Chapter 9. Vector Algebra

Algebra of Vectors

1 Mark Questions

1. Find a vector in the direction of vector $2\hat{i} - 3\hat{j} + 6\hat{k}$ which has magnitude 21 units.

Foreign 2014

To find a vector in the direction of given vector, first of all we find unit vector in the direction of given vector and then multiply it with given magnitude.

Let
$$\vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}$$

 $|\vec{a}| = \sqrt{(2)^2 + (-3)^2 + (6)^2}$
 $= \sqrt{4+9+36}$
 $= \sqrt{49} = 7 \text{ units}$ (1/2)

The unit vector in the direction of the given \overrightarrow{a} is

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{1}{7} (2\hat{i} - 3\hat{j} + 6\hat{k}) = \frac{2}{7} \hat{i} - \frac{3}{7} \hat{j} + \frac{6}{7} \hat{k}$$

Therefore, the vector of magnitude equal to 21 units and in the direction of \overrightarrow{a} is

$$21\hat{a} = 21\left(\frac{2}{7}\hat{i} - \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k}\right)$$
$$= 6\hat{i} - 9\hat{j} + 18\hat{k}$$
 (1/2)

2. Find a vector \overrightarrow{a} of magnitude $5\sqrt{2}$, making an angle of $\frac{\pi}{4}$ with X-axis, $\frac{\pi}{2}$ with Y-axis and an acute angle θ with Z-axis. All India 2014

Given, a vector \overline{a} makes an angle $\frac{\pi}{4}$ with X-axis and $\frac{\pi}{2}$ with Y-axis.

So,
$$l = \cos \frac{\pi}{4}$$
 and $m = \cos \frac{\pi}{2} \Rightarrow l = \frac{1}{\sqrt{2}}$, $m = 0$

We know that, $I^2 + m^2 + n^2 = 1$

$$\Rightarrow \left(\frac{1}{\sqrt{2}}\right)^2 + (0)^2 + n^2 = 1 \Rightarrow \frac{1}{2} + n^2 = 1$$

$$\Rightarrow n^2 = 1 - \frac{1}{2} \Rightarrow n = \pm \frac{1}{\sqrt{2}} \Rightarrow n = \frac{1}{\sqrt{2}}$$

$$\therefore \quad \cos\theta = \frac{1}{\sqrt{2}}$$

[: θ is an acute angle with Z-axis]

$$\Rightarrow \theta = \frac{\pi}{4}$$

Thus, direction cosines of a line are

$$\frac{1}{\sqrt{2}}$$
, 0, $\frac{1}{\sqrt{2}}$ (1/2)

∴ Vector a

$$= |\vec{a}| \left(\cos \frac{\pi}{4} \hat{i} + \cos \frac{\pi}{2} \hat{j} + \cos \frac{\pi}{4} \hat{k} \right)$$

$$= 5\sqrt{2} \left(\frac{1}{\sqrt{2}} \hat{i} + (0) \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \right) = 5\hat{i} + 5\hat{k}$$
 (1/2)

3. Write a unit vector in the direction of the sum of the vectors $\vec{a} = 2\hat{i} + 2\hat{j} - 5\hat{k}$ and

$$\vec{b} = 2\hat{i} + \hat{j} - 7\hat{k}$$

Delhi 2014C

Given,
$$\vec{a} = 2\hat{i} + 2\hat{j} - 5\hat{k}$$
 and $\vec{b} = 2\hat{i} + \hat{j} - 7\hat{k}$
Now, $\vec{a} + \vec{b} = 2\hat{i} + 2\hat{j} - 5\hat{k} + 2\hat{i} + \hat{j} - 7\hat{k}$
 $= 4\hat{i} + 3\hat{j} - 12\hat{k}$
and $|\vec{a} + \vec{b}| = \sqrt{(4)^2 + (3)^2 + (-12)^2}$
 $= \sqrt{16 + 9 + 144}$
 $= \sqrt{25 + 144}$
 $= \sqrt{169} = 13 \text{ units}$ (1/2)

:. Required unit vector = Unit vector along the direction of $\vec{a} + \vec{b}$

$$= \frac{\vec{a} + \vec{b}}{|\vec{a} + \vec{b}|} = \frac{4}{13}\hat{i} + \frac{3}{13}\hat{j} - \frac{12}{13}\hat{k}$$
 (1/2)

4. Find the value of p for which the vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} - 2p\hat{j} + 3\hat{k}$ are parallel.

All India 2014

We have, $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} - 2p\hat{j} + 3\hat{k}$ are two parallel vectors, so their direction ratios will be proportional.

$$\therefore \frac{3}{1} = \frac{2}{-2p} = \frac{9}{3} \Rightarrow \frac{2}{-2p} = \frac{3}{1}$$

$$\Rightarrow -6p = 2 \Rightarrow p = \frac{2}{-6} \Rightarrow p = -\frac{1}{3}$$
 (1)

5. Write the value of cosine of the angle which the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ makes with Y-axis.

Delhi 2014C

Given,
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$

Now, unit vector in the direction of \overrightarrow{a} is

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{(1)^2 + (1)^2 + (1)^2}}$$
$$= \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}} = \frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k}$$

- :. Cosine of angle which given vector makes with Y-axis is $\frac{1}{\sqrt{3}}$ (1)
- **6.** Find the angle between X-axis and the vector $\hat{i} + \hat{j} + \hat{k}$. All India 2014C

Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$

Now, unit vector in the direction of \vec{a} is

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{1^2 + 1^2 + 1^2}} \implies \hat{a} = \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$$

$$\Rightarrow \qquad \hat{a} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$

So, angle between X-axis and the vector

$$\hat{i} + \hat{j} + \hat{k} \text{ is } \cos \alpha = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \qquad \alpha = \cos^{-1} \left(\frac{1}{\sqrt{3}} \right)$$

[:
$$\hat{a} = l\hat{i} + m\hat{j} + n\hat{k}$$
 and $\cos \alpha = l \Rightarrow \alpha = \cos^{-1} l$]

(1)

7. Write a vector in the direction of the vector $\hat{i} - 2\hat{j} + 2\hat{k}$ that has magnitude 9 units.

Delhi 2014C

Let
$$\vec{a} = \hat{i} - 2\hat{j} + 2\hat{k}$$

Comparing with $X = x\hat{i} + y\hat{j} + z\hat{k}$, we get

$$x = 1, y = -2, z = 2$$

Magnitude
$$|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$$

= $\sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{1 + 4 + 4} = 3$ units

.. Unit vector in the direction of given vector

$$\hat{a} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$$
 (1/2)

Hence, the vector in the direction of vector $\hat{i} - 2\hat{j} + 2\hat{k}$ which has magnitude 9 units is given by

$$9\hat{a} = 9\left(\frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}\right) = 3\hat{i} - 6\hat{j} + 6\hat{k}$$
 (1/2)

8. Write a unit vector in the direction of vector \overrightarrow{PQ} , where \overrightarrow{P} and \overrightarrow{Q} are the points (1, 3, 0) and (4, 5, 6) respectively. Foreign 2014

Firstly, find the vector \overrightarrow{PQ} by using the formula $(x_2-x_1)\hat{i}+(y_2-y_1)\hat{j}+(z_2-z_1)\hat{k},$

then required unit vector is given by $\frac{PQ}{Q}$.

The given points are \overrightarrow{P} (1, 3, 0) and \overrightarrow{Q} (4, 5, 6).

Here,
$$x_1 = 1$$
, $y_1 = 3$, $z_1 = 0$
and $x_2 = 4$, $y_2 = 5$, $z_2 = 6$

So, vector PQ

$$= (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

$$= (4 - 1)\hat{i} + (5 - 3)\hat{j} + (6 - 0)\hat{k}$$

$$= 3\hat{i} + 2\hat{j} + 6\hat{k}$$
(1/2)

:. Magnitude of given vector

$$|\overrightarrow{PQ}| = \sqrt{3^2 + 2^2 + 6^2}$$

= $\sqrt{9 + 4 + 36}$
= $\sqrt{49} = 7$ units

Hence, the unit vector in the direction of \overrightarrow{PQ}

$$\frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|} = \frac{3\hat{i} + 2\hat{j} + 6\hat{k}}{7} = \frac{3}{7}\hat{i} + \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k}$$
 (1/2)

9. Write the value of the following:

$$\hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j})$$
 Foreign 2014

$$\hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j})$$

$$= \hat{i} \times \hat{j} + \hat{i} \times \hat{k} + \hat{j} \times \hat{k} + \hat{j} \times \hat{i} + \hat{k} \times \hat{i} + \hat{k} \times \hat{i}$$

$$= \hat{k} - \hat{j} + \hat{i} - \hat{k} + \hat{j} - \hat{i} = 0$$

$$[:: \hat{i} \times \hat{j} = \hat{k}, \hat{i} \times \hat{k} - \hat{j}, \hat{j} \times \hat{k} = \hat{i}, \hat{j} \times \hat{i} = -\hat{k},$$

$$\hat{k} \times \hat{i} = \hat{i}, \hat{k} \times \hat{i} = -\hat{i}] \quad (1)$$

10. Write a unit vector in the direction of the sum of vectors $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} + 3\hat{k}$.

Let
$$\vec{c} = \vec{a} + \vec{b} = (2\hat{i} - \hat{j} + 2\hat{k}) + (-\hat{i} + \hat{j} + 3\hat{k})$$

= $\hat{i} + 0\hat{j} + 5\hat{k}$

Now, $|\vec{c}| = |\vec{a} + \vec{b}| = \sqrt{1^2 + 5^2} = \sqrt{26}$

$$c = \frac{(\vec{a} + \vec{b})}{|\vec{a} + \vec{b}|} \left[\because \hat{a} = \frac{\vec{a}}{|\vec{a}|} \right]$$

$$= \frac{1}{\sqrt{26}} \hat{i} + \frac{5}{\sqrt{26}} \hat{k}$$
(1/2)

which is the required unit vector.

11. If $\vec{a} = x\hat{i} + 2\hat{j} - z\hat{k}$ and $\vec{b} = 3\hat{i} - y\hat{j} + \hat{k}$ are two equal vectors, then write the value of x + y + z. HOTS; Delhi 2013

Two vectors are equal, if coefficients of their components are equal. (1/2)

Given,
$$\overrightarrow{a} = \overrightarrow{b}$$

 $\Rightarrow x\widehat{i} + 2\widehat{j} - z\widehat{k} = 3\widehat{i} - y\widehat{j} + \widehat{k}$
 $\therefore x = 3, y = -2, z = -1$
Now, $x + y + z = 3 - 2 - 1 = 0$ (1/2)

12. P and Q are two points with position vectors $3\vec{a} - 2\vec{b}$ and $\vec{a} + \vec{b}$, respectively. Write the position vector of a point R which divides the line segment PQ in the ratio 2:1 externally.

All India 2013

Given, P and Q are two points with position vectors $3\vec{a} - 2\vec{b}$ and $\vec{a} + \vec{b}$ respectively. Also, point R divides the line segment PQ in the ratio 2: 1 externally.

.. Position vector of a point R

$$=\frac{2\times(\overrightarrow{a}+\overrightarrow{b})-1\times(3\overrightarrow{a}-2\overrightarrow{b})}{2-1}$$

[by section formula]

$$= \frac{2\vec{a} + 2\vec{b} - 3\vec{a} + 2\vec{b}}{2 - 1}$$

$$= \frac{-\overrightarrow{a} + 4\overrightarrow{b}}{1} = -\overrightarrow{a} + 4\overrightarrow{b} \tag{1}$$

13. L and M are two points with position vectors $2\vec{a} - \vec{b}$ and $\vec{a} + 2\vec{b}$, respectively. Write the position vector of a point N which divides the line segment LM in the ratio 2:1 externally.

All India 2013

Given, L and M are two points with position vectors $2\vec{a} - \vec{b}$ and $\vec{a} + 2\vec{b}$, respectively. Also, point N divides the line segment LM in the ratio 2:1 externally.

.. Position vector of a point N

$$=\frac{2\times(\overrightarrow{a}+2\overrightarrow{b})-1\times(2\overrightarrow{a}-\overrightarrow{b})}{2-1}$$

[by section formula]

$$= \frac{2\vec{a} + 4\vec{b} - 2\vec{a} + \vec{b}}{1} = 5\vec{b}$$
 (1)

14. A and B are two points with position vectors $2\vec{a} - 3\vec{b}$ and $6\vec{b} - \vec{a}$, respectively. Write the position vector of a point P which divides the line segment AB internally in the ratio 1:2.

All India 2013

Given, A and B are two points with position vectors $2\vec{a} - 3\vec{b}$ and $6\vec{b} - \vec{a}$, respectively. Also, point P divides the line segment AB in the ratio 1:2 internally.

 \therefore Position vector of a point P

$$=\frac{1\times(6\overrightarrow{b}-\overrightarrow{a})+2\times(2\overrightarrow{a}-3\overrightarrow{b})}{1+2}$$

[by section formula]

$$=\frac{6\overrightarrow{b}-\overrightarrow{a}+4\overrightarrow{a}-6\overrightarrow{b}}{3}=\frac{3\overrightarrow{a}}{3}=\overrightarrow{a}$$
 (1)

15. Find the sum of the vectors $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} - 6\hat{j} - 7\hat{k}$.

Delhi 2012

Given vectors are
$$\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$$
,
 $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} - 6\hat{j} + 7\hat{k}$

Sum of the vectors \vec{a} , \vec{b} and \vec{c} is

$$\vec{a} + \vec{b} + \vec{c} = (\hat{i} - 2\hat{j} + \hat{k}) + (-2\hat{i} + 4\hat{j} + 5\hat{k}) + (\hat{i} - 6\hat{j} - 7\hat{k})$$

= $-4\hat{j} - \hat{k}$ (1)

16. Find the scalar components of \overrightarrow{AB} with initial point A (2, 1) and terminal point B (- 5, 7). HOTS; All India 2012

Scalar components of
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

= Position vector of \overrightarrow{B} – Position vector of \overrightarrow{A} .

Given, initial point is A(2,1) and terminal point is B(-5,7) then scalar component of

$$\overrightarrow{AB}$$
 are $x_2 - x_1$ and $y_2 - y_1$.
 $\Rightarrow -5 - 2 = -7$ and $7 - 1 = 6$ (1)

17. For what values of \vec{a} , the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $a\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear?

HOTS; Delhi 2011

If
$$\vec{a}$$
 and \vec{b} are collinear, then $\vec{a} = \pm \lambda \vec{b}$ or $|\vec{a}| = \lambda \cdot |\vec{b}|$

Let given vectors are $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\vec{b} = a\hat{i} - 6\hat{j} - 8\hat{k}$

Vectors \vec{a} and \vec{b} are said to be collinear, if

$$\vec{a} = k \cdot \vec{b}$$
, where k is a scalar

$$\therefore 2\hat{i} - 3\hat{j} + 4\hat{k} = k (a\hat{i} + 6\hat{j} - 8\hat{k})$$

Above equation is satisfied, when a = -4.

$$\therefore \qquad \qquad a = -4 \tag{1}$$

18. Write the direction cosines of vector $-2\hat{i} + \hat{j} - 5\hat{k}$. Delhi 2011

Direction cosines of the vector
$$a\hat{i} + b\hat{j} + c\hat{k}$$
 are $\frac{a}{\sqrt{a^2 + b^2 + c^2}}$, $\frac{b}{\sqrt{a^2 + b^2 + c^2}}$, $\frac{c}{\sqrt{a^2 + b^2 + c^2}}$

Let
$$\vec{a} = -2\hat{i} + \hat{j} - 5\hat{k}$$

 \therefore Direction cosines of \overrightarrow{a} are

$$\frac{-2}{\sqrt{(-2)^2 + (1)^2 + (-5)^2}}, \frac{1}{\sqrt{(-2)^2 + (1)^2 + (-5)^2}}$$
and
$$\frac{-5}{\sqrt{(-2)^2 + (1)^2 + (-5)^2}}$$
i.e.
$$\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}$$
(1)

19. Write the position vector of mid-point of the vector joining points P(2, 3, 4) and Q(4, 1, -2).

Foreign 2011

Mid-point of the position vectors
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ and}$$

$$\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \text{ is } \frac{\vec{a} + \vec{b}}{2}$$
 or
$$\frac{(a_1 + b_1) \hat{i} + (a_2 + b_2) \hat{j} + (a_3 + b_3) \hat{k}}{2}$$

Given, points are P(2, 3, 4) and Q(4, 1, -2)whose position vectors $\overrightarrow{OP} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{OQ} = 4\hat{i} + \hat{j} - 2\hat{k}$.

Now, position vector of mid-point of vector joining points P(2, 3, 4) and Q(4, 1, -2) is

$$\overrightarrow{OR} = \frac{\overrightarrow{OP} + \overrightarrow{OQ}}{2} = \frac{(2\hat{i} + 3\hat{j} + 4\hat{k}) + (4\hat{i} + \hat{j} - 2\hat{k})}{2}$$

$$\therefore \overrightarrow{OR} = \frac{6\hat{i} + 4\hat{j} + 2\hat{k}}{2} = 3\hat{i} + 2\hat{j} + \hat{k}$$
(1)

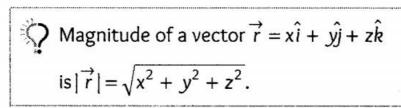
20. Write a unit vector in the direction of vector $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$. Delhi 2009; All India 2011

We know that, unit vector in the direction of \vec{a} is $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$

 $\therefore \text{ Required unit vector in the direction of vector } \vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{(2)^2 + (1)^2 + (2)^2}}$ $= \frac{2\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{9}}$ $= \frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}$ (1)

21. Find the magnitude of the vector

$$\vec{a} = 3\hat{i} - 2\hat{j} + 6\hat{k}$$
. All India 2011C; Delhi 2008



Given, vector is $\vec{a} = 3\hat{i} - 2\hat{j} + 6\hat{k}$

Magnitude of
$$\vec{a} = |\vec{a}| = \sqrt{(3)^2 + (-2)^2 + (6)^2}$$

= $\sqrt{9 + 4 + 36} = \sqrt{49} = 7$ units (1)

22. Find a unit vector in the direction of vector $\vec{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$. All India 2011C

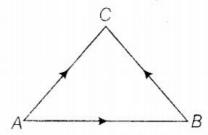
Given vector is $\vec{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$

Unit vector in the direction of $\vec{a} = \frac{a}{|\vec{a}|}$ $= \frac{2\hat{i} + 3\hat{j} + 6\hat{k}}{\sqrt{(2)^2 + (3)^2 + (6)^2}} = \frac{2\hat{i} + 3\hat{j} + 6\hat{k}}{\sqrt{49}}$ $= \frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k}$ (1)

23. If A, B and C are the vertices of a $\triangle ABC$, then what is the value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$?

Delhi 2011C

Let $\triangle ABC$ be the given triangle.



Now, by triangle law of vector addition, we

have
$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

 $\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AC}$

[adding \overrightarrow{CA} on both sides]

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{CA} - \overrightarrow{CA} \quad [\because \overrightarrow{AC} = - \overrightarrow{CA}]$$

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$$
 (1)

24. Find a unit vector in the direction of $\vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}$. Delhi 2011C

Given vector is $\vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}$

Unit vector in the direction of
$$\vec{a}$$

$$= \frac{2i - 3j + 6k}{\sqrt{(2)^2 + (-3)^2 + (6)^2}} = \frac{2i - 3j + 6k}{\sqrt{49}}$$

$$= \frac{2}{7}\hat{i} - \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k}$$
(1)

25. Find a vector in the direction of $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$, which has magnitude 6 units. **Delhi 2010C**

Do same as Que. 7. [Ans. $4\hat{i} - 2\hat{j} + 4\hat{k}$]

26. Find a position vector of mid-point of the line segment *AB*, where *A* is point (3, 4, –2) and *B* is point (1, 2, 4). Delhi 2010

Do same as Que. 19. [Ans. $2\hat{i} - 3\hat{j} + \hat{k}$]

27. Write a vector of magnitude 9 units in the direction of vector $-2\hat{i} + \hat{j} + 2\hat{k}$. All India 2010

Do same as Que. 7. [Ans. $-6\hat{i} - 3\hat{j} + 6\hat{k}$]

28. Write a vector of magnitude 15 units in the direction of vector $\hat{i} - 2\hat{j} + 2\hat{k}$. Delhi 2010

Do same as Que. 7. [Ans. $5\hat{i} - 10\hat{j} + 10\hat{k}$]

29. What is the cosine of angle which the vector $\sqrt{2}\hat{i} + \hat{j} + \hat{k}$ makes with Y-axis? HOTS; Delhi 2010 Let $\vec{a} = \sqrt{2}\hat{i} + \hat{j} + \hat{k}$

Now, unit vector in the direction of \overrightarrow{a} is

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\sqrt{2}\hat{i} + \hat{j} + \hat{k}}{\sqrt{(\sqrt{2})^2 + (1)^2 + (1)^2}} = \frac{\sqrt{2}\hat{i} + \hat{j} + \hat{k}}{2}$$
$$= \frac{\sqrt{2}}{2}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k}$$

:. Cosine of angle which given vector makes with Y-axis is 1/2. (1)

Alternate Method

The direction cosines along Y-axis are (0, 1, 0), then we use the following cosine formula $\theta = \cos^{-1} \{l_1 l_2 + m_1 m_2 + n_1 n_2\}$ $\Rightarrow \cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$

Let
$$\vec{a} = \sqrt{2}\hat{i} + \hat{i} + \hat{k}$$

Its direction cosines form

$$\vec{a} = \frac{\sqrt{2}}{2}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k}$$

: Direction cosine of vector $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$

$$= \frac{a_1}{\sqrt{a_1^2 + a_2^2 + a_3^2}}, \frac{a_2}{\sqrt{a_1^2 + a_2^2 + a_3^2}},$$
and
$$a_3$$

$$\sqrt{a_1^2 + a_2^2 + a_3^2}$$

and let the position along with Y-axis is

$$\vec{b} = 0\hat{i} + 1\hat{j} + 0\hat{k}$$

If θ is the angle between them.

$$\therefore \cos \theta = l_1 \, l_2 + m_1 m_2 + n_1 n_2$$

$$\Rightarrow \qquad \theta = \cos^{-1} \left\{ \frac{1}{\sqrt{2}} \cdot 0 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 \right\}$$

$$\therefore \qquad \cos \theta = \frac{1}{2}$$

 $\therefore \cos \theta = \frac{1}{2}$ So, cosine of angle which the given vector makes with Y-axis is $\frac{1}{2}$. (1)

30. Find a unit vector in the direction of vector

$$\vec{b} = 6\hat{i} - 2\hat{j} + 3\hat{k}.$$

All India 2009C

Do same as Que. 24. Ans.
$$\frac{6}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{3}{7}\hat{k}$$

31. Find a unit vector in the direction of vector

$$\vec{a} = -2\hat{i} + \hat{i} + 2\hat{k}$$
.

Delhi 2009C

Do same as Que. 24.
$$\left[\text{Ans.} \frac{-2}{3} \hat{i} + \frac{1}{3} \hat{j} + \frac{2}{3} \hat{k} \right]$$

32. Write a unit vector in the direction of

$$\vec{a} = 2\hat{i} - 6\hat{j} + 3\hat{k}.$$

Delhi 2009

Do same as Que. 24.
$$\left[\text{Ans. } \frac{2}{7}\hat{i} - \frac{6}{7}\hat{j} + \frac{3}{7}\hat{k} \right]$$

33. Find the magnitude of the vector

$$\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}.$$

All India 2008C

Given, vector is $\vec{a} = 2\hat{j} - 6\hat{j} - 3\hat{k}$

Magnitude of
$$\vec{a} = |\vec{a}| = \sqrt{(2)^2 + (-6)^2 + (-3)^2}$$

= $\sqrt{4 + 36 + 9} = \sqrt{49} = 7$ units (1)

34. Find a unit vector in the direction of $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$. **Delhi 2008C**

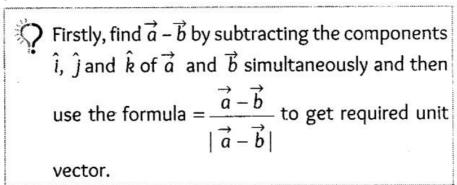
Do same as Que. 24.

Ans.
$$\frac{1}{\sqrt{6}}\hat{i} + \frac{1}{\sqrt{6}}\hat{j} + \frac{2}{\sqrt{6}}\hat{k}$$

35. If $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} - 5\hat{k}$, then find a unit vector in the direction $\vec{a} - \vec{b}$.

All India 2008

4 Marks Questions



Given,
$$\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$$
 and $3\hat{i} + \hat{j} - 5\hat{k}$

$$\vec{a} - \vec{b} = (\hat{i} + 2\hat{j} - \hat{k}) - (3\hat{i} + \hat{j} - 5\hat{k})$$

$$= -2\hat{i} + \hat{j} + 4\hat{k}$$
Let $\vec{a} - \vec{b} = \vec{c} = -2\hat{i} + \hat{j} + 4\hat{k}$

Now, unit vector in the direction of \vec{c} is

$$\hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{-2\hat{i} + \hat{j} + 4\hat{k}}{\sqrt{(-2)^2 + (1)^2 + (4)^2}} = \frac{-2\hat{i} + \hat{j} + 4\hat{k}}{\sqrt{21}}$$
$$= \frac{-2}{\sqrt{21}}\hat{i} + \frac{1}{\sqrt{21}}\hat{k} + \frac{4}{\sqrt{21}}\hat{k}$$
(1)

which is the required unit vector.

36. Find a vector of magnitude 5 units and parallel to the resultant of $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$. HOTS; Delhi 2011

Firstly, find resultant of the vectors \vec{a} and \vec{b} , which is $\vec{a} + \vec{b}$. Then, find a unit vector in the direction of $\vec{a} + \vec{b}$ i.e. the unit vector multiplying by 5.

Given
$$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$
Now, resultant of above vectors $= \vec{a} + \vec{b}$
 $= (2\hat{i} + 3\hat{j} - \hat{k}) + (\hat{i} - 2\hat{j} + \hat{k}) = 3\hat{i} + \hat{j}$ (1)
Let $\vec{a} + \vec{b} = \vec{c}$
 $\therefore \qquad \vec{c} = 3\hat{i} + \hat{j}$

Now, unit vector \hat{c} in the direction of \vec{c} , i.e.

$$=\frac{\overrightarrow{c}}{|\overrightarrow{c}|} \tag{1}$$

$$= \frac{3\hat{i} + \hat{j}}{\sqrt{(3)^2 + (1)^2}} = \frac{3\hat{i} + \hat{j}}{\sqrt{10}} = \frac{3}{\sqrt{10}}\hat{i} + \frac{1}{\sqrt{10}}\hat{j}$$
 (1)

Hence, vector of magnitude 5 units and parallel to resultant of \overrightarrow{a} and \overrightarrow{b} is

$$5\left(\frac{3}{\sqrt{10}}\hat{i} + \frac{1}{\sqrt{10}}\hat{j}\right) \text{ or } \frac{15}{\sqrt{10}}\hat{i} + \frac{5}{\sqrt{10}}\hat{j}$$
 (1)

37. Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$. Find a vector of magnitude 6 units, which is parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$. All India 2010

Firstly, find the vector $2\vec{a} - \vec{b} + 3\vec{c}$, then find the vector in the direction of $2\vec{a} - \vec{b} + 3\vec{c}$, i.e. the unit vector multiplying by 6.

Given,
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
; $\vec{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$
and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$
 $\therefore \qquad 2\vec{a} - \vec{b} + 3\vec{c}$
 $= 2(\hat{i} + \hat{j} + \hat{k}) - (4\hat{i} - 2\hat{j} + 3\hat{k}) + 3(\hat{i} - 2\hat{j} + \hat{k})$
 $= 2\hat{i} + 2\hat{j} + 2\hat{k} - 4\hat{i} + 2\hat{j} - 3\hat{k} + 3\hat{i} - 6\hat{j} + 3\hat{k}$
 $\Rightarrow 2\vec{a} - \vec{b} + 3\vec{c} = \hat{i} - 2\hat{j} + 2\hat{k}$ (1½)

Now, a unit vector in the direction of vector

$$2\vec{a} - \vec{b} + 3\vec{c} = \frac{2\vec{a} - \vec{b} + 3\vec{c}}{|2\vec{a} - \vec{b} + 3\vec{c}|}.$$

$$= \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{(1)^2 + (-2)^2 + (2)^2}} = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{9}}$$

$$= \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3} = \frac{1}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$$
 (11/2)

Hence, vector of magnitude 6 units parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c} = 6\left(\frac{1}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}\right)$ $= 2\hat{i} - 4\hat{j} + 4\hat{k}$ (1)

38. Find the position vector of a point R, which divides the line joining two points P and Q whose position vectors are $2\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - 3\overrightarrow{b}$ respectively, externally in the ratio $1 \cdot : 2$. Also, show that P is the mid-point of line segment RQ.

HOTS; Delhi 2010

Pere, we use the section formula for external division

$$\overrightarrow{OR} = \frac{m(\overrightarrow{OQ}) - n(\overrightarrow{OP})}{m - n}$$

$$\overrightarrow{Q}(\overrightarrow{OQ}) \xrightarrow{m} \overrightarrow{P}(\overrightarrow{OP}) \xrightarrow{n} \overrightarrow{R}(\overrightarrow{OR})$$

and then use the mid-point formula

$$\overrightarrow{OP} = \frac{\overrightarrow{OQ} + \overrightarrow{OR}}{2}$$

Given, \overrightarrow{OP} = Position vector of $P = 2\overrightarrow{a} + \overrightarrow{b}$ and \overrightarrow{OQ} = Position vector of $Q = \overrightarrow{a} - 3\overrightarrow{b}$

Let \overrightarrow{OR} be the position vector of point R, which divides PQ in the ratio 1 : 2 externally

$$\begin{array}{c|cccc}
 & 2 & & \\
 & 1 & & \\
\hline
OQ & \overrightarrow{OP} & \overrightarrow{OR}
\end{array}$$

$$\therefore \overrightarrow{OR} = \frac{1(\overrightarrow{a} - 3\overrightarrow{b}) - 2(2\overrightarrow{a} + \overrightarrow{b})}{1 - 2}$$

$$\left[\because \overrightarrow{OR} = \frac{\overrightarrow{m(OQ)} - n(\overrightarrow{OP})}{m - n} \cdot \text{Here, } m = 1, n = 2 \right]$$

(1)

$$= \frac{\vec{a} - 3\vec{b} - 4\vec{a} - 2\vec{b}}{-1} = \frac{-3\vec{a} - 5\vec{b}}{-1} = 3\vec{a} + 5\vec{b}$$

Hence,
$$\overrightarrow{OR} = 3\overrightarrow{a} + 5\overrightarrow{b}$$
 (1½)

Now, we have to show that *P* is the mid-point of *RQ*.

i.e.
$$\overrightarrow{OP} = \frac{\overrightarrow{OR} + \overrightarrow{OQ}}{2}$$

We have, $\overrightarrow{OR} = 3\overrightarrow{a} + 5\overrightarrow{b}$, $\overrightarrow{OQ} = \overrightarrow{a} - 3\overrightarrow{b}$

$$\therefore \frac{\overrightarrow{OR} + \overrightarrow{OQ}}{2} = \frac{(3\overrightarrow{a} + 5\overrightarrow{b}) + (\overrightarrow{a} - 3\overrightarrow{b})}{2}$$

$$= \frac{4\overrightarrow{a} + 2\overrightarrow{b}}{2}$$

$$= \frac{2(2\overrightarrow{a} + \overrightarrow{b})}{2} = 2\overrightarrow{a} + \overrightarrow{b}$$

$$= \overrightarrow{OP} \qquad [\because \overrightarrow{OP} = 2\overrightarrow{a} + \overrightarrow{b}, given] \quad (1\frac{1}{2})$$

Hence, *P* is the mid-point of line segment *R*.

Dot and Cross Products of Two Vectors

1 Marks Questions

1. If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a} + \vec{b}| = 13$ and $|\vec{a}| = 5$, then find the value of $|\vec{b}|$.

Given,
$$|\vec{a} + \vec{b}| = 13$$
, and $|\vec{a}| = 5$
Now,

$$(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{b}$$
$$= |\overrightarrow{a}|^2 + 0 + 0 + |\overrightarrow{b}|^2$$

$$[\because \overrightarrow{a} \cdot \overrightarrow{a} = | \overrightarrow{a} |^2, \overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a} = 0 \text{ as } \overrightarrow{a} \perp \overrightarrow{b}]$$

$$\Rightarrow |\overrightarrow{a} + \overrightarrow{b}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2$$

$$\Rightarrow$$
 $(13)^2 = (5)^2 + |\vec{b}|^2$

$$\Rightarrow$$
 169 = 25 + $|\vec{b}|^2 \Rightarrow$ 169 - 25 = $|\vec{b}|^2$

$$\Rightarrow 144 = |\overrightarrow{b}|^2 \Rightarrow |\overrightarrow{b}| = 12$$
 (1)

2. If
$$\vec{a}$$
 and \vec{b} are two unit vectors such that $\vec{a} + \vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b} . **Delhi 2014**

Given,
$$|\vec{a}| = 1, |\vec{b}| = 1$$
 and $|\vec{a} + \vec{b}| = 1$

Now,
$$|\overrightarrow{a} + \overrightarrow{b}|^2 = (\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} + \overrightarrow{b})$$

$$\vec{a} = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}$$

$$\Rightarrow |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$$

$$[\because \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \text{ and } \vec{x} \cdot \vec{x} = |\vec{x}|^2]$$

$$\Rightarrow$$
 1=1+2 \overrightarrow{a} · \overrightarrow{b} +1

$$\Rightarrow$$
 $2\vec{a}\cdot\vec{b} = -1$

$$\Rightarrow |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta = -\frac{1}{2} [\because \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta]$$

$$\Rightarrow \qquad \cos \theta = -\frac{1}{2} \qquad \qquad [\because |\vec{a}| = |\vec{b}| = 1]$$

$$\Rightarrow \cos \theta = \cos \frac{2\pi}{3} \Rightarrow \theta = \frac{2\pi}{3}$$

Hence, angle between \vec{a} and \vec{b} is $\frac{2\pi}{3}$. (1)

3. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $2\hat{i} - 3\hat{j} + 6\hat{k}$. Delhi 2014

The projection of vector
$$\overrightarrow{a}$$
 on vector \overrightarrow{b} is given by $\frac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{b}|}$.

Let
$$\vec{a} = \hat{i} + 3\hat{j} + 7\hat{k}$$
 and $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$

The projection of vector \overrightarrow{a} on the vector \overrightarrow{b} is given by

$$\frac{1}{|\vec{b}|}(\vec{a} \cdot \vec{b}) = \frac{1 \times 2 - 3 \times 3 + 7 \times 6}{\sqrt{(2)^2 + (-3)^2 + (6)^2}}$$
$$= \frac{2 - 9 + 42}{\sqrt{4 + 9 + 36}} = \frac{35}{\sqrt{49}} = \frac{35}{7} = 5$$
 (1)

4. Write the projection of vector $\hat{i} + \hat{j} + \hat{k}$ along the vector \hat{j} .

Foreign 2014

Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{j}$

The projection of \overrightarrow{a} on \overrightarrow{b} is given by

$$\frac{1}{|\vec{b}|}(\vec{a}\cdot\vec{b}) = \frac{1\times 0 + 1\times 1 + 1\times 0}{\sqrt{1^2}} = 1$$

Hence, the projection of vector $\hat{i} + \hat{j} + \hat{k}$ along the vector \hat{j} is 1. (1)

5. If vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 3$, $|\vec{b}| = 2/3$ and $\vec{a} \times \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b} .

Delhi 2014

Given,
$$|\overrightarrow{a}| = 3$$
 and $|\overrightarrow{b}| = 2/3$

Let θ be the angle between \vec{a} and \vec{b} .

Also, given
$$|\vec{a} \times \vec{b}| = 1$$
 (1/2)

$$\Rightarrow |\vec{a}| |\vec{b}| \sin \theta = 1 \Rightarrow 3 \times \frac{2}{3} \sin \theta = 1$$

$$\Rightarrow 2 \sin \theta = 1$$

$$\Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$$
 (1/2)

6. Find
$$\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$$
, if $\overrightarrow{a} = 2\hat{i} + \hat{j} + 3\hat{k}$,
 $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} + 2\hat{k}$.

All India 2014

Given,
$$\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$$
, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$
and $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$

Now,
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_3 & c_3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix}$$
$$= 2(4-1) - 1(-2-3) + 3(-1-6)$$
$$= 2 \times 3 - 1 \times (-5) + 3 \times (-7)$$
$$= 6 + 5 - 21 = 11 - 21 = -10$$
 (1)

7. If \vec{a} and \vec{b} are unit vectors, then find the angle between \vec{a} and \vec{b} , given that $(\sqrt{3}\vec{a} - \vec{b})$ is a unit vector. Delhi 2014C

Given, \vec{a} and \vec{b} are two unit vectors, then $|\vec{a}| = |\vec{b}| = 1$

Also, $(\sqrt{3} \vec{a} - \vec{b})$ is a unit vector.

$$\therefore |\sqrt{3} \vec{a} - \vec{b}| = 1 \Rightarrow |\sqrt{3} \vec{a} - \vec{b}|^2 = 1^2$$

$$\Rightarrow (\sqrt{3} \overrightarrow{a} - \overrightarrow{b}) \cdot (\sqrt{3} \overrightarrow{a} - \overrightarrow{b}) = 1 \quad [\because |\overrightarrow{a}|^2 = \overrightarrow{a} \cdot \overrightarrow{a}]$$

$$\Rightarrow 3(\overrightarrow{a} \cdot \overrightarrow{a}) - \sqrt{3}(\overrightarrow{a} \cdot \overrightarrow{b}) - \sqrt{3}(\overrightarrow{b} \cdot \overrightarrow{a}) + \overrightarrow{b} \cdot \overrightarrow{b} = 1$$

$$\Rightarrow 3|\overrightarrow{a}|^2 - \sqrt{3}|\overrightarrow{a}||\overrightarrow{b}||\cos\theta$$

$$- \sqrt{3}|\overrightarrow{b}||\overrightarrow{a}|\cos\theta + |\overrightarrow{b}|^2 = 1 \qquad (1/2)$$

[let θ be the angle between \overrightarrow{a} and \overrightarrow{b}]

$$\Rightarrow$$
 3 - $\sqrt{3}\cos\theta$ - $\sqrt{3}\cos\theta$ + 1=1

$$\Rightarrow$$
 3 = $2\sqrt{3}\cos\theta$

$$\Rightarrow \cos\theta = \frac{3}{2\sqrt{3}} \Rightarrow \cos\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{6}$$

Hence, required angle between \overrightarrow{a} and \overrightarrow{b} is $\frac{\pi}{6}$.

8. If $|\vec{a}| = 8$, $|\vec{b}| = 3$ and $|\vec{a} \times \vec{b}| = 12$, find the angle between \vec{a} and \vec{b} . All India 2014C

Let θ be the angle between \vec{a} and \vec{b} .

Given,
$$|\overrightarrow{a}| = 8$$
, $|\overrightarrow{b}| = 3$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 12$

We know that, $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$

$$\therefore \qquad |\vec{a}||\vec{b}|\sin\theta = 12$$

$$\Rightarrow \sin\theta = \frac{12}{|\vec{a}||\vec{b}|} \Rightarrow \sin\theta = \frac{12}{8 \times 3}$$

$$\Rightarrow$$
 $\sin \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$

Hence, the required angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$. (1)

9. Write the projection of the vector $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$.

Delhi 2014C

Given,
$$\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$

Then, projection of \overrightarrow{a} on \overrightarrow{b} is given by

$$\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \left[\frac{(2\hat{i} - \hat{j} + \hat{k})(\hat{i} + 2\hat{j} + 2\hat{k})}{\sqrt{(1)^2 + (2)^2 + (2)^2}} \right]$$
$$= \frac{2 \times 1 + (-1) \times (2) + 1 \times 2}{\sqrt{1 + 4 + 4}}$$
$$= \frac{2 - 2 + 2}{\sqrt{9}} = \frac{2}{\sqrt{9}} = \frac{2}{3}$$

Hence, the projection of vector $(2\hat{i} - \hat{j} + \hat{k})$ on $(\hat{i} + 2\hat{j} + 2\hat{k})$ is $\frac{2}{3}$. (1)

10. Write the value of λ , so that the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other. Delhi 2013C, 2008

Given, vectors are $\vec{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}$

and

$$\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$$

Since, vectors are perpendicular.

11. Write the projection of the vector $7\hat{i} + \hat{j} - 4\hat{k}$ on the vector $2\hat{i} + 6\hat{j} + 3\hat{k}$. **Delhi 2013C**

Let
$$\vec{a} = 7\hat{i} + \hat{j} - 4\hat{k}$$
 and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$

$$\therefore \text{ Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$$

$$= \frac{(7\hat{i} + \hat{j} - 4\hat{k}) \cdot (2\hat{i} + 6\hat{j} + 3\hat{k})}{|2\hat{i} + 6\hat{j} + 3\hat{k}|}$$

$$= \frac{14 + 6 - 12}{\sqrt{(2)^2 + (6)^2 + (3)^2}}$$

$$= \frac{8}{\sqrt{4 + 36 + 9}} = \frac{8}{\sqrt{49}} = \frac{8}{7}$$
 (1)

12. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a}|$, then prove that vector $2\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to vector \overrightarrow{b} . HOTS; Delhi 2013

To prove, $(2\vec{a} + \vec{b}) \perp \vec{b}$

Given,
$$|\vec{a} + \vec{b}| = |\vec{a}|$$

On squaring both sides, we get

$$|\overrightarrow{a} + \overrightarrow{b}|^2 = |\overrightarrow{a}|^2$$

$$\Rightarrow |\overrightarrow{a}|^2 + 2\overrightarrow{a} \cdot \overrightarrow{b} + |\overrightarrow{b}|^2 = |\overrightarrow{a}|^2$$

$$\Rightarrow 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = 0 \quad [\because |\vec{x}|^2 = \vec{x} \cdot \vec{x} = \vec{x}^2]$$

$$\Rightarrow (2\vec{a} + \vec{b}) \cdot \vec{b} = 0 \Rightarrow (2\vec{a} + \vec{b}) \perp \vec{b}$$

[: If
$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$$
] (1)

Hence proved.

13. Find $|\overrightarrow{x}|$, if for a unit vector \hat{a} , $(\overrightarrow{x} - \overrightarrow{a}) \cdot (\overrightarrow{x} + \overrightarrow{a}) = 15$. HOTS; All India 2013

Given, \hat{a} is a unit vector. Then, $|\hat{a}| = 1$

Now, we have $(\overrightarrow{x} - \hat{a}) \cdot (\overrightarrow{x} + \hat{a}) = 15$

$$\Rightarrow \overrightarrow{x} \cdot \overrightarrow{x} - \hat{a} \cdot \overrightarrow{x} + \overrightarrow{x} \cdot \hat{a} - \hat{a} \cdot \hat{a} = 15$$

$$\Rightarrow \overrightarrow{x} \cdot \overrightarrow{x} - \hat{a} \cdot \overrightarrow{x} + \hat{a} \cdot \overrightarrow{x} - \hat{a} \cdot \hat{a} = 15$$

[: scalar product is commutative]

$$\Rightarrow |\overrightarrow{x}|^2 - |\widehat{a}|^2 = 15 \quad [\because \overrightarrow{z} \cdot \overrightarrow{z} = |\overrightarrow{z}|^2]$$

$$\Rightarrow |\overrightarrow{x}|^2 - 1 = 15 \Rightarrow |\overrightarrow{x}|^2 = 16$$

$$\therefore |\overrightarrow{x}| = 4 \quad (1)$$

14. Find λ , when projection of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units.

HOTS; Delhi 2012

Given, $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k} \vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ and projection of \vec{a} on $\vec{b} = 4$

$$\Rightarrow \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|} = 4$$

$$[\because \text{ projection of } \overrightarrow{a} \text{ on } \overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}]$$

$$\Rightarrow \frac{(\lambda \hat{i} + \hat{j} + 4\hat{k}) \cdot (2\hat{i} + 6\hat{j} + 3\hat{k})}{\sqrt{(2)^2 + (6)^2 + (3)^2}} = 4$$

$$\Rightarrow \frac{2\lambda + 6 + 12}{\sqrt{49}} = 4 \Rightarrow 2\lambda + 18 = 28$$

$$\therefore \qquad \qquad \lambda = 5 \tag{1}$$

15. Write the value of $(\hat{k} \times \hat{j}) \cdot \hat{i} + \hat{j} \cdot \hat{k}$.

HOTS; All India 2012

Use the results
$$\hat{j} \times \hat{k} = \hat{i}$$
,
 $\hat{j} \cdot \hat{k} = 0$ and $\hat{i} \cdot \hat{i} = 1$

We have,
$$(\hat{k} \times \hat{j}) \cdot \hat{i} + \hat{j} \cdot \hat{k} = (-\hat{i}) \cdot \hat{i} + \hat{j} \cdot \hat{k}$$

$$[\because \hat{j} \times \hat{k} = \hat{i} \Rightarrow \hat{k} \times \hat{j} = -\hat{i} \text{ and } \hat{j} \cdot \hat{k} = 0]$$

$$= -\hat{i}^2 + 0 = -1 \quad [\because \hat{i}^2 = 1](1)$$

16. If $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$, then what can be concluded about the vector \vec{b} ? Foreign 2011

Given,
$$\vec{a} \cdot \vec{a} = 0 \Rightarrow |\vec{a}|^2 = 0 \Rightarrow |\vec{a}| = 0$$
 ...(i)
and $\vec{a} \cdot \vec{b} = 0$
 $\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = 0$...(ii)

From Eqs. (i) and (ii), it may be concluded that \vec{b} is either zero or non-zero perpendicular vector. (1)

17. Write the projection of vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$.

All India 2011

Let given vector are $\vec{a} = \hat{i} - \hat{j}$ and $\vec{b} = \hat{i} + \hat{j}$. Projection of \vec{a} on \vec{b}

$$= \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{(\hat{i} - \hat{j}) \cdot (\hat{i} + \hat{j})}{\sqrt{(1)^2 + (1)^2}}$$

$$= \frac{1 - 1}{\sqrt{2}} = \frac{0}{\sqrt{2}} = 0 \qquad \begin{bmatrix} \because \hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = 1 \\ \hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{i} = 0 \end{bmatrix}$$
 (1)

18. Write the angle between vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively, having $\vec{a} \cdot \vec{b} = \sqrt{6}$:

All India 2011

Let θ be the angle between \vec{a} and \vec{b} , then use the following formula

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

Given,
$$|\overrightarrow{a}| = \sqrt{3}$$
, $|\overrightarrow{b}| = 2$ and $|\overrightarrow{a}| = \sqrt{6}$

Now, angle between \vec{a} and \vec{b} is given by

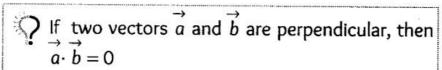
$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|} = \frac{\sqrt{6}}{\sqrt{3} \times 2} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{3} \times 2} = \frac{\sqrt{2}}{2}$$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4}$$

$$\theta = \frac{\pi}{4} \qquad \left[\because \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \right]$$
 (1)

19. For what value of λ are the vectors $\hat{i} + 2\lambda \hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} - 3\hat{k}$ perpendicular?

All India 2011C



Given vectors ore $(\hat{i} + 2\lambda\hat{i} + \hat{k})$

and
$$(2\hat{i} + \hat{j} - 3\hat{k})$$
.

Also given, the vectors are perpendicular, so their dot product is zero.

Hence, required value of λ is 1/2.

If two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are perpendicular, then $\overrightarrow{a} \cdot \overrightarrow{b} = 0$

Given vectors ore $(\hat{i} + 2\lambda\hat{j} + \hat{k})$

and
$$(2\hat{i} + \hat{j} - 3\hat{k})$$
.

Also given, the vectors are perpendicular, so their dot product is zero.

Hence, required value of λ is 1/2.

20. If $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and angle between \vec{a} and \vec{b} is 60°, then find $\vec{a} \cdot \vec{b}$. Delhi 2011C

We know that, $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cos \theta$

On putting $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and $\theta = 60^{\circ}$, we get

$$\overrightarrow{a}.\overrightarrow{b} = \sqrt{3} \times 2 \cos 60^{\circ}$$

$$\Rightarrow \vec{a} \cdot \vec{b} = \frac{1}{2} \times 2\sqrt{3} = \sqrt{3} \qquad \left[\because \cos 60^{\circ} = \frac{1}{2} \right]$$

$$\therefore \quad \overrightarrow{a} \cdot \overrightarrow{b} = \sqrt{3}$$
 (1)

21. Find the value of λ , if the vectors $2\hat{i} + \lambda \hat{j} + 3\hat{k}$ and $3\hat{i} + 2\hat{j} - 4\hat{k}$ are perpendicular to each other.

All India 2010C

Do same as Que. 19. [Ans. $\lambda = 3$]

22. If $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 3$, then find the projection of \vec{b} on \vec{a} . All India 2010C

Given,
$$|\overrightarrow{a}| = 2$$
, $|\overrightarrow{b}| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$

.. Projection of
$$\vec{b}$$
 on $\vec{a} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}$

$$= \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|}$$
 [: $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$]

$$= \frac{3}{2} \text{ [: } \overrightarrow{a} \cdot \overrightarrow{b} = 3 \text{ and } |\overrightarrow{a}| = 2 \text{] (1)}$$

23. Vectors \vec{a} and \vec{b} are such that $|\vec{a}| = \sqrt{3}, |\vec{b}| = 2/3$ and $\vec{a} \times \vec{b}$ is a unit vector. Write the angle between \vec{a} and \vec{b} .

All India 2010

Do same as Que. 5. [Ans. $\frac{\pi}{3}$]

24. If \vec{a} and \vec{b} are two vectors, such that $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$, then find the angle between $\vec{a} \times \vec{b}$. HOTS; All India 2010

Use the following formulae:

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$$

and $\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta \cdot \hat{n}$
where, θ is the angle between \overrightarrow{a} and \overrightarrow{b} .

Given,
$$|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$$

$$\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \sin \theta \quad [::|\hat{n}| = 1]$$

$$\Rightarrow \cos \theta = \sin \theta$$

On dividing both sides by $\cos \theta$, we get

$$\tan \theta = 1$$

$$\tan \theta = \tan \frac{\pi}{4} \qquad \left[\because 1 = \tan \frac{\pi}{4}\right]$$

$$\therefore \qquad \theta = \frac{\pi}{4}$$

So, angle between
$$\vec{a}$$
 and \vec{b} is $\frac{\pi}{4}$. (1)

25. Find
$$\lambda$$
, if $(2\hat{i} + 6\hat{j} + 14\hat{k}) \times (\hat{i} - \lambda\hat{j} + 7\hat{k}) = \vec{0}$.

All India 2010

Given,
$$(2\hat{i} + 6\hat{j} + 14\hat{k}) \times (\hat{i} - \lambda\hat{j} + 7\hat{k})$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 14 \\ 1 & -\lambda & 7 \end{vmatrix} = \vec{0}$$

$$\Rightarrow \hat{i} (42 + 14\lambda) - \hat{j} (14 - 14) + \hat{k} (-2\lambda - 6) = \vec{0}$$

$$\Rightarrow \hat{i} (42 + 14\lambda) + \hat{k} (-2\lambda - 6) = 0 \hat{i} + 0 \hat{j} + 0 \hat{k}$$

$$[\because \vec{0} = 0 \hat{i} + 0 \hat{j} + 0 \hat{k}]$$

On comparing coefficients of \hat{i} and \hat{k} from both sides, we get

$$42 + 14\lambda = 0$$

$$\Rightarrow \qquad \lambda = -3$$
and
$$-2\lambda - 6 = 0$$

$$\Rightarrow \qquad \lambda = -3$$
(1)

Hence, required value of λ is -3.

26. Find
$$\overrightarrow{a} \cdot \overrightarrow{b}$$
, if $\overrightarrow{a} = -\hat{i} + \hat{j} - 2\hat{k}$ and
$$\overrightarrow{b} = 2\hat{i} + 3\hat{j} - \hat{k}$$
. All India 2009C

Given,
$$\vec{a} = -\hat{i} + \hat{j} - 2\hat{k}$$
 and $\hat{b} = 2\hat{i} + 3\hat{j} - \hat{k}$

Then,
$$\vec{a} \cdot \vec{b} = (-\hat{i} + \hat{j} - 2\hat{k}) \cdot (2\hat{i} + 3\hat{j} - \hat{k})$$

= $-2 + 3 + 2 = 3$ (1)

27. Find
$$\overrightarrow{a} \cdot \overrightarrow{b}$$
, if $\overrightarrow{a} = 3\hat{i} - \hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} + 3\hat{k}$.

Delhi 2009C

Do same as Que. 26. [Ans. 9]

28. Find the value of *P*, if $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + 3\hat{j} + P\hat{k}) = \vec{0}$. All India 2009

Do same as Que. 25. Ans.
$$\frac{27}{2}$$

29. If \hat{P} is a unit vector and $(\vec{x} - \hat{P}) \cdot (\vec{x} + \hat{P}) = 80$, then find $|\vec{x}|$. HOTS; All India 2009

Do same as Que. 13. [Ans. 9]

30. Find the angle between \vec{a} and \vec{b} with magnitudes 1 and 2 respectively, when $|\vec{a} \times \vec{b}| = \sqrt{3}$. Delhi 2009

Given,
$$|\overrightarrow{a}| = 1$$
, $|\overrightarrow{b}| = 2$ and $|\overrightarrow{a} \times \overrightarrow{b}| = \sqrt{3}$

$$\Rightarrow |\vec{a}| |\vec{b}| \sin \theta = \sqrt{3}$$

$$[: \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \cdot \hat{n} \text{ and } |\hat{n}| = 1]$$

$$\Rightarrow$$
 1×2×sin $\theta = \sqrt{3}$ [: $|\vec{a}| = 1$ and $|\vec{b}| = 2$]

$$\Rightarrow \sin \theta = \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3} \Rightarrow \theta = \frac{\pi}{3}$$
Hence, angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$. (1)

31. Write the value of P, for which $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + P\hat{j} + 3\hat{k}$ are parallel vectors. **Delhi 2009**

Given vectors are $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + P\hat{j} + 3\hat{k}$.

Also, \vec{a} and \vec{b} are parallel vectors.

So,
$$\vec{a} \times \vec{b} = 0$$

$$\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 9 \\ 1 & P & 3 \end{vmatrix} = \vec{0}$$

$$\Rightarrow \hat{i} (6 - 9P) - \hat{j} (9 - 9) + \hat{k} (3P - 2) = \vec{0}$$

\Rightarrow \hat{i} (6 - 9P) + \hat{k} (3P - 2) = 0\hat{i} + 0\hat{j} + 0\hat{k}

On comparing the coefficients of \hat{i} or \hat{k} from both sides, we get

$$6 - 9P = 0 \implies P = \frac{2}{3} \tag{1}$$

Alternate Method

If the two vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ are parallel to each other, then use the following relation.

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$$

Given, $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and

 $\vec{b} = \hat{i} + P\hat{j} + 3\hat{k}$ are parallel vectors.

Then,
$$\frac{3}{1} = \frac{2}{P} = \frac{9}{3} \implies P = \frac{2}{3}$$
 (1)

32. Find the projection of \vec{a} on \vec{b} , if $\vec{a} \cdot \vec{b} = 8$ and

$$\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}.$$

Delhi 2009

Do same as Que. 9.

Ans.
$$\frac{8}{7}$$

33. Find value of the following:

$$\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}).$$

HOTS; All India 2008C

We have,
$$\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$$

$$= \hat{i} \cdot \hat{i} + \hat{j} \cdot (-\hat{j}) + \hat{k} \cdot \hat{k}$$

$$\begin{bmatrix} \because \hat{i} \times \hat{j} = \hat{k} ; & \hat{j} \times \hat{k} = \hat{i} \\ \hat{k} \times \hat{i} = \hat{j} \implies \hat{i} \times \hat{k} = -\hat{j} \end{bmatrix}$$

$$= \hat{i}^2 - \hat{j}^2 + \hat{k}^2$$

= 1-1+1=1
34. Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and

$$\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}.$$

Delhi 2008C

(1)

Given,
$$\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$$
 and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2 \end{vmatrix}$$
$$= \hat{i} (-14 + 14) - \hat{j} (2 - 21) + \hat{k} (-2 + 21)$$
$$= 19\hat{i} + 19\hat{k}$$

Now,
$$|\vec{a} \times \vec{b}| = \sqrt{(19)^2 + (19)^2}$$

= $\sqrt{2(19)^2} = 19\sqrt{2}$ (1)

35. If $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 3$, then find the angle between \vec{a} and \vec{b} . All India 2008

Do same as Que. 18.

Ans.
$$\frac{\pi}{6}$$

36. Find angle between vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} - \hat{k}$. Delhi 2008

Given, vectors are

$$\vec{a} = \hat{i} - \hat{j} + \hat{k}$$
 and $\hat{b} = \hat{i} + \hat{j} - \hat{k}$.

Then,
$$\vec{a} \cdot \vec{b} = (\hat{i} - \hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k})$$

$$= 1 - 1 - 1 = -1$$

$$|\vec{a}| = \sqrt{(1)^2 + (-1)^2 + (1)^2} = \sqrt{3}$$

and
$$|\vec{b}| = \sqrt{(1)^2 + (1)^2 + (-1)^2} = \sqrt{3}$$

We know that, angle between \overrightarrow{a} and \overrightarrow{b} is given by

$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|}$$

$$\therefore \quad \cos \theta = \frac{-1}{\sqrt{3} \times \sqrt{3}} = -\frac{1}{3} \implies \theta = \cos^{-1} \left(-\frac{1}{3} \right)$$

which is the required angle between \vec{a} and \vec{b} .

4 Marks Questions

37. Prove that, for any three vectors \vec{a} , \vec{b} and \vec{c} , $[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = 2[\vec{a} \ \vec{b} \ \vec{c}]$ Delhi 2014

If use the property that in a scalar triple product, if any two vectors are equal, then value of scalar triple product will be zero and
$$[\vec{a} \ \vec{b} \ \vec{c}] = [\vec{b} \ \vec{c} \ \vec{a}]$$

We have, LHS =
$$[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}]$$

= $(\vec{a} + \vec{b}) \cdot [(\vec{b} + \vec{c}) \times (\vec{c} + \vec{a})]$
= $(\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a})$
= $(\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a})$
[: $\vec{c} \times \vec{c} = 0$] (2)
= $\vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a})$
+ $\vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a})$
= $[\vec{a} \ \vec{b} \ \vec{c}] + [\vec{a} \ \vec{b} \ \vec{a}] + [\vec{a} \ \vec{c} \ \vec{a}]$
+ $[\vec{b} \ \vec{b} \ \vec{c}] + [\vec{b} \ \vec{b} \ \vec{a}] + [\vec{b} \ \vec{c} \ \vec{a}]$
Hence proved. (2)

38. Vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ and $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$. Find the angle between \overrightarrow{a} and \overrightarrow{b} .

All India 2008; Delhi 2014, 2008

Firstly, write the given expression $\vec{a} + \vec{b} + \vec{c} = 0$ as $\vec{a} + \vec{b} = -\vec{c}$ and then square both sides and symplify to get the angle between \vec{a} and \vec{b} .

Given,
$$|\vec{a}| = 3$$
, $|\vec{b}| = 5$ and $|\vec{c}| = 7$
Also, $\vec{a} + \vec{b} + \vec{c} = 0 \Rightarrow \vec{a} + \vec{b} = -\vec{c}$
 $\Rightarrow (\vec{a} + \vec{b})^2 = (-\vec{c})^2$ [squaring on both sides]
 $\Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = (-\vec{c}) \cdot (-\vec{c})$
 $\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = \vec{c} \cdot \vec{c}$
 $\Rightarrow |\vec{a}|^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{b} + |\vec{b}|^2 = |\vec{c}|^2$
 $[\because \vec{x} \cdot \vec{x} = |\vec{x}|^2 \text{ and } \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}]$ (1)
 $\Rightarrow |\vec{a}|^2 + 2 \vec{a} \cdot \vec{b} + |\vec{b}|^2 = |\vec{c}|^2$

$$\Rightarrow |\vec{a}|^2 + 2|\vec{a}| \cdot |\vec{b}| \cos \theta$$

$$+ |\vec{b}|^2 = |\vec{c}|^2 \quad ...(i) \quad (1)$$

$$[\because \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta]$$

$$\Rightarrow (3)^2 + 2 \times 3 \times 5 \cos \theta + (5)^2 = (7)^2$$

$$[\because |\vec{a}| = 3, |\vec{b}| = 5 \text{ and } |\vec{c}| = 7]$$

$$\Rightarrow 9 + 30 \cos \theta + 25 = 49 \quad (1)$$

$$\Rightarrow 30 \cos \theta = 49 - 34$$

$$\Rightarrow \cos \theta = \frac{15}{30} = \frac{1}{2}$$

$$\Rightarrow \cos \theta = \cos \frac{\pi}{3} \quad \left[\because \frac{1}{2} = \cos \frac{\pi}{3}\right]$$

$$\Rightarrow \theta = \frac{\pi}{3}$$

- Hence, the angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$. (1)
- **39.** Show that the four points A, B, C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k}$, -j k, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $4(-\hat{i} + \hat{j} + \hat{k})$ respectively are coplanar. All India 2014

Given, points are $A = 4\hat{i} + 5\hat{j} + \hat{k}$, $B = -\hat{j} - \hat{k}$, $C = 3\hat{i} + 9\hat{j} + 4\hat{k}$ and $D = 4(-\hat{i} + \hat{j} + \hat{k})$. We know that, the four points A, B, C, and D will be coplanar, if the three vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AB} are coplanar, i.e. if

$$[\vec{AB} \ \vec{AC} \ \vec{AD}] = 0$$

$$\overrightarrow{AB} = -\hat{j} - \hat{k} - (4\hat{i} + 5\hat{j} + \hat{k})$$

$$= -4\hat{i} - 6\hat{j} - 2\hat{k}$$
(1)

$$\overrightarrow{AC} = (3\hat{i} + 9\hat{j} + 4\hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k})$$

= $-\hat{i} + 4\hat{j} + 3\hat{k}$

and
$$\overrightarrow{AD} = 4(-\hat{i} + \hat{j} + \hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k})$$

= $-8\hat{i} - \hat{j} + 3\hat{k}$ (1)

Now,
$$[\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD}] = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix}$$
 (1)

$$= -4(12 + 3) + 6(-3 + 24) - 2(1 + 32)$$
$$= -60 + 126 - 66 = -126 + 126 = 0$$

Hence, points A, B, C and D are coplanar. (1)

40. The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ and hence, find the unit vector along $\vec{b} + \vec{c}$. All India 2014

Given, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$.

Now,
$$\vec{b} + \vec{c} = 2\hat{i} + 4\hat{j} - 5\hat{k} + \lambda\hat{i} + 2\hat{j} + 3\hat{k}$$

= $(2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}$

The unit vector along $\vec{b} + \vec{c}$

$$= \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|}$$

$$= \frac{(2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{\lambda^2 + 4\lambda + 44}} \qquad \dots (i)$$

Given, scalar product of $(\hat{i} + \hat{j} + \hat{k})$ with this unit vector is 1. (1)

$$\therefore \qquad (\hat{i} + \hat{j} + \hat{k}) \cdot \frac{\overrightarrow{b} + \overrightarrow{c}}{|\overrightarrow{b} + \overrightarrow{c}|} = 1$$

$$\Rightarrow (\hat{i} + \hat{j} + \hat{k}) \cdot \frac{(2 + \lambda) \hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{\lambda^2 + 4\lambda + 44}} = 1$$

$$\Rightarrow \frac{1(2+\lambda)+1(6)+1(-2)}{\sqrt{\lambda^2+4\lambda+44}} = 1$$

$$\Rightarrow \frac{(2+\lambda)+6-2}{\sqrt{\lambda^2+4\lambda+44}}=1$$

$$\Rightarrow \qquad \lambda + 6 = \sqrt{\lambda^2 + 4\lambda + 44}$$

$$\Rightarrow \qquad (\lambda + 6)^2 = \lambda^2 + 4\lambda + 44$$

[squaring on both sides]

$$\Rightarrow \lambda^2 + 36 + 12\lambda = \lambda^2 + 4\lambda + 44$$

$$\Rightarrow$$
 $8\lambda = 8$

$$\Rightarrow$$
 $\lambda = 1$

Hence, the value of λ is 1.

On substituting the value of λ in Eq. (i), we get

Unit vector along $\vec{b} + \vec{c}$

$$= \frac{(2+1)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(1)^2 + 4(1) + 44}} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{1 + 4 + 44}}$$
$$= \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{49}} = \frac{3}{7}\hat{i} + \frac{6}{7}\hat{j} - \frac{2}{7}\hat{k}$$
(1)

41. Find the vector \vec{p} which is perpendicular to both $\vec{\alpha} = 4\hat{i} + 5\hat{j} - \hat{k}$ and $\vec{\beta} = \hat{i} - 4\hat{j} + 5\hat{k}$ and $\vec{p} \cdot \vec{q} = 21$, where $\vec{q} = 3\hat{i} + \hat{j} - \hat{k}$. All India 2014C

Given
$$\alpha = 4\hat{i} + 5\hat{j} - \hat{k}$$
, $\beta = \hat{i} - 4\hat{j} + 5\hat{k}$
 $q = 3\hat{i} + \hat{j} - \hat{k}$

Also, vector \vec{p} is perpendicular to α and β .

Then,
$$\overrightarrow{p} = \lambda (\overrightarrow{\alpha} \times \overrightarrow{\beta})$$

Now,
$$\vec{\alpha} \times \vec{\beta} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 5 & -1 \\ 1 & -4 & 5 \end{vmatrix}$$

= $\hat{i} (25 - 4) - \hat{j} (20 + 1) + \hat{k} (-16 - 5)$
= $\hat{i} (21) - \hat{j} (21) + \hat{k} (-21)$

So,
$$\overrightarrow{p} = 21\lambda \hat{i} - 21\lambda \hat{j} - 21\lambda \hat{k}$$
 ...(i)

Also, given that $\overrightarrow{p} \cdot \overrightarrow{q} = 21$

$$\therefore (21\lambda\hat{i} - 21\lambda\hat{j} - 21\lambda\hat{k}) \cdot (3\hat{i} + \hat{j} - \hat{k}) = 21$$

$$\Rightarrow$$
 63 λ – 21 λ + 21 λ = 21

$$\Rightarrow 63\lambda = 21 \Rightarrow \lambda = 1/3$$
 (1)

On putting $\lambda = \frac{1}{3}$ in Eq. (i), we get

 $=21\hat{i}-21\hat{i}-21\hat{k}$

$$\vec{p} = 21 \times \frac{1}{3}\hat{i} - 21 \times \frac{1}{3}\hat{j} - 21 \times \frac{1}{3}\hat{k}$$

$$\Rightarrow \qquad \overrightarrow{p} = 7\hat{i} - 7\hat{j} - 7\hat{k}$$

which is the required vector.

42. Find a unit vector perpendicular to both of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$

where
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

Foreign 2014

(1)

Given, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ Let the required unit vector be

then
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
,
then $\sqrt{x^2 + y^2 + z^2} = 1$
 $\Rightarrow \qquad x^2 + y^2 + z^2 = 1$...(i)
Now, $\vec{a} + \vec{b} = (\hat{i} + \hat{j} + \hat{k}) + (\hat{i} + 2\hat{j} + 3\hat{k})$
 $= 2\hat{i} + 3\hat{j} + 4\hat{k}$
and $\vec{a} - \vec{b} = (\hat{i} + \hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) - \hat{i} - 2\hat{k}$

and
$$\vec{a} - \vec{b} = (\hat{i} + \hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) - \hat{j} - 2\hat{k}$$
(1)

Since, \vec{r} is perpendicular to $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$,

$$\therefore \vec{r} \cdot (\vec{a} + \vec{b}) = 0 \quad \text{and} \quad \vec{r} \cdot (\vec{a} - \vec{b}) = 0$$
i.e. $(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = 0$

$$\Rightarrow \qquad 2x + 3y + 4z = 0 \qquad \dots (ii)$$
and $(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (-\hat{i} - 2\hat{k}) = 0$

$$\Rightarrow -y - 2z = 0$$

$$\Rightarrow y = -2z \qquad \dots(iii)$$

On putting the value of y in Eq. (ii), we get

$$2x + 3(-2z) + 4z = 0$$

$$\Rightarrow \qquad x = z \tag{1}$$

On substituting the value of x and y in Eq. (i), we get

$$z^{2} + 4z^{2} + z^{2} \Longrightarrow z = \pm \frac{1}{\sqrt{6}}$$
 and
then, $x = \pm \frac{1}{\sqrt{6}}$ and $y = \mp \frac{2}{\sqrt{6}}$ (1)

Hence, the required vectors are

$$\frac{1}{\sqrt{6}}\hat{i} - \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}$$
and
$$\frac{-1}{\sqrt{6}}\hat{i} + \frac{2}{\sqrt{6}}\hat{j} - \frac{1}{\sqrt{6}}\hat{k}.$$
(1)

43. Find the unit vector perpendicular to the plane ABC where the position vectors of A, B and C are $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} + 3\hat{k}$ respectively.

All India 2014C

A unit vector perpendicular to plane ABC is
$$\frac{\overrightarrow{AB} \times \overrightarrow{AC}}{|\overrightarrow{AB} \times \overrightarrow{AC}|}$$

Let O be the origin of reference.

Then, given
$$\overrightarrow{OA} = 2\hat{i} - \hat{j} + \hat{k}$$
,
 $\overrightarrow{OB} = \hat{i} + \hat{j} + 2\hat{k} \text{ and } \overrightarrow{OC} = 2\hat{i} + 3\hat{k}$
 $\therefore \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \hat{i} + \hat{j} + 2\hat{k} - 2\hat{i} + \hat{j} - \hat{k}$
 $= -\hat{i} + 2\hat{j} + \hat{k}$ (1)
and $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = 2\hat{i} + 3\hat{k} - 2\hat{i} + \hat{j} - \hat{k}$
 $= \hat{j} + 2\hat{k}$
Now, $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix}$
 $= \hat{i} (4 - 1) - \hat{j} (-2 - 0) + \hat{k} (-1 - 0)$
 $= 3\hat{i} + 2\hat{j} - \hat{k}$ (1)
Then, $|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(3)^2 + (2)^2 + (-1)^2}$
 $= \sqrt{9 + 4 + 1} = \sqrt{14}$ (1)

Unit vector perpendicular to the plane ABC

$$= \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{|\overrightarrow{AB} \times \overrightarrow{AC}|} = \frac{3\hat{i} + 2\hat{j} - \hat{k}}{\sqrt{14}}$$
$$= \frac{3}{\sqrt{14}}\hat{i} + \frac{2}{\sqrt{14}}\hat{j} - \frac{1}{\sqrt{14}}\hat{k}$$
(1)

44. Show that the vectors \vec{a} , \vec{b} and \vec{c} are coplanar, if and only if $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar. Foreign 2014

Consider,

$$[(\vec{a} + \vec{b}) (\vec{b} + \vec{c}) (\vec{c} + \vec{a})]$$

$$= (\vec{a} + \vec{b}) \cdot \{(\vec{b} + \vec{c}) \times (\vec{c} + \vec{a})\}$$

$$= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a})$$

$$= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a})$$

$$\vec{c} \times \vec{c} \times \vec{c} = \vec{0} \cdot (2)$$

$$= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a})$$

$$+ \vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a})$$

$$= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{c} \times \vec{a})$$

$$[\because [\overrightarrow{a} \overrightarrow{b} \overrightarrow{a}] = [\overrightarrow{b} \overrightarrow{b} \overrightarrow{a}] = [\overrightarrow{a} \overrightarrow{c} \overrightarrow{a}] = 0]$$

$$=2\begin{bmatrix}\vec{a} & \vec{b} & \vec{c}\end{bmatrix}$$

Now, we can see that

$$[(\overrightarrow{a} + \overrightarrow{b})(\overrightarrow{b} + \overrightarrow{c})(\overrightarrow{c} + \overrightarrow{a})] = 2[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]$$

Hence, the vectors \vec{a} , \vec{b} , \vec{c} are coplanar, if and only if $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar (2)

45. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors of the same magnitude, then prove that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined with the vectors \vec{a} , \vec{b} and \vec{c} .

HOTS; Delhi 2013C, 2011

If three vectors \vec{a} , \vec{b} and \vec{c} are mutually perpendicular to each other, then

 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a} = 0$ and if all three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are equally inclined with the vector $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$, that means each vector \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} makes equal angle with $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$ by using formula $\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$.

Given,
$$|\vec{a}| = |\vec{b}| = |\vec{c}| = \lambda$$
 [say]

and
$$\overrightarrow{a} \cdot \overrightarrow{b} = 0$$
, $\overrightarrow{b} \cdot \overrightarrow{c} = 0$ and $\overrightarrow{c} \cdot \overrightarrow{a} = 0$ (1/2)

Now,
$$|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + |\vec{c}|^2 + |\vec{a} \cdot \vec{b} + |\vec{b} \cdot \vec{c}|^2 + |\vec{c}|^2 + |\vec{a} \cdot \vec{b} + |\vec{b} \cdot \vec{c}|^2 + |\vec{c}|^2 + |\vec{a} \cdot \vec{b}|^2 + |\vec{c}|^2 + |\vec{a} \cdot \vec{b}|^2 + |\vec{c}|^2 + |\vec{c}|^2 + |\vec{a} \cdot \vec{b}|^2 + |\vec{c}|^2 + |\vec$$

$$\Rightarrow \qquad |\vec{a} + \vec{b} + \vec{c}| = \pm \sqrt{3} \,\lambda \tag{1}$$

Suppose $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$ is inclined at angles θ_1 , θ_2 and θ_3 respectively with vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , then

$$(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{a} = |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}| \cdot |\overrightarrow{a}| \cos \theta_1$$

$$[\because \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta]$$

$$\Rightarrow |\vec{a}|^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = \pm \sqrt{3} \lambda \times \lambda \cos \theta_1$$

$$\Rightarrow \lambda^2 + 0 + 0 = \pm \sqrt{3} \lambda^2 \cos \theta_1$$

$$\cos \theta_1 = \pm \frac{1}{\sqrt{3}}$$

$$(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{b} = |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}| |\overrightarrow{b}| \cos \theta_2$$
 (1)

$$\Rightarrow \vec{a} \cdot \vec{b} + |\vec{b}|^2 + \vec{b} \cdot \vec{c} = \pm \sqrt{3} \lambda \cdot \lambda \cos \theta_2$$

$$\Rightarrow 0 + \lambda^2 + 0 = \pm \sqrt{3} \lambda^2 \cos \theta_2$$

$$\Rightarrow \qquad \cos \theta_2 = \pm \frac{1}{\sqrt{3}}$$

Similarly, $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{c} = |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}| |\overrightarrow{c}| \cos \theta_3$

$$\Rightarrow \cos \theta_1 = \pm \frac{1}{\sqrt{3}} \tag{1}$$

Thus,
$$\cos \theta_1 = \cos \theta_2 = \cos \theta_3 = \pm \frac{1}{\sqrt{3}}$$

Hence, it is proved that $(\vec{a} + \vec{b} + \vec{c})$ is equally inclined with the vectors \vec{a} , \vec{b} and \vec{c} . (1/2)

46. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$, then find a vector \vec{c} , such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.

Delhi 2013, 2008

If
$$\overrightarrow{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\overrightarrow{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ are two vectors, then
$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
and
$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Given, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$

and
$$\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix}$$

$$= \hat{i} (z - y) - \hat{j} (z - x) + \hat{k} (y - x)$$
 (1)

Now, $\vec{a} \times \vec{c} = \vec{b}$ [given]

$$\Rightarrow \hat{i} (z - y) + \hat{j} (x - z) + \hat{k} (y - x)$$

$$=0\hat{i}+1\hat{j}+(-1)\hat{k} \qquad [\because \vec{b}=\hat{j}-\hat{k}]$$

On comparing the coefficients from both sides, we get

$$z - y = 0$$
, $x - z = 1$, $y - x = -1$
 $\Rightarrow y = z \text{ and } x - y = 1$...(i)

Also given, $\vec{a} \cdot \vec{c} = 3$

$$\Rightarrow (\hat{i} + \hat{j} + \hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 3$$

$$\Rightarrow \qquad \qquad x + y + z = 3 \tag{1}$$

$$\Rightarrow$$
 $x + 2y = 3[::y = z]...(ii)$

On solving Eqs. (i) and (ii), we get

From Eq. (i)
$$x = 1 + y = 1 + \frac{2}{3} = \frac{5}{3}$$
 (1)

Hence,
$$\vec{c} = \frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$$
 (1)

47. Using vectors, find the area of the $\triangle ABC$, whose vertices are A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1).

Let the position vectors of the vertices A, B and C of ΔABC be (1)

$$A(1,2,3)$$

$$B(2,-1,4)$$
 $C(4,5,-1)$

$$\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}, \overrightarrow{OB} = 2\hat{i} - \hat{j} + 4\hat{k}$$

 $\overrightarrow{OC} = 4\hat{i} + 5\hat{i} - \hat{k}$ respectively

and $\overrightarrow{OC} = 4\hat{i} + 5\hat{j} - \hat{k}$, respectively.

Then,
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (2\hat{i} - \hat{j} + 4\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k})$$

$$= \hat{i} - 3\hat{j} + \hat{k}$$

and
$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$$

$$= (4\hat{i} + 5\hat{j} - \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k})$$

$$= (3\hat{i} + 3\hat{j} - 4\hat{k})$$
(1)

Then,
$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 3 & 3 & -4 \end{vmatrix}$$

$$= \hat{i} (12 - 3) - \hat{j} (-4 - 3) + \hat{k} (3 + 9)$$

$$= 9\hat{i} + 7\hat{j} + 12\hat{k}$$
(1)

$$\overrightarrow{AB} \times \overrightarrow{AC} | = \sqrt{(9)^2 + (7)^2 + (12)^2}$$

$$= \sqrt{81 + 49 + 144} = \sqrt{274}$$

Hence, area of
$$\triangle ABC = \frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |$$

$$= \frac{1}{2} \sqrt{274} \text{ sq units} \quad (1)$$

48. If $\vec{a} = \hat{i} - \hat{j} + 7\hat{k}$ and $\vec{b} = 5\hat{i} - \hat{j} + \lambda\hat{k}$, then find the value of λ , so that $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular vectors. All India 2013

Use the result that if \vec{a} and \vec{b} are perpendicular, then their dot product should be zero and simplify it.

Given, $\vec{a} = \hat{i} - \hat{j} + 7\hat{k}$ and $\vec{b} = 5\hat{i} - \hat{j} + \lambda\hat{k}$ Then, $\vec{a} + \vec{b} = (\hat{i} - \hat{j} + 7\hat{k}) + (5\hat{i} - \hat{j} + \lambda\hat{k})$ $= 6\hat{i} - 2\hat{j} + (7 + \lambda)\hat{k}$ (1) and $\vec{a} - \vec{b} = (\hat{i} - \hat{j} + 7\hat{k}) - (5\hat{i} - \hat{j} + \lambda\hat{k})$ $= -4\hat{i} + (7 - \lambda)\hat{k}$ (1) Since, $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ are perpendicular vectors, then $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0$

$$\Rightarrow [6\hat{i} - 2\hat{j} + (7 + \lambda)\hat{k}] \cdot [-4\hat{i} + (7 - \lambda)\hat{k}] = 0$$
 (1)

$$\Rightarrow -24 + (7 + \lambda) (7 - \lambda) = 0$$

$$\Rightarrow 49 - \lambda^2 = 24 \Rightarrow \lambda^2 = 25$$

$$\therefore \qquad \qquad \lambda = \pm 5 \qquad \qquad \textbf{(1)}$$

49. If $\vec{p} = 5\hat{i} + \lambda\hat{j} - 3\hat{k}$ and $\vec{q} = \hat{i} + 3\hat{j} - 5\hat{k}$, then find the value of λ , so that $\vec{p} + \vec{q}$ and $\vec{p} - \vec{q}$ are perpendicular vectors. All India 2013

Do same as Que. 48. [Ans. $\lambda = \pm 1$]

50. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors, such that $|\overrightarrow{a}| = 5$, $|\overrightarrow{b}| = 12$, $|\overrightarrow{c}| = 13$ and $|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}| = 0$, then find the value of $|\overrightarrow{a} \cdot \overrightarrow{b}| + |\overrightarrow{b} \cdot \overrightarrow{c}| + |\overrightarrow{c}| \cdot |\overrightarrow{a}|$. Delhi 2012

Use the following formula:

$$(\vec{a} + \vec{b} + \vec{c})^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + |\vec{c}|^2 + |\vec{a}| + |\vec{b}| + |\vec{b}| + |\vec{c}|^2$$

Given,
$$|\vec{a}| = 5$$
, $|\vec{b}| = 12$, $|\vec{c}| = 13$

and
$$\vec{a} + \vec{b} + \vec{c} = 0$$

On multiplying both sides by $(\vec{a} + \vec{b} + \vec{c})$, we get

$$(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{0} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$$
 (1)

$$\Rightarrow \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c}$$

$$+\overrightarrow{c} \cdot \overrightarrow{a} + \overrightarrow{c} \cdot \overrightarrow{b} + \overrightarrow{c} \cdot \overrightarrow{c} = 0$$

$$\Rightarrow |\vec{a}|^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{a} + |\vec{b}|^2 + \vec{b} \cdot \vec{c}$$

$$+\overrightarrow{c} \cdot \overrightarrow{a} + \overrightarrow{c} \cdot \overrightarrow{b} + |\overrightarrow{c}|^2 = 0$$

$$\Rightarrow |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2 + 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) = 0$$

[:
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}, \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{b}, \overrightarrow{c} \cdot \overrightarrow{a} = \overrightarrow{a} \cdot \overrightarrow{c}$$

and
$$\overrightarrow{x} \cdot \overrightarrow{x} = |\overrightarrow{x}|^2$$
]

$$\Rightarrow (5)^2 + (12)^2 + (13)^2 + 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) = 0$$

$$[::|\vec{a}| = 5, |\vec{b}| = 12 \text{ and } |\vec{c}| = 13]$$

$$\Rightarrow 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) = -338$$
 (1½)

Hence,
$$\overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} = -169$$

51. Let
$$\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{p} , which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c} = 18$. HOTS; All India 2012, 2010

Given, vectors are $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$,

$$\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$$

and

$$\vec{c} = 2\hat{i} - \hat{i} + 4\hat{k}$$

We have to find a vector \overrightarrow{p} , such that

$$\overrightarrow{p} \cdot \overrightarrow{a} = 0$$
 ...(i)

and

$$\overrightarrow{p} \cdot \overrightarrow{b} = 0$$
 ...(ii)

 $[: \overrightarrow{p} \text{ is perpendicular to both } \overrightarrow{a} \text{ and } \overrightarrow{b}, \text{ given}]$

and
$$\overrightarrow{p} \cdot \overrightarrow{c} = 18$$
 ...(iii)(1)

So, let
$$\vec{p} = x\hat{i} + y\hat{j} + z\hat{k}$$

From Eqs. (i), (ii) and (iii), we get

$$(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} + 4\hat{j} + 2\hat{k}) = 0$$

$$\Rightarrow x + 4y + 2z = 0 \dots (iv)$$

$$(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (3\hat{i} - 2\hat{j} + 7\hat{k}) = 0$$

$$\Rightarrow 3x - 2y + 7z = 0 \dots (v)$$

and
$$(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{i} - \hat{j} + 4\hat{k}) = 0$$

$$\Rightarrow 2x - y + 4z = 18 \dots (vi)$$

On multiplying Eq. (iv) by 3 and subtracting it from Eq. (v), we get

$$-14y + z = 0$$
 ...(vii)

Now, multiplying Eq. (iv) by 2 and subtracting it from Eq. (vi), we get

$$-9y = 18 \qquad \Rightarrow \qquad y = -2 \tag{1}$$

On putting y = -2 in Eq. (vii), we get

$$-14(-2) + 7 = 0$$

$$\Rightarrow 28 + z = 0$$

$$\Rightarrow z = -28$$

On putting y = -2 and z = -28 in Eq. (iv), we get

$$x + 4(-2) + 2(-28) = 0$$

$$\Rightarrow x - 8 - 56 = 0$$

$$\Rightarrow x = 64$$
(1½)

Hence, the required vector

$$\vec{p} = x\hat{i} + y\hat{j} + z\hat{k} \text{ is}$$

$$\vec{p} = 64\hat{i} - 2\hat{j} - 28\hat{k}$$
(1/2)

- **52.** Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$. Delhi 2011
- Use the concept, if \vec{a} and \vec{b} are two vectors, then a unit vector perpendicular to both of them $= \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}.$

Given,
$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$$

and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$
Then, $\vec{a} + \vec{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) + (\hat{i} + 2\hat{j} - 2\hat{k})$
 $= 4\hat{i} + 4\hat{j}$
and $\vec{a} - \vec{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) - (\hat{i} + 2\hat{j} - 2\hat{k})$
 $= 2\hat{i} + 4\hat{k}$ (1)

Let $\vec{a} + \vec{b} = \vec{c}$ and $\vec{a} - \vec{b} = \vec{d}$, so that we have $\vec{c} = 4\hat{i} + 4\hat{j}$ and $\vec{d} = 2\hat{i} + 4\hat{k}$.

Now $\vec{c} \times \vec{d} = \begin{vmatrix} 4 & 4 & 0 \end{vmatrix}$

$$\begin{vmatrix} 2 & 0 & 4 \\ = \hat{i} (16 - 0) - \hat{j} (16 - 0) + \hat{k} (0 - 8) \\ \Rightarrow \vec{c} \times \vec{d} = 16\hat{i} - 16\hat{j} - 8\hat{k} \qquad ...(i)$$
 (1)
$$\therefore |\vec{c} \times \vec{d}| = \sqrt{(16)^2 + (-16)^2 + (-8)^2} \\ = \sqrt{256 + 256 + 64} \\ = \sqrt{576} = 24 \qquad ...(ii)$$
 (1)

On putting the values from Eq. (i) and (ii), we get

Required vector =
$$\frac{16\hat{i} - 16\hat{j} - 8\hat{k}}{24}$$
=
$$\frac{8(2\hat{i} - 2\hat{j} - \hat{k})}{24}$$
=
$$\frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} - \frac{1}{3}\hat{k}$$
 (1)

53. If \vec{a} and \vec{b} are two vectors, such that $|\vec{a}| = 2$, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 1$, then find

Given,
$$|\vec{a}| = 2$$
, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 1$
Now, $(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$
 $= 6\vec{a} \cdot \vec{a} + 21\vec{a} \cdot \vec{b} - 10\vec{b} \cdot \vec{a} - 35\vec{b} \cdot \vec{b}$
 $= 6|\vec{a}|^2 + 21\vec{a} \cdot \vec{b} - 10\vec{a} \cdot \vec{b} - 35|\vec{b}|^2$ (1)
 $[\because \vec{x} \cdot \vec{x} = |\vec{x}|^2 \text{ and } \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}]$
 $= 6|\vec{a}|^2 + 11\vec{a} \cdot \vec{b} - 35|\vec{b}|^2$
 $= 6(2)^2 + 11(1) - 35(1)^2 = 0$ (1)
 $[\because |\vec{a}| = 2 \text{ and } |\vec{b}| = 1]$
Hence, $(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b}) = 0$ (1)

54. If vectors $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then find the value of λ .

Foreign 2011; All India 2009C

Given,
$$\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$$
,
 $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$.

Also, $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} .

$$\therefore \qquad (\overrightarrow{a} + \lambda \overrightarrow{b}) \cdot \overrightarrow{c} = 0 \qquad \dots (i)(1)$$

[: when $\vec{a} \perp \vec{b}$, then $\vec{a} \cdot \vec{b} = 0$]

Now,
$$\vec{a} + \lambda \vec{b} = (2\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (-\hat{i} + 2\hat{j} + \hat{k})$$

 $\Rightarrow \vec{a} + \lambda \vec{b} = \hat{i}(2 - \lambda) + \hat{i}(2 + 2\lambda) + \hat{k}(3 + \lambda)$ (1)

Then, from Eq. (i), we get $[\hat{i}(2-\lambda)+\hat{j}(2+2\lambda)]$

$$+\hat{k}(3+\lambda)] \cdot [3\hat{i}+\hat{j}] = 0 \text{ (1)}$$

$$\Rightarrow \qquad 3(2-\lambda)+1(2+2\lambda)=0$$

$$\Rightarrow \qquad 8-\lambda=0$$

$$\therefore \qquad \lambda=8 \qquad (1)$$

55. Using vectors, find the area of triangle with vertices *A* (1, 1, 2), *B* (2, 3, 5) and *C* (1, 5, 5).

All India 2011

Do some as Que. 47. [Ans. $\frac{1}{2}\sqrt{61}$ sq units]

56. If \vec{a} , \vec{b} and \vec{c} are three vectors, such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$ and each one of these is perpendicular to the sum of other two, then find $|\vec{a} + \vec{b} + \vec{c}|$ All India 2011C, 2010C

Given,
$$|\vec{a}| = 3$$
, $|\vec{b}| = 4$, $|\vec{c}| = 5$...(i)

Also, given that each of the vectors \vec{a} , \vec{b} and \vec{c} is perpendicular to sum of the other two vectors, i.e.

$$\overrightarrow{a} \perp (\overrightarrow{b} + \overrightarrow{c})$$

$$\Rightarrow \overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = 0$$

$$\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c} = 0 \qquad ...(ii)$$

$$\overrightarrow{b} \perp (\overrightarrow{c} + \overrightarrow{a})$$

$$\Rightarrow \overrightarrow{b} \cdot (\overrightarrow{c} + \overrightarrow{a}) = 0$$

$$\Rightarrow \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{a} = 0 \qquad ...(iii)$$
and $\overrightarrow{c} \perp (\overrightarrow{a} + \overrightarrow{b}) \Rightarrow \overrightarrow{c} \cdot (\overrightarrow{a} + \overrightarrow{b}) = 0$

$$\Rightarrow \overrightarrow{c} \cdot \overrightarrow{a} + \overrightarrow{c} \cdot \overrightarrow{b} = 0 \qquad ...(iv)$$

[: when two vectors are perpendicular, then their dot product is zero] (1)

Now, adding Eqs. (ii), (iii) and (iv), we get
$$2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0 \qquad ...(v)$$

[:
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}, \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{b} \text{ and } \overrightarrow{c} \cdot \overrightarrow{a} = \overrightarrow{a} \cdot \overrightarrow{c}$$
]

Now, consider

$$(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$
$$+ \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + \vec{c} \cdot \vec{c}$$

$$\Rightarrow |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2 + 2 (\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) (1)$$

$$[\because \overrightarrow{a}.\overrightarrow{a} = |\overrightarrow{a}|^2]$$

On putting the values from Eqs. (i) and (v) we get

$$|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|^2 = (3)^2 + (4)^2 + (5)^2 + 2 (0)$$
 (1)
= 9 + 16 + 25 = 50

Hence,
$$|\vec{a} + \vec{b} + \vec{c}| = \sqrt{50}$$

= $\sqrt{25 \times 2} = 5\sqrt{2}$ (1)

57. Using vectors, find the area of triangle with vertices *A* (2, 3, 5), *B* (3, 5, 8) and *C* (2, 7, 8).

Delhi 2010C

Do same as Que. 47. [Ans. $\frac{1}{2}\sqrt{61}$ sq units]

58. The scalar product of vector $\hat{i} + \hat{j} + \hat{k}$ with the unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ . All India 2009, 2008C

Do same as Que. 40. [Ans. $\lambda = 1$]

59. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, then show that $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$, where $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.

HOTS; Delhi 2009

? If two vectors are parallel, then their cross-product will be a zero vector.

Given,
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$
 ...(i)
and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$...(ii)(1)

On subtracting Eq. (ii) from Eq. (i), we get $(\vec{a} \times \vec{b}) - (\vec{a} \times \vec{c}) = (\vec{c} \times \vec{d}) - (\vec{b} \times \vec{d})$

$$\Rightarrow (\vec{a} \times \vec{b}) - (\vec{a} \times \vec{c}) + (\vec{b} \times \vec{d}) - (\vec{c} \times \vec{d}) = \vec{0}$$

$$\Rightarrow \vec{a} \times (\vec{b} - \vec{c}) + (\vec{b} - \vec{c}) \times \vec{d} = \vec{0}$$

$$\Rightarrow \vec{a} \times (\vec{b} - \vec{c}) - \vec{d} \times (\vec{b} - \vec{c}) = \vec{0}$$
[: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$](1)

$$\Rightarrow \qquad (\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = \vec{0}$$

$$[\because \vec{a} \neq \vec{d} \text{ and } \vec{b} \neq \vec{c}] (1/2)$$

Thus, we have that cross-product of vectors $\vec{a} - \vec{d}$ and $\vec{b} - \vec{c}$ as a zero vector, so $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$. $(1\frac{1}{2})$

60. Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the condition $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$. Find the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$, if $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 4$ and $|\overrightarrow{c}| = 2$. All India 2008C

Do same as Que. 50.

$$\left[\text{Ans.} - \frac{21}{2} \right]$$

61. Find a vector of magnitude 5 units, perpendicular to each of the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$, where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{i} + 3\hat{k}$. Delhi 2008C

Given,
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$

$$a + b = (i + j + k) + (i + 2j + 3k)$$

$$= 2\hat{i} + 3\hat{j} + 4\hat{k}$$
and
$$\vec{a} - \vec{b} = \hat{i} + \hat{j} + \hat{k} - (\hat{i} + 2\hat{j} + 3\hat{k})$$

$$= -\hat{i} - 2\hat{k}$$
(1)

Let
$$\vec{a} + \vec{b} = \vec{c}$$
 and $\vec{a} - \vec{b} = \vec{d}$

Then we get, $\vec{c} = 2\hat{i} + 3\hat{j} + 4\hat{k}$

and
$$\vec{d} = -\hat{j} - 2\hat{k}$$

We know that, unit vector which is perpendicular to both \vec{c} and \vec{d} is given by

$$\hat{n} = \frac{\vec{c} \times \vec{d}}{|\vec{c} \times \vec{d}|}$$

$$\therefore \quad \vec{c} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 0 & -1 & -2 \end{vmatrix}$$

$$= \hat{i} (-6 + 4) - \hat{j} (-4 - 0) + \hat{k} (-2 - 0) \qquad (1)$$

$$= -2\hat{i} + 4\hat{j} - 2\hat{k}$$
and $|\vec{c} \times \vec{d}| = \sqrt{(-2)^2 + (4)^2 + (-2)^2}$

and
$$|\hat{c}| \times d\hat{f} = \sqrt{(2)^2 + (4)^2 + (4)^2}$$

$$= \sqrt{4 + 16 + 4}$$

$$= \sqrt{24} = 2\sqrt{6}$$

$$\therefore \qquad \hat{n} = \frac{-2\hat{i} + 4\hat{j} - 2\hat{k}}{2\sqrt{6}}$$

$$= \frac{-\hat{i} + 2\hat{j} - \hat{k}}{\sqrt{6}}$$
(1)

Hence, required vector of magnitude 5 units

$$=5\left(\frac{-\hat{i}+2\hat{j}-\hat{k}}{\sqrt{6}}\right)$$

$$= -\frac{5}{\sqrt{6}}\hat{i} + \frac{10}{\sqrt{6}}\hat{j} - \frac{5}{\sqrt{6}}\hat{k}$$
 (1)