CBSE Test Paper 05 CH-04 Principle of Mathematical Induction

1. The smallest +ve integer n , for which $n! < \left(rac{n+1}{2}
ight)^n$ holds is

- a. 4
- b. 1
- c. 2
- d. 3
- 2. The product of three consecutive natural numbers is divisible by
 - a. 3
 - b. 11
 - c. 6
 - d. 8
- 3. For all $n\in N, 7^{2n}-48n-1$ is divisible by :
 - a. 1234
 - b. 2304
 - c. 25
 - d. 26
- 4. 3+13+29+51+79+.....to n terms is
 - a. $2n^2 + 7n$
 - b. $n^3 + 2n^2$
 - c. none of these

- d. $n^2 + 5n^3$
- 5. The sum of n terms of the series $1+(1+a)+\left(1+a+a^2
 ight)+\left(1+a+a^2+a^3
 ight)+\ldots\ldots$, is
 - a. none of these

b.
$$-\frac{n}{1-a} + \frac{a(1-a^n)}{(1-a)^2}$$

c. $\frac{n}{1-a} + \frac{a(1+a^n)}{(1-a)^2}$
d. $\frac{n}{1-a} - \frac{a(1-a^n)}{(1-a)^2}$

6. Fill in the blanks:

The step 'if the statement is true for n = k, then it is also true for n = k + 1' is sometimes referred as the ______ step.

7. State true or false:

If $P(n): 49^n + 16^n + k$ is divisible by 64 for $n \in N$ is true, then the least negative integral value of k is _____.

- 8. Using the principle of mathematical induction, prove that (2 3n 1) is divisible by 7 for all $n\in N.$
- 9. Prove by using Mathematical Induction that $3 \times 6 + 6 \times 9 + 9 \times 12 + \dots + (3n) \times (3n + 3)$ = 3n(n + 1)(n + 2), for all $n \in \mathbb{N}$.
- 10. Show by the Principle of Mathematical Induction that the sum S_{n} of the n terms of the

series
$$1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2$$
 ... is given by $S_n = \begin{cases} rac{n(n+1)^2}{2}, ext{ if } n ext{ is even} \\ rac{n^2(n+1)}{2}, ext{ if } n ext{ is odd} \end{cases}$

CBSE Test Paper 05 CH-04 Principle of Mathematical Induction

Solution

1. (c) 2

Explanation: when n = 2, L H S : n! = 2! = 2x1 = 2 RHS:

But if n = 1 , the inequation does not hold good.

2. (c) 6

Explanation: By replacing n by 1 we get 6.

3. (b) 2304

Explanation: When n = 1 the value is 0. When n = 2 the value is 2304..... Hence by the principle of mathematical induction the expression is divisible by 2304.

4. (b) $n^3 + 2n^2$

Explanation: When n = 1 we have 3 when n = 2 we have LHS : 3 + 13 = 16 RHS : 8 + 8 = 16By PMI this is the sum of the n terms of the series.

5. (d) $\frac{n}{1-a} - \frac{a(1-a^n)}{(1-a)^2}$

Explanation: Replace n = 1 we get 1.replace n = 2 we get LHS ; a + 2 RHS : a + 2

6. inductive

```
7. -1
```

8. Let P(n) be the statement given by

P(n) : $2^{3n} - 1$ is divisible by 7 P(1) : $2^{3 \times 1} - 1$ is divisible by 7. Clearly, $2^{3 \times 1} - 1 = 8 - 1 = 7$, which is divisible by 7. So, P(1) is true Let P(m) be true. Then, $2^{3m} - 1$ is divisible by 7. $2^{3m} - 1 = 7\lambda$, for some $\lambda \in N ...(i)$ We shall now show that P(m + 1) is true. For this we have to show that $2^{3(m+1)} - 1$ is divisible by 7.

Now,

 $2^{3(m+1)} - 1 = 2^{3m} \times 2^3 - 1 = (7\lambda + 1)2^3 - 1 = 56\lambda + 8 - 1 = 7(8\lambda + 1)$, which is divisible by 7 [Using (i)]

 \therefore P(m + 1) is true.

```
Thus, P(m) is true \Rightarrow P(m + 1) is true
```

Hence, by the principle of mathematical induction, P(n) is true for all $n\in N$ i.e. 2^{3n} - 1 is divisible by 7 for all $n\in N.$

9. **Step I** Let P(n) be the given statement, then

P(n) = $3 \times 6 + 6 \times 9 + 9 \times 12 + \dots + (3n) \times (3n + 3) = 3n(n + 1)(n + 2)$, for all n $\in \mathbb{N}$. Step II For n = 1, we have LHS = $3 \times 1 \times (3 \times 1 + 3) = 3(6)$ = 18 RHS = 3.1(1 + 1)(1 + 2)=3(2)(3)= 18 = LHSThus, P(1) is true. Step III

For n = k, assume that P (k) is true,

i.e., P(k): $3 \times 6 + 6 \times 9 + 9 \times 12 + ... + (3k) \times (3k + 3) = 3k(k + 1)(k + 2)....(i)$

Step IV For n = k + 1, we have to show that P (k + 1) is true, whenever P (k) is true, i.e.,

$$\begin{split} P(k+1) &: 3 \times 6 + 6 \times 9 + 9 \times 12 + \ldots + 3k(3k+3) + 3(k+1)[3(k+1)+3] \\ &= 3(k+1)(k+1+1)(k+1+2) \\ \text{Now, consider LHS} &= 3 \times 6 + 6 \times 9 + 9 \times 12 + \ldots + 3k(3k+3) + 3(k+1)[3(k+1)+3] \\ &= 3k(k+1)(k+2) + 3(k+1)[3(k+1)+3] \text{ [from Eq. (i)]} \\ &= 3(k+1)[k(k+2) + 3(k+1)+3] \\ &= 3(k+1)[k^2 + 2k + 3k + 3 + 3] \\ &= 3(k+1)[k^2 + 5k + 6] \end{split}$$

= 3(k+1)(k+3)(k+2)= 3(k+1)(k+1+1)(k+1+2) =RHS So, P (k + 1) is true, whenever P (k) is true. Hence, by Principle of Mathematical Induction, P(n) is true for all n \in N.

10. Step I Let P(n) be given statement, then

P(n): S_n =
$$\begin{cases} \frac{n(n+1)^2}{2}, \text{ if } n \text{ is even} \\ \frac{n^2(n+1)}{2}, \text{ if } n \text{ is odd} \end{cases}$$

Also, note that any term T_n of the series is given by

$$T_{n} = \begin{cases} n^{2}, \text{ if } n \text{ is odd} \\ 2n^{2}, \text{ if } n \text{ is even} \end{cases}$$
Step II For $n = 1$, we have
$$P(1): S_{1} = 1^{2} = 1 = \frac{1 \cdot 2}{2} = \frac{1^{2} \cdot (1+1)}{2} \text{ [$:: 1$ is odd]}$$
Thus, $P(1)$ is true.
Step III For n = k, assume that, P(k) is true for some natural number k.
If k is odd, then $P(k): 1^{2} + 2 \times 2^{2} + 3^{2} + 2 \times 4^{2} + 5^{2} + \ldots + k^{2}$

$$= \frac{k^{2}(k+1)}{2} \dots$$
(i)
If k is even, then P(k) = $P(k): 1^{2} + 2 \times 2^{2} + 3^{2} + 2 \times 4^{2} + 5^{2} + \ldots + 2k^{2} = \frac{k^{2}(k+1)}{2} \dots$

$$\frac{(k)(k+1)^2}{2}$$
(ii)

Step IV For n = k + 1, we have to show that P (k + 1) is true whenever P(k) is true. Now, if k is odd, then k + 1 is even and in that case we have to show $P(k+1): 1^{2} + 2 \times 2^{2} + 3^{2} + 2 \times 4^{2} + \ldots + k^{2} + 2 \times (k+1)^{2}$ $= \frac{(k+1)(k+1+1)^{2}}{2} \dots (iii)$ If k is even, then (k + 1) odd and in that case we have to show

$$P(k+1): 1^{2} + 2 \times 2^{2} + 3^{2} + 2 \times 4^{2} + \ldots + 2k^{2} + (k+1)^{2}$$
$$= \frac{(k+1)^{2}(k+1+1)}{2} \dots \text{(iv)}$$

Case I When k is odd, then k + 1 is even and we have, LHS = $1^2 + 2 \times 2^2 + \ldots + k^2 + 2 \times (k+1)^2$ = $\frac{k^2(k+1)}{2} + 2 \times (k+1)^2$ [from Eq. (i)] = $\frac{k+1}{2} [k^2 + 4(k+1)]$ = $\frac{k+1}{2} [k^2 + 4k + 4] = \frac{k+1}{2} (k+2)^2$ $= (k+1) \frac{[(k+1)+1]^2}{2} = \text{RHS}$ Thus, P(k+1) is true, whenever P(k) is true for the case, when k is odd. **Case II** When k is even, then k + 1 is odd and we have $\text{LHS} = 1^2 + 2 \times 2^2 + \ldots + 2.k^2 + (k+1)^2$ $= \frac{k(k+1)^2}{2} + (k+1)^2$ [from Eq. (ii)] $= \frac{(k+1)^2(k+2)}{2} = \frac{(k+1)^2[(k+1)+1]}{2}$

Thus, P(k + 1) is true, whenever P(k) is true for the case when k is even. So, P(k + 1) is true, whenever P (k) is true for any natural number k.

Hence, by the Principle of Mathematical Induction, P(n) is true for all natural numbers.