the alternative form

de=A2r, 5.06.6

where 1° depends on the nature of the solute, the nature of the solvent,
the temperature, and the pressure, but not on the mole ratio r, of the solute
considered nor on the mole ratio of any other solute species. In numerical
applications, as opposed to general theory, it is customary to use molalities
instead of mole ratios. We then replace (6) by

A=A2m, 5.06.7
Ao =22[r® 5.06.8
where r® is defined by (5.02.1).

Finally we may, if we prefer, use chemical potentials instead of absolute
activities. We then have in analogous notation

u=p’+RT Inr, 5.06.9
ps=pS +RT In my 5.06.10
pe=u®—RT Inr®. 5.06.11

§5.07 Thermodynamic functions of ideal dilute solutions

Having defined an ideal dilute solution in terms of the absolute activities or
chemical potentials of the solute species, we can deduce the relations for the
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properties of the solvent by means of the Gibbs-Duhem relation (5.04.4)
dini,+Y rdIni;=0 (T, P const.). 5.07.1
From (5.06.5) we have
r{dInA,=rdinr,=dr, (T, P const.). 5.07.2
Substituting (2) into (1) we obtain

dinl; ==Y dr=—d(},r) (T, P const.) 5.07.3

and so by integration
—In(1,jA)=Yr, (T, P const.) 5.07.4

where as usual the superscript ® denotes the value for the pure liquid
solvent. We can rewrite (4) in terms of chemical potentials

py=pl—RTY r, (T, P const.) 5.07.5
and in terms of absolute activities
InA=lnA0-Y r,. 5.07.6
By use of (5.03.11) we deduce |
V=V (T, P const.) 5.07.7
V.=V (T, P const.) 5.07.8

where V° denotes the limiting value of V; at infinite dilution of all solute
species. We see then that ¥, and ¥, are in an ideal dilute solution in a given
solvent independent of the composition.

By use of (5.03.9) we deduce

S;=S{+RYr, (T, P const.) 5.07.9
S,=SP—RlInr, (T, P const.) 5.07.10

where S.° is defined by
SP=—-0pZ2/0T 5.07.11
and is thus in an ideal dilute solution in a given solvent independent of the

composition.
By use of (5.03.10) we deduce

H,=H¢ 5.07.12

H,=H® 5.07.13
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where H;” denotes the limiting value of Hat infinite dilution of all solute
species.

It follows from (7), (8) and from (12), (13) that any two ideal dilute
solutions in the same solvent mix at constant temperature and pressure
without change of volume and without change of enthalpy.

§5.08 Real solutions

As already mentioned, we do not expect a real solution to be ideal dilute
except in the limit of infinite dilution but it is convenient to compare the
behaviour of any real solution with its hypothetical behaviour if it remained
ideal dilute at all compositions extending from infinite dilution to its actual
composition. We then express the deviations between the real behaviour and
this hypothetical behaviour by means of certain coefficients as will be
described in the succeeding sections.

§5.09 Activity coefficients of solute species
We define the activity coefficient y, of the solute species 2 by the relations
Ay=ATryy,=4i5myy, (T, P const.) 5.09.1

y,—1 as ) m~0. 5.09.2

Alternatively we may express (1) in terms of chemical potentials
py=p3+RT In(ryy,)=p5 +RT In(myy,) (T, P const.) 5.09.3

in conjunction with (2). It is clear that the deviation of y, from unity
or of Iny, from zero is a measure of deviation from an ideal dilute
solution.

It need hardly be mentioned that similar relations hold for every solute
species. Thus (1) may be generalized to

he=ATrys=aCmyy, (T, P const.) 5.09.4
and (3) to
ps=pL +RT In(ryy)=p + RT In(myy,) (T, P const.). 5.09.5

It is unfortunate that the same name activity coefficient is sometimes
used for the quantity a/x of the previous chapter as well as for y,.
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§5.10 Osmotic coefficient of solvent

Following Bjerrum* we define the osmotic coefficient ¢ of the solvent by
~In(1,/A)=—In(p,/p})=¢ Y, r, (T, P const.). 5.10.1

By comparing (1) with (5.07.4) we see that ¢ —1 is a measure of deviation

of behaviour from that of an ideal dilute solution.
We can also write (1) in terms of chemical potentials as

pi=p}—RTo Y r, (T, P const.). 5.10.2

§5.11 Relation between activity coefficients and osmotic coefficient

When we substitute (5.10.1) and (5.09.4) into the Gibbs-Duhem relation
(5.04.4) we obtain

d(¢ Y rg)=Y rdin(r;y) (T, P const.) 5.11.1

which can be rewritten as
d{(¢—-1)> r}=> rdlny, (T, P const.) 5.11.2

a relation due to Bjerrum." In the case of a single solute species (2) reduces

to
d{(¢—1)r}/dr=rdlny/dr (T, P const.) 5.11.3

or
(p—1)/r+dé/dr=d In yjdr (T, P const.). 5.11.4

If for example ¢ is related to r by
¢—1=Ar" (A, n const.) 5.11.5
then by substituting from (5) into (4) we obtain after integration

Iny=(l+n"")Ar"=1+n"")(¢-1). 5.11.6

§5.12  Temperature dependence
By substitution of (5.09.4) into the second of equations (5.03.10) we obtain
0ln A2/dT +01ny,/0T = —H,RT?>. 5.12.1

* Bjerrum, Fysisk Tidskr. 1916 15 66; Z. Electrochem. 1918 24 325.
* Bjerrum, Z. Phys. Chem. 1923 104 406.
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In the limit of infinite dilution (1) reduces to
0ln AP[dT=—H®|RT?. 5.12.2

Subtracting (2) from (1) we obtain for the temperature dependence of the
activity coefficient

9 1In y,/0T = —(H,— H®)/RT?. 5.12.3

In particular we observe that y, will be independent of temperature if H, is
independent of composition.
By substitution of (5.10.1) into the first of equations (5.03.10) we obtain

- r,0¢/0T+01n 2}/0T=—H,/RT?. 5.12.4

For the pure solvent (4) reduces to
d1n idjoT=—HYRT?. 5.12.5

By subtraction of (§) from (4) we find for the temperature dependence of
the osmotic coefficient

rsd¢/0T =(H,— H®)/RT?>. 5.12.6
1

In particular we observe that ¢ will be independent of temperature if H,
is independent of composition.

§5.13 Pressure dependence
By substitution of (5.09.5) into the second of equations (5.03.11) we obtain
Ou°/OP+RT 0 lnyfoP=V,. 5.13.1
In the limit of infinite dilution (1) reduces to
ulfoP=Vy>. 5.13.2

By subtraction of (2) from (1) we find for the pressure dependence of the
activity coefficient

0 In y,/oP=(V,~ V°)/RT. 5.13.3
By substitution of (5.10.2) into the first of equations (5.03.11) we obtain
ouf/OP—RT Y rd¢[oP=V,. 5.13.4

For the pure solvent (4) reduces to

oudfoP="v?. 5.13.5
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By subtraction of (5) from (4) we obtain for the pressure dependence of the
osmotic coefficient
Y r0¢/oP=—(V,—V{)/RT. 5.13.6

All these pressure dependences are usually negligible at ordinary pressures.

§5.14 Temperature dependence of fugacity of solvent

From (5.10.1) we have
~In(p,/pN)=¢ 3. 1. 5.14.1

Differentiating (1) with respect to T and using (5.12.6) we obtain for a
solution of given composition

—01In(p,/p))OT =Y r,0¢/0T=(H,—H?)/RT>. 5.14.2

§5.15 Temperature dependence of fugacity of solute

For a volatile solute species we may replace (5.09.4) by
Ps=D{Ts7= D5 Mgy, 5.15.1
where p®, p® are independent of the composition but depend on the nature

of the solute s and the solvent. Differentiating (1) with respect to T and using
(5.12.3) we obtain

=3 1In(p,/py")OT = —0 In(p,/p)OT =(H, —H)RT>.  5.15.2

§5.16 Osmotic pressure

We recall formula (4.14.8)
144 V1>/RT=IH(P(1J/P1) 5.16.1

where (V) denotes the value of ¥, at a pressure equal to the mean of the
pressure P on the pure solvent and the pressure P+ IT onthesolution at osmotic
equilibrium while both p; and p{ are values at an external pressure P.
Since formula (1) does not contain mole fractions it is equally applicable to
solutions described in terms of mole ratios.

Substituting (5.10.1) into (1) we obtain

MCV,)/RT=¢ Y r,. 5.16.2

If we use the superscript * to denote a hypothetical ideal dilute solution
Wwith the same composition as the actual solution we have
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M'V,)/RT=Y r,. 5.16.3

Dividing (2) by (3) we find
O=¢mI" 5.16.4

and this relation explains the origin of the name osmotic coefficient.

§5.17 Freezing point

Let us now consider the equilibrium between the liquid solution and the
pure solid solvent 1. We assume that the pressure is either constant or
irrelevant. We use the superscript * to denote the solid phase, the superscript °
for the pure liquid, and no superscript for the liquid mixture. Then for
equilibrium between the pure solid and the liquid mixture at its freezing
point temperature T

MWT)=2(T). 5.17.1

If T° denotes the corresponding equilibrium temperature for the pure liquid,
that is to say the freezing point of the pure liquid, we have correspondingly

AATO)=2(T°). 5.17.2
Dividing (2) by (1) we obtain
(T A (T)=A(T°)/A5(T) 5.17.3
which can be rewritten in the form
AATYAT)= AT ATV HA(TYA(TO). 5.17.4

Taking logarithms we have
In{A(T)A(T)} = n{AUTYAATO} ~In{S(TYA(T)}. 5175
Now applying the first relation (5.03.10)

0ln 4,/0T=—H,/RT? 5.17.6
to the pure solid and pure liquid in turn and integrating we obtain

T

In{A(T)/A5(T°)} = - j (H}/RT*)dT 5.17.7
TO
T

In{AYT)/ANT%)} = - f (HY/RT?)dT. 5.17.8
TO

Substituting (7) and (8) into (5) we obtain

In{AAT)2(T)}= - j;{(H?—Hf)/RTZ}dT=— f;(AfH‘;/RTz)dT 5.17.9
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where A¢HY is the proper enthalpy of fusion of the pure solvent. We now
substitute (5.10.1) into (9) and obtain

T
¢y r= —f (AHY/RTHAT 5.17.10
s TO

where ¢ denotes the osmotic coefficient of the solution at its freezing point.
We can rewrite (10) more simply as

¢ Y re=<AHY(1/RT—1/RT®) 517.11

where (A H?) denotes the average value of A;H; over the reciprocal
temperature interval 1/7° to 1/T. Since A;H} is always positive it follows
that T<T?°. Thus the freezing point of the solution is always below that of
the pure solvent if the solid phase is pure solvent.
For dilute solutions when T° — T<T° we may replace (11) by the approx-
imation
¢y re=AHY(T°-T)/RT*? 5.17.12

or
T°—T=¢ Y r(RT°*/AHY). 5.17.13

In numerical calculations it is customary to use the molalities m, instead
of the solute-solvent mole ratios r,. We recall the definition (5.02.1) of
molality

my=ry/r° 5.17.14

where r® is a standard value of r, customarily chosen so that r,=r> when there
is one mole of the solute s for each kilogramme of solvent. We accordingly
rewrite (13) as

T°—-T=¢ Y m(r°RT°}AHY). 5.17.15

The factor r° RT°2/A; HY which is a property of the solvent but common to
all solute species, is called the cryoscopic constant. We note that when r°®
is given the value M,/kgmole~! then A, H?/r® is numerically equal to the
enthalpy of fusion in joules per kilogramme of the solvent. For water we
have
RT°=2.2712x10* J mole™*
T°=273.15K
A¢HY/r® =3.335x 10° J mole ™"

so that the cryoscopic constant is

2.2712x 10> I mole™ ' x 273.15 K/3.335x 10° I mole ' =1.860 K.  5.17.16
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§5.18 Boiling point

We shall now consider the equilibrium between the liquid solution and the
gas phase in the case that all the solute species have negligible vapour pres-
sures. We accordingly regard the gas phase as consisting entirely of the
component 1 and we use the superscript © to denote this phase.

We then proceed to consider the equilibrium between the two phases at a
given pressure precisely as in the case of equilibrium with a pure solid phase
studied in the previous section. The steps of the argument are precisely analo-
gous and we obtain eventually the relation

oY re=<AH(1/RT°—1/RT) 5.18.1

where (A H?) denotes the value of the proper enthalpy of evaporation
A H? for the pure liquid averaged over the reciprocal temperature interval
1/T to 1/T° and ¢ is the osmotic coefficient at the boiling point of the
solution. Since A, H} is always positive it follows that 7> T°. Thus the boiling
point of any solution of non-volatile solutes is above that of the pure

solvent.
For dilute solutions when 7—T°«T° we may replace (1) by the approxi-

mation
¢ Y re=AHY(T-T°)/RT®* 5.18.2

or
T—-T°=¢ Y r(RT°*/A HY)). 5.18.3

For purposes of numerical calculation it is customary to use the molalities
m, instead of the solute-solvent mole ratios r;. We accordingly rewrite
3) as
T-T°=¢ Y m(r°RT°*/A HY). 5.18.4
S

The factor r° RT®%/A H? is called the ebullioscopic constant of the solvent.
We note that when r° is as usual chosen to be M, mole kg~! then A, H/r®
is numerically equal to the enthalpy of evaporation in joules per kilogramme
of solvent. For water we have

RT°=3.1026 x 10* J mole ~*
T°=373.15K
A HY[r® =2.2567 x 10° J mole ™!

so that the ebullioscopic constant is

3.1026 x 10° J mole™ " x 373.15 K/2.2567 x 10° J mole™ ' =0.513 K.  5.18.5
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§5.19 Distribution between two solvents

For the equilibrium of a solute species s between two solutions in different
solvents we have

ii=a8 5.19.1
where the superscripts * and P relate to the two phases. Substituting from
(5.09.4) into (1) we obtain

A0t meys =27 Pmlyk 5.19.2

or by rearrangement

o

mPyB/meyt = I2P 5.19.3

where [ is independent of the composition of the two phases and is defined

by
1B =49%/) 28, 5.19.4

In the special case that both solutions are ideal dilute (3) reduces to
mbim? =128 5.19.5

which is known as Nernst’s distribution law.

§5.20 Solubility of pure solid
For the equilibrium with respect to the species s between a solution and the
pure solid phase we have the condition

A=A 5.20.1

where the superscript 5 denotes the pure solid phase. Substituting from
(5.09.4) into (1) we obtain

Mgy =ig AS (saturated solution). 5.20.2

From (2) we see that if several solutions in the same solvent at the same
temperature are all saturated with the same solid phase of the species s,
then in all these solutions myy, has the same value.

Taking logarithms of (2), differentiating with respect to 7 and using
(5.12.3) we obtain

0 In(m,y,)/0T=(H? —H{)JRT?>  (saturated solution)  5.20.3

and we observe that the quantity H® — HS occurring as the numerator on
the right is the proper enthalpy of dissolution of s at infinite dilution.
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§5.21 Experimental determination of ¢

The most accurate direct method of determining ¢ experimentally is by
measurements of freezing point and use of formula (5.17.11) which for
a single solute species reduces to

pmy=or Jr° =(T°—T)<AH>/r®RTOT). 5.21.1

All the quantities m, A¢HY, T° T can be measured and substitution of
their values into (1) leads to experimental values of ¢ at the freezing point.
Let us suppose that freezing-point measurements have been made so as to
determine ¢ over a range of steadily decreasing values of m and let us
consider what results are to be expected.
Since we know that as m—0 so ¢—1 we may reasonably expect that
¢ —1 can be expressed as a series of integral powers of m say

p—1=Am+A4,m*+.... 5.21.2

This is in fact the case for non-electrolytes and we may then hope to determine
by a series of accurate freezing-point measurements the coefficients in such a
formula as (2) so as to obtain a good fit. Formula (2) is not applicable to
solutions of electrolytes; these will be discussed in chapter 7.

Let us now consider what will happen if the measurements are extended
down to gradually decreasing values of m. If the measurements are performed
with sufficient care, we may expect to reach a range where all terms of (2)
are negligible except the first. In this range (¢ —1)/m has a constant value
A, and we may confidently and reasonably assume that this behaviour
persists down to m=0. Suppose however we tried to confirm this experi-
mentally, let us examine what would happen.

We may reasonably assume that the experimental error in measuring
T°—T is at least roughly independent of m. Since at low values of m the
value of T°—T is itself roughly proportional to m it follows that the frac-
tional experimental error in ¢ is inversely proportional to m. Hence accord-
ing to (2) the fractional errorin ¢ —1 will be inversely proportional to m?.
It is therefore clear that by proceeding to experiment at smaller values of
m we eventually reach a stage where the experiments tell us nothing.

The most reasonable procedure is then to carry the experiments down to
values of m where one finds experimentally

(p—1)im=A4; (A, const.) 5.21.3

and then assume that this simple law persists down to m=0.
We may mention that for solutions of non-electrolytes the limiting law
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(3) has not merely an empirical basis, but also a theoretical one based on
statistical mechanics.

§5.22 Determination of y from ¢

We recall Bjerrum’s relation for a single solute species (5.11.3)
d{(¢—1)r}/dr=rdIny/dr (T, P const.) 5.22.1

which we may also write as

d{(¢ —1)m}/dm=md In y/dm (T, P const.) 5.22.2
or as

dIny=[d{(¢—1)m}/dm]dInm (T, P const.). 5.22.3

Integrating (3) from O to m and observing that ¢ —1 and In y tend to zero
as m tends to zero, we obtain

Iny= fm[d{(d)—- m}/dm]dInm=¢—1+ fm(¢— 1)d In m. 5.22.4

If ¢ has been determined at all molalities from 0 to m we see that by using
(4) we can in principle calculate y at a molality » but caution is required so as
to avoid spurious results. We saw in the previous section that with regard
to the experimental determination of ¢ there are three ranges of m arranged
in order of decreasing m with the following characteristics.

1. Large molalities, where ¢ can be measured and fitted to a more or less
complicated formula.
2. Intermediate molalities, where ¢ can be fitted to the formula

¢—1=A,m (A, const.). 5.22.5

3. Lowest molalities, where no useful information about ¢ can be obtained
by experiment and we assume that (5) continues to hold.

In using (4) it is expedient to break the range of integration at some
value m’ of m in the range where (5) is found to hold. We accordingly rewrite
4) as

1"‘/=4’—1+f (¢—1)dlnm+f (p—1)d Inm. 5.22.6
0 m’

We evaluate the first integral as follows

f ((f)—l)dlnm:j Ajdm=A,m'=¢'—1 5.22.7
0 0
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where ¢’ denotes the value of ¢ at m=m’. Using (7) in (6) we obtain finally
lny=¢—1+¢'—l+J (p—1dlnm 5.22.8

and the integral in (8) can be evaluated from the experimental values of ¢,
either by fitting these to a formula or graphically.

The important point emerging from this discussion is that we cannot
calculate y from experimental determinations of ¢ for example by freezing-
point measurements, without making an assumption concerning ¢ at low
values of m. Since such an assumption has to be made anyway, it is just as
well to make it explicitly and so obtain a closed formula for y as well as for
¢ in the range of small m. For solutions of non-electrolytes, with which we
are here concerned, the usual and most reasonable assumption is formula (5).
In chapter 7, when we study solutions of electrolytes, we shall meet a different
situation.

§5.23 Fugacity of saturated solution

Throughout this chapter and the previous one we have never yet considered
any equilibrium involving more than two bulk phases, nor shall we do so in
any detail. No new principles are involved and the methods already described
are applicable. We shall confine ourselves to a single interesting example.

We consider the following problem. How does the fugacity of the solvent
vary with the temperature in a solution kept saturated with a single non-
volatile solid? Using the subscripts , for the solvent, , for the solute, and the
superscripts © for the gas phase, S for the solid, and none for the solution,
we have for variations maintaining equilibrium

dln i;=dln A7 5.23.1
dlnd,=dIn 73. 5.23.2

Expanding these, and neglecting the effect of pressure on each of the conden-
sed phases we have

—(H,/RT?)AT+(0 In A,/dm,)dm, = —(H$/RT*)dT+dInp, 5.23.3
—(H,/RT?)AT +(3 In A,/dm,)dm, = —(H3/RT?)dT. 5.23.4

Using A, H to denote the proper enthalpy of evaporation from the solution
and A¢H to denote the proper enthalpy of fusion into the solution, we can
write (3) and (4) as

dln p;=(01n 1,/0m,)dm, + (A H,/RT?)dT 5.23.5
(01n A,/0m,)dm,=(A;H,/RT*)dT. 5.23.6
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We now use the Gibbs-Duhem relation in the form
0ln 4,/0m,+r(®1In A,/0m,)=0 5.23.7
to eliminate 4;, 4, from (5), (6). We thus obtain
dlnp,/dT=(A.H,—rAH,)/RT?. 5.23.8

It is interesting to observe that the expression inside the brackets is equal
and opposite to the enthalpy of formation of the quantity of solution contain-
ing unit amount of solvent from the gaseous solvent and from the solid
solute.

§5.24 Surface tension

We conclude this chapter with a brief discussion of interfacial layers, parti-
cularly those between a liquid and its vapour. As described in §4.36 we shall
neglect effects of pressure on the liquid phase and on the surface layer.
For the sake of brevity we use the symbol D to denote the operator
Z,dr,0/0r,. We have then by analogy with (4.36.4), (4.36.5), and (4.36.6)

—dy=S5dT +Tdp, +Y I'dp, 5.24.1
dl“'l = —SldT_'_DHl 5.24.2
dp,= —S,dT + D, 5.24.3

where (2) and (3) relate to the liquid phase*. We also have in the liquid phase
the Gibbs-Duhem relation (5.04.3)

Dy, +Y r, Dy, =0. 5.24.4

Substituting (2) and (3) into (1) we obtain
—dy=(si_rlsl—zrsss)dT+F1Dﬂl+stDﬂs. 5.24.5

Now eliminating Dy, between (4) and (5) we obtain finally
—dy=(83—-I,8, =) IS)dT+Y (I'y—r,Iy)Dy,. 5.24.6
By reasoning similar to that of §4.37 we can verify the invariance of the

coefficients of dT and Dy, with respect to shifts of the geometrical surfaces
bounding the surface layer.

* There should be no confusion between y denoting surface tension and the activity
coefficients y,.
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§5.25 Temperature dependence

For the temperature dependence of the surface tension at constant composi-
tion of the liquid we obtain immediately from (5.24.6)

—dy[dT=85-TS,-Y, IS, 5.25.1
H
where the right side is the entropy of unit area of the surface layer less

the entropy of the same material content in the liquid phase.
By proceeding as in §4.38 we can transform (1) to the equivalent relation

y—THPT=US—T,U,-Y I,U,. 5.25.2

The right side is the energy which must be supplied to prevent any change
of temperature when unit area of surface is formed from the liquid.

§5.26 Variations of composition

For variations of composition at constant temperature (5.24.6) reduces to

—dy=Y (I'y—r,I)Dpy, 5.26.1
or using
Du,=RT DIn iA,=RT D In p, 5.26.2
—dy=RT ¥ ([,—r,[)D In p,. 5.26.3
Each of the quantities
F—rJ0, 5.26.4

occurring on the right side of (3) is called the surface excess per unit area of
the solute species s. The corresponding quantity for the solvent species 1
vanishes by definition. As we have repeatedly stressed, each quantity (4),
in contrast to the individual I”sisinvariant with respect to shift of the bound-
ary between the liquid phase and the surface phase and is therefore physi-
cally significant. The quantities (4) are the same as the quantities which
Gibbs* denoted by Iy, but his definition of these quantities was more
abstract and more difficult to visualize.

§5.27 Interfacial tension between two solutions

For the interface between two liquid phases «, B neglecting dependence on

* Gibbs, Collected Works, Longmans, vol. 1 pp. 234-235.
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pressure, we have
—dy=S5dT+TIdu,+Y I, dy,. 5.27.1

The Gibbs-Duhem relation for phase o can be written
1+ r)SedT+du, + ), ridp,=0 5.27.2

and that for phase B
1+ r)SEdT +dp, +Y ridu,=0. 5.27.3

If there are c—1 solute species, there are c+ 1 quantities d7, du,, du, in (1)
of which any two can be eliminated by using (2) and (3). The results obtain-
able are complicated and we shall not pursue them here.

§5.28 Volume concentrations

[n analytical work it has long been the usual practice to describe the compo-
sition of a solution by the volume concentration ¢, of each solute species
defined as

c.=n/V=rnV. 5.28.1
As long as we are concerned with the properties of the solution at only one
temperature this practice is unobjectionable. But in thermodynamics we
are much interested in the temperature dependence of properties, and volume
concentrations are then inconvenient. For whatever quantities be used to
describe the composition of a liquid solution, it is expedient to use as the
other two independent variables temperature and pressure, so that differen-
tiation with respect to temperature implies constant pressure. We therefore

have
Oc,/OT = —acg 5.28.2

where a is the thermal expansivity. It is evident from (2) that, if ¢, is chosen
as a variable, it will not be an independent variable. On these grounds volume
concentrations are not convenient in liquid solutions and we shall not use
them.

Volume concentrations of course play an important part in the theory of
gas kinetics. The implication, sometimes met, that they must therefore play
a parallel part in the theory of solution kinetics shows a lack of appreciation
of the utterly different and much more complex meaning of the word
collision applied to a solution in contrast to a gas. We have not yet a complete
theoretical treatment of collisions in solution, but the author believes that
a successful theory would be based on molecular ratios rather than on
volume concentrations.



