

\mathcal{A} ssignment

				Solid and Crystals
1.	The manifestation of bar	nd structure in solids is due t	0	[DCE 2000; AIEEE 2004]
	(a) Heisenberg's uncerta	ainty principle	(b) Pauli's exclusion princ	ciple
	(c) Bohr's corresponden	ce principle	(d)	Boltzmann's law
2.	For non-conductors, the	energy gap is [Similar to ((DPMT 1988); EAMCET (Engg.) 1	995; MP PET 1996; RPET 2003]
	(a) 6 <i>eV</i>	(b) 1.1 <i>eV</i>	(c) 0.8 <i>eV</i>	(d) 0.3 eV
3.	Which is the correct rela	tion for forbidden energy ga	p in conductor, semi-conducto	r and insulator
	(a) $\Delta Eg_c > \Delta Eg_{sc} > \Delta Eg_{insula}$	tor	(b) $\Delta Eg_{insulator} > \Delta Eg_{sc} > \Delta Eg_{c}$	conductor
	(c) $\Delta Eg_{conductor} > \Delta Eg_{insulator}$	$> \Delta Eg_{sc}$	(d) $\Delta Eg_{sc} > \Delta Eg_{conductor} > \Delta Eg$	s insulator
4.	The valence band and co	nduction band of a solid over	rlap at low temperature, the so	olid may be
	(a) A metal	(b) A semiconductor	(c) An insulator	(d) None of these
5۰	The energy band gap is n	naximum in		
	(a) Metals	(b) Superconductors	(c) Insulators	(d) Semiconductors
6.	The band gap in German	ium and silicon in <i>eV</i> respect	ively is	
	(a) 0.7, 1.1	(b) 1.1, 0.7	(c) 1.1, 0	(d) 0, 1.1
7.	Wires P and Q have the increases and that of Q of	ne same resistance at ordir lecreases. We conclude that	nary (room) temperature. W	hen heated, resistance of P
	(a) <i>P</i> and <i>Q</i> are conductor conductor	ors of different materials	(b) P is n-type semi-cond	luctor and Q is p -type semi-
	(c) <i>P</i> is semi-conductor	and Q is conductor	(d) <i>P</i> is conductor and <i>Q</i> is	s semiconductor
8.	The nature of binding fo	r a crystal with alternate and	l evenly spaced positive and n	egative ions is
	(a) Covalent	(b) Metallic	(c) Dipolar	(d) Ionic
9.	If the distance between	the conduction band and vale	nce band is 1 <i>eV</i> , then this con	nbination is
	(a) Metal	(b) Insulator	(c) Conductor	(d) Semiconductor s
10.	For a crystal system, a =	$b = c$, $\alpha = \beta = \gamma \neq 90^{\circ}$, the sy	stem is	
	(a) Tetragonal system	(b) Cubic system	(c) Orthorhombic system	(d) Rhombohedral system
11.	Which of the following s	tatements is wrong		[BHU 2000]

	(a) A single representa crystal	tive unit spread out in who	le of the material in or	dered regular arrays gives a single		
(b) A polycrystal is compared of grains in which regular periodicity is broken inside the grains but regu maintained at grain boundries						
	(c) In an amorphous m	aterial each grain is compose	d of a single representat	tive unit		
	(d) In liquid crystals pe	eriodicity is maintained in on	ly one or two dimension	s.		
12.	Biaxial crystal among tl	ne following is				
	(a) Calcite	(b) Quartz	(c) Selenite	(d) Tourmaline		
13.	The temperature coeffic	cient of resistance of a condu	ctor is			
	(a) Positive always	(b) Negative always	(c) Zero	(d) Infinite		
14.	Potassium has a <i>bcc</i> str in <i>kg/m</i> ⁻³ is	ucture with nearest neighbou [DCE 1997]	r distance 4.525 A. Its n	nolecular weight is 39. Its density		
	(a) 454	(b) 908	(c) 602	(d) 802		
15.	At O° <i>K</i> , fermi level for r	netals				
	(a) Separate, empty and	d filled levels	(b)	Lies between filled levels		
	(c) Lies between empty	v levels	(d)	Depends on metal		
16.	Which of the following	statement is wrong		[MP PMT 1997]		
	(a) Resistance of a semi-conductor decreases on increasing the temperature					
	(b) Displacement of hol	les is opposite to the displace	ment of electrons in an	electric field		
	(c) Resistance of a good	d conductor decreases on inc	reasing the temperature			
	(d) N-type semiconduct	tors are neutral				

- **17.** The expected energy of the electrons at absolute zero is called
 - (a) Fermi energy (b) Emission energy (c) Work function (d) Potential energy
- 18. The energy band diagrams for three semiconductor samples of silicon are as shown. We can then assert that [Haryana

(a) Sample X is undoped while samples Y and Z have been doped with a third group and a fifth group impurity respectively

(b) Sample X is undoped while both samples Y and Z have been doped with a fifth group impurity

(c) Sample X has been doped with equal amounts of third and fifth group impurities while samples Y and Z are undoped

- (d) Sample *X* is undoped while samples *Y* and *Z* have been doped with a fifth group and a third group impurity respectively
- **19.** In good conductors of electricity, the type of bonding that exists is

(a) Ionic	(b) Vander Waals	(c) Covalent	(d) Metallic
-----------	------------------	--------------	--------------

20.	Bonding in a germanium	n crystal (semiconductor) is	[СРМТ 1986; КС	CET 1992; EAMCET (Med.) 1995]
	(a) Metallic	(b) Ionic	(c) Vander Waal's type	(d) Covalent
21.	In a triclinic crystal syst	em		[EAMCET (Med.) 1995]
	(a) $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma$	(b) $a=b=c$, $\alpha \neq \beta \neq \gamma$	(c) $a \neq b \neq c$, $\alpha \neq \beta = \gamma$	(d) $a = b \neq c$, $\alpha = \beta = \gamma$
22.	Metallic solids are alway	ys opaque because		[AFMC 1994]
	(a) Solids effect the inci	dent light		
	(b) Incident light is read	lily absorbed by the free elect	ron in a metal	
	(c) Incident light is scat	tered by solid molecules		
	(d) Energy band traps the	he incident light		
23.	Forbiden energy gap in a	a pure conductor is		[EAMCET (Med.) 1994]
	(a) 6 <i>eV</i>	(b) 1.1 <i>eV</i>	(c) 0.7 <i>eV</i>	(d) 0 <i>eV</i>
24.	In which of the followin	g ionic bond is present		[EAMCET (Med.) 1994]
	(a) NaCl	(b) <i>Ar</i>	(c) <i>Si</i>	(d) <i>Ge</i>
25.	Solid CO_2 forms			[CBSE 1993]
	(a) Ionic bond	(b) Vander Waal bond	(c) Chemical bond	(d) Covalent bond
26.	Which of the following r	naterials is non crystalline		[CBSE 1993]
	(a) Copper	(b) Sodium chloride	(c) Wood	(d) Diamond
2 7.	The coordination numbe	er of <i>Cu</i> is		
	(a) 1	(b) 6	(c) 8	(d) 12
28.	Which one of the follow:	ing is the weakest kind of bon	ding in solids	
	(a) Ionic	(b) Metallic	(c) Vander Waals	(d) Covalent
9 .	In a crystal, the atoms a	re located at the position of		[AMU 1985]
	(a) Maximum potential	energy (b)	Minimum potential energ	y (c) Zero potential energy(c
30.	Crystal structure of NaC	7 is		
	(a) Fcc	(b) Bcc	(c) Both of the above	(d) None of the above
				Semiconductor
31.	A semiconductor is form	led by		
	(a) Co-ordinate	(b) Covalent bonds	(c) Electro-valent bonds	(d) Metallic bonds
2.	A hole carries a charge e	equal to		
	(a) Zero	(b) Proton	(c) Neutron	(d) Electron
33.	A piece of copper and an	other of germanium are cooled	l from room temperature to 7	7 K, the resistance of [MP PET
	(a) Each of them increa	ses	(b) Each of them decrease	es
	(c) Copper decreases an	d germanium increases	(d) Copper increases and	germanium decreases
34.	When germanium is dop	ed with phosphorus, the dope	d material has	
	(a) Excess positive char	ge	(b) Excess negative charg	ge

(c) More negative current carriers (d) More positive current carriers Partially filled electron between forbidden gap is [Bihar CECE 2004] 35. (b) Insulator (d) All of the above (a) Conductor (c) Semiconductor 36. The temperature (T) dependence of resistivity (ρ) of a semiconductor is represented by In extrinsic P and N-type, semiconductor materials, the ratio of the impurity atoms to the pure semiconductor 37. atoms is about [MP PET 2003] **(b)** 10⁻¹ (c) 10⁻⁴ (d) 10^{-7} (a) 1 Which of the energy band diagrams shown in the figure corresponds to that of a semiconductor 38. CB (a) Eg >> KTEq = KTVB VD 39. In a P-type semiconductor [Similar to Orissa JEE 2002; MP PET 2003] (a) Current is mainly carried by holes (b) Current is mainly carried by electrons (c) The material is always positively charged (d) Doping is done by pentavalent material 40. At ordinary temperatures, the electrical conductivity of semi conductors in *mho/metre* is in the range (a) 10^{-3} to 10^{-4} (b) 10^6 to 10^9 (c) 10^{-6} to 10^{-10} (d) 10^{-10} to 10^{-16} When phosphorus and antimony are mixed in germaniun, then 41. (a) P-type semiconductor is formed (b) *N*-type semiconductor is formed (c) Both (a) and (b) (d) None of these 42. To a germanium sample, traces of gallium are added as an impurity. The resultant sample would behave like[AIIMS 20

150 Solid and Semiconductor

(a) A conductor
(b) A P-type semiconductor
(c) An N-type semiconductor
(d) An insulator

43. Donor type impurity is found in

(a) Trivalent elements
(b) Pentavalent elements
(c) In both the above
(d) None of these

44. The difference in the variation of resistance with temperature in a metal and a semiconductor arises essentially due to the difference in the

(a) Variation of scattering mechanism with temperature (b) Crystal structure

(c) Variation of the number of charge carriers with temperature (d) Type of bonding

45. A piece of semiconductor is connected in series in an electric circuit. On increasing the temperature, the current in the circuit will

			Soli	id and Semiconductor 151			
	(a) Decrease	(b) Remain unchanged	(c) Increase	(d) Stop flowing			
46.	When a semiconductor is	s heated, its resistance	[KCET 199	92; MP PMT 1994; MP PET 2002]			
	(a) Decreases	(b) Increases	(c) Remains unchanged	(d) Nothing is definite			
47.	In a semiconductor, the semiconductor is	concentration of electrons	is $8 \times 10^{14} / cm^3$ and that of	the holes is $5 \times 10^{12} / cm^3$. The			
			[MP PMT 199	7; RPET 1999; Kerala PET 2002]			
	(a) P-type	(b) N-type	(c) Intrinsic	(d) PNP-type			
48.	In intrinsic semiconducto	or at room temperature, num	ber of electrons and holes ar	e [EAMCET (Engg.) 1995; JIPMER 20			
	(a) Equal	(b) Zero	(c) Unequal	(d) Infinite			
49.	To obtain <i>P</i> -type <i>Si</i> semi	conductor, we need to dope p	ure <i>Si</i> with				
	(a) Aluminium	(b) Phosphorous	(c) Oxygen	(d) Germanium			
50.	When the electrical conductivity of a semiconductor is due to the breaking of its covalent bonds, then the semiconductor is said to be						
			[AIIMS 1997; II	T-JEE 1997; KCET (Engg.) 2002]			
	(a) Donar	(b) Acceptor	(c) Intrinsic	(d) Extrinsic			
51.	Which impurity is doped in Si to form N-type semi-conductor						
	(a) <i>Al</i>	(b) <i>B</i>	(c) <i>As</i>	(d) None of these			
52.	In a semiconductor			[AIEEE 2002; AIIMS 2002]			
	(a) There are no free electrons at any temperature						
	(b) The number of free electrons is more than that in a conductor						
	(c) There are no free ele	ctrons at OK					
	(d) None of these						
53.	The process of adding im	purities to the pure semicond	ductor is called				
	(a) Drouping	(b) Drooping	(c) Doping	(d) None of these			
54.	At room temperature, a <i>l</i>	P-type semiconductor has		[Kerala PMT 2002]			
51	(a) Large number of hole	es and few electrons	(b) Large number of free	electrons and few holes			
	(c) Equal number of free	electrons and holes	(d) No electrons or holes				
55.	Intrinsic semiconductor would be	is electrically neutral. Extrin	sic semiconductor having lar	ge number of current carriers			
				[AMU (Engg.) 2001]			
	(a) Positively charged						
	(b) Negatively charged						
	(c) Positively charged or	negatively charged dependir	ng upon the type of impurity	that has been added			
	(d) Electrically neutral						
56.	<i>P</i> -type semiconductors a	re made by adding impurity e	element				
	(a) <i>As</i>	(b) <i>P</i>	(c) <i>B</i>	(d) <i>Bi</i>			
57.	A pure semiconductor be	haves slightly as a conductor	at [MH CET (Med	l.) 2001; BHU 2000; AFMC 2001]			
	(a) Room temperature	(b) Low temperature	(c) High temperature	(d) Both (b) and (c)			

0				
58.	If N_p and N_e be the numb	pers of holes and conduction	electrons in an extrinsic ser	niconductor, then
	(a) $N_p > N_e$			
	(b) $N_p = N_e$			
	(c) $N_p < N_e$			
	(d) $N_p > N_e$ or $N_p < N_e$ de	pending on the nature of imp	ourity	
59.	Which of the following wh	en added as an impurity into	the silicon produces N-type	e semiconductor
			[CPMT 1986, 94; DPM]	Г 1999; CBSE 1999; AIIMS 2000]
	(a) <i>P</i>	(b) <i>Al</i>	(c) <i>B</i>	(d) <i>Mg</i>
60.	In <i>P</i> -type semiconductor th	ne majority and minority cha	rge carriers are respectivel	у
			[MP PET 1991, 98; N	IP PMT 1998, 99; MH CET 2000]
	(a) Protons and electrons	(b) Electrons and protons	(c) Electrons and holes	(d) Holes and electrons
61.	If n_e and v_d be the num increased	ber of electrons and drift	velocity in a semiconducto	or. When the temperature is [Pb. CET 2000]
	(a) n_e increases and v_d dec increases	creases	(b)	n_e decreases and v_d
	(c) Both n_e and v_d increase	es	(d)	Both n_e and v_d decreases
62.	When N-type of semicondu	actor is heated		[CBSE 1993; DPMT 2000]
	(a) Number of electrons in increases while that of ele	ncreases while that of holes of the constant of holes of the constant of the c	lecreases	(b) Number of holes
	(c) Number of electrons a	nd holes remains same	(d) Number of electrons	and holes increases equally
63.	Semiconductor is damaged	l by the strong current due to)	[MH CET 2000]
	(a) Lack of free electron	(b) Excess of electrons	(c) Excess of proton	(d) None of these
64.	Charge density for intrinsi	ic semiconductor will be		[RPMT 2000]
	(a) $15 \times 10^{17} m^{-3}$	(b) $1.6 \times 10^{16} m^{-3}$	(c) $15 \times 10^{13} m^{-3}$	(d) $15 \times 10^{14} m^{-3}$
65.	GaAs is			[RPMT 2000]
	(a) Element semiconducto	or(b) Alloy semiconductor	(c) Bad conductor	(d) Metallic semiconductor
66.	At ordinary temperature, a	an increase in temperature ir	ncreases the conductivity of	f
			[Similar	to (RPMT 1999); MP PMT 2000]
	(a) Conductor	(b) Insulator	(c) Semiconductor	(d) Alloy
67.	An <i>N</i> -type and <i>P</i> -type silic	on can be obtained by doping	g pure silicon with	[EAMCET (Med.) 1995, 2000]
	(a) Arsenic and Phosphoro Indium	ous (b) (d) Aluminium and Boron	Indium and Aluminium	(c) Phosphorous and
68.	N-type semiconductors wi	ll be obtained, when german	ium is doped with	
	(a) Phosphorus	(b) Aluminium	(c) Arsenic	(d) Both (a) or (c)
69.	The state of the energy g applied is called as	ained by valance electrons v	when the temperature is ra	ised or when electric field is

			Sol	id and Semi	conductor 153			
	(a) Valance band	(b) Conduction band	(c) Forbidden band	(d) None	of these			
7 0.	At 0 K intrinsic semico	nductors behaves as			[MP PET 2000]			
	(a) A perfect conducto	r (b) A super conductor	(c) A semiconductor	(d) A perf	fect insulator			
71.	To obtain electrons as	majority charge carriers in a	semiconductor, the impurity	mixed is				
	(a) Monovalent	(b) Divalent	(c) Trivalent	(d) Penta	valent			
72.	For germanium crystal	, the forbidden energy gap in	joules is					
	(a) 1.12×10 ⁻¹⁹	(b) 1.76×10^{-19}	(c) 1.6×10^{-19}	(d) Zero				
73.	In the terminology rela	ted to semiconductor, what i	s a hole					
	(a) Space which is a ne	egatively charged						
	(b) Space which was p	reviously occupied by an elec	tron					
	(c) A hole in a space ti	me distribution of the univer	se					
	(d) Dense area in a spa	ace which even absorb light <i>i</i> .	e., black hole					
74.	If n_e and n_h are the number of n_h are the number of n_h are the number of n_h and n_h are the number of n_h are the number of n_h and n_h are the number of n_h	mber of electrons and holes i	n a semiconductor heavily do	ped with phos	sphorus, then [MP PM			
	(a) $n_e >> n_h$	(b) $n_e << n_h$	(c) $n_e \leq n_h$	(d) $n_e = n_h$				
75.	In extrinsic semicondu	ctors						
/3	(a) The conduction has	and valence hand overlan						
	(a) The conduction band and valence band is more then 16 eV							
	(b) The gap between conduction band and valence band is more than 16 eV							
	(c) The gap between c	onduction band and valence b	and is near about 1 eV					
	(d) The gap between c	onduction band and valence b	and will be 100 eV and more					
76.	Resistivity of a semicor	nductor depends on			[MP PMT 1999]			
	(a) Shape of semicond semiconductor	uctor	(b)	Atomic	nature of			
	(c) Length of semicond semiconductor	luctor	(d)	Shape and	l atomic nature of			
77.	Electronic configuration antimony is added	on of Germanium is 2, 8, 18 a	and 4. To make it extrinsic se	miconductor	small quantity of			
					[MP CEE 1999]			
	(a) The material obtain	ned will be <i>N</i> -type Germaniur	n in which electrons and hole	s are in equal	number			
	(b) The material obtain	ned will be <i>P</i> -type Germaniun	ı					
	(c) The material obtain	ned will be <i>N</i> -type Germaniur	n which has more electrons th	nan holes at r	oom temperature			
	(d) The material obtain	ned will be <i>N</i> -type Germaniur	n which has less electrons th	an holes at ro	oom temperature			
78.	At zero degree Kelvin a	piece of germanium			[MP PET 1999]			
	(a) Becomes semicond	uctor (b)	Becomes good conductor	c (c) Becom	nes bad conductor(d)			
7 9 .	In a <i>P</i> -type semiconduc	tor, germanium is doped with	h		[AFMC 1999]			
_	(a) Boron	(b) Gallium	(c) Aluminium	(d) All of	these			
80.	In <i>N</i> -type semiconduct	ors, majority charge carriers	are		[AIIMS 1999]			
	(a) Holes	(b) Protons	(c) Neutrons	(d) Electr	ons			
81.	<i>P</i> -type semiconductor i	s formed when			[RPET 1999]			

	A. As impurity is mixed in	n <i>Si</i> B. <i>Al</i> impurity is mixed	in <i>Si</i> C. <i>B</i> impurity is mixe	ed in GeD. P impurity is mixed in Ge		
	(a) A and C	(b) A and D	(c) B and C	(d) B and D		
82.	In case of a semiconducto	or, which of the following state	ement in wrong			
	(a) Doping increases con- resistance is negative	ductivity	(b)	Temperature coefficient of		
	(c) Resisitivity is in betw temperature, it behaves l	veen that of a conductor and ir ike a conductor	nsulator	(d) At absolute zero		
83.	A N-type semiconductor i	S	[AFM	IC 1988; AMU 1998; RPMT 1999]		
	(a) Negatively charged	(b) Positively charged	(c) Neutral	(d) None of these		
84.	When a potential differen	nce is applied across, the curre	ent passing through	[IIT-JEE (Screening) 1999]		
	(a) A semiconductor at O	K is zero	(b)	A metal at OK is finite		
	(c) A <i>P-N</i> diode at 300K i	s finite if it is reverse biased	(d) All of the above			
85.	The value indicated by Fe	rmi energy level in an intrins	ic semiconductor is	[EAMCET 1997]		
	(a) The average energy o	f electrons and holes	(b) The energy of electro	ns in conduction band		
	(c) The energy of holes in	n valence band	(d) The energy of forbidden region			
86.	The dominant mechanism	as for motion of charge carrier	s in forward and reverse bi	iased silicon <i>P-N</i> junctions are[IIT-JI		
	(a) Drift in forward bias,	diffusion in reverse bias	(b) Diffusion in forward	bias, drift in reverse bias		
	(c) Diffusion in both forv	vard and reverse bias	(d) Drift in both forward	and reverse bias		
87.	To obtain a <i>p</i> -type germa	nium semiconductor, it must t	be doped with	[CBSE 1997]		
	(a) Arsenic	(b) Antimony	(c) Indium	(d) Phosphorus		
88.	In a pure semiconductor 1	the current density is given by	,	[RPMT 1997]		
	(a) $J = nq (v_n - v_n)$	(b) $J = nq (v_n + v_n)$	(c) $J = nq (v_n / v_p)$	(d) $J = nq(v_n v_n)$		
89.	Silicon is a semiconductor	r. If a small amount of As is a	lded to it, then its electrica	conductivity [MP PMT 1996]		
09.	(a) Decreases	(b) Increases	(c) Remains unchanged	(d) Becomes zero		
90.	Electric current is due to	drift of electrons in	(c) nonano anonangoa	[CPMT 1996]		
-	(a) Metallic conductors	(b) Semi-conductors	(c) Both (a) and (b)	(d) None of these		
91.	Fermi level of energy of a	in intrinsic semiconductor lies	3	[EAMCET (Med.) 1995]		
	(a) In the middle of forbi forbidden gap	dden gap	(b)	Below the middle of		
	(c) Above the middle of f	orbidden gap	(d) Outside the forbidder	n gap		
92.	In a semiconductor the se	eparation between conduction	band and valence band is o	f the order of[EAMCET (Med.) 1995]		
	(a) 100 <i>eV</i>	(b) 10 <i>eV</i>	(c) 1 <i>eV</i>	(d) 0 <i>eV</i>		
93.	Let n_p and n_e be the num	ber of holes and conduction e	lectrons respectively in a se	emiconductor. Then [MP PET 1995]		
	(a) $n_p > n_e$ in an intrinsic	semiconductor	(b) $n_p = n_e$ in an extrinsic semiconductor			
	(c) $n_p = n_e$ in an intrinsic	semiconductor	(d) $n_e > n_p$ in an intrinsic	semiconductor		
94.	An intrinsic semiconduct	or has $10^{18} m^{-3}$ free electrons	and is doped with pentaval	ent impurity atoms of density		
-	$10^{24} m^{-3}$. The free electro	n density will increase by	orders of magnitude	[Roorkee 1995]		
	(a) 3	(b) 4	(c) 5	(d) 6		

			S	olid and Semicon	ductor 155		
95.	The probability of elect temperature	trons to be found in the cond	luction band of an intr	rinsic semiconducto	or at a finite [IIT-JEE 1995]		
	(a) Decreases exponenti	ally with increasing band gap	(b) Increases exponen	tially with increasi	ng band gap		
	(c) Decreases with incre gap	easing temperature	(d) Is independent of	the temperature a	and the band		
96.	Doping of a semiconduct	or (with small traces of impuri	ty atoms) generally cha	nges the resistivity	as follows [KCET 19		
	(a) Decreases		(b) Does not alter				
	(c) May increase or deci	rease depending on the dopant	(d) Increases				
97.	Three semi-conductors arrangement is	are arranged in the increasing	ng order of their ener	gy gap as follows. [The correct MP PMT 1993]		
	(a) Tellurium, germaniu germanium	m, silicon	(b)	Tellurium,	silicon,		
	(c) Silicon, germanium, germanium	tellurium	(d)	Silicon,	tellurium,		
98.	In insulators			l	[MP PET 1993]		
	(a) The valence band is	partially filled with electrons					
	(b) The conduction band	is partially filled with electror	15				
	(c) The conduction band is filled with electrons and the valence band is empty						
	(d) The conduction band	l is empty and the valence band	is filled with electrons				
99.	The energy gap of silicor	n is 1.14 <i>eV</i> . The maximum wave	elength at which silicon	will begin absorbin	g energy is[MP PM		
	(a) 10888 <i>Å</i>	(b) 1088.8 Å	(c) 108.88 <i>Å</i>	(d) 10.888 Å			
100.	The typical ionisation en	lergy of a donor in silicon is			[IIT-JEE 1992]		
	(a) 10.0 <i>eV</i>	(b) 1.0 <i>eV</i>	(c) 0.1 <i>eV</i>	(d) 0.001 eV			
101.	The level formed due to impurity atom, in the forbidden energy gap, very near to the valence band in <i>P</i> -type semiconductor is called						
]	EAMCET 1990]		
	(a) A forbidden level	(b) A conduction level	(c) A donor level	(d) An accepto	or level		
102.	A P-type semiconductor	can be obtained by adding	[NCERT 1979; BIT 1988; MP PMT1987, 90]				
	(a) Arsenic to pure silico	on	(b) Gallium to pure silicon				
	(c) Antimony to pure germanium germanium		(d)	Phosphorus	to pure		
103.	Which of the following e	nergy band diagram shows the	N-type semiconductor		[RPET 1986]		
	(a) $Conductio n band Eg 1eV Valance band (VB)$	(b) Conductio n band Impurity ^{1eV} level Valance band (VB)	(c) Valance band (VB) 1eV Impurity level Conductio n band	(d) $Valance band (VB)$ \uparrow 1eV Conduction p hand			
				<u>n ounu</u>	_		
104.	If the intensity of electri	c field is E , then current densit	ry is directly proportiona	al to	[RPET 1986]		
	(a) <i>E</i>	(b) 1/ <i>E</i>	(C) <i>E</i> [∠]	(d) $1/E^2$			
105.	The mobility of free elec	tron is greater than that of free	holes because				
	(a) The carry negative c	narge	(b)	They are light			

156 Solid and Semiconductor (c) They mutually collide less (d) They require low energy to continue their motion **106.** The relation between the number of free electrons in semiconductors (n) and its temperature (T) is (a) $n \propto T^2$ (c) $n \propto \sqrt{T}$ (d) $n \propto T^{3/2}$ (b) $n \propto T$ **107.** The electron mobility in *N*-type germanium is 3900 cm^2/v -s and its conductivity is 6.24 *mho/cm*, then impurity concentration will be if the effect of cotters is negligible (a) 10^{15} cm³ (b) $10^{13} / cm^3$ (c) $10^{12} / cm^3$ (d) $10^{16} / cm^3$ 108. The densities of electrons and cotters in an extrinsic semiconductor are 8×10^{13} cm⁻³ and 5×10^{12} cm⁻³ respectively. The mobilities of electrons and holes are $23 \times 10^3 \text{ cm}^2/\text{v-s}$ and $10^2 \text{ cm}^2/\text{v-s}$ respectively. The type of semiconductors is (a) P (b) N (c) Both types (d) None of these **109.** In an N-type semiconductor electron mobility is 3900 cm^2/v -s and its conductivity is 5 mho/cm. The impurity concentration will be (Effect of holes is negligible) (a) $8 \times 10^{15} / cm^3$ (b) $8 \times 10^{13} / cm^3$ (c) $8 \times 10^{12} / cm^3$ (d) $8 \times 10^{10} / cm^3$ 110. The forbidden energy gap of a germanium semiconductor is 0.75 eV. The minimum thermal energy of electrons reaching the conduction band from the valence band should be (b) 0.75 *eV* (a) 0.5 eV (c) 0.25 eV (d) 1.5 eV 111. In semiconductor the concentrations of electrons and holes are $8 \times 10^{18}/m^3$ and $5 \times 10^{18}/m$ respectively. If the mobilities of electrons and hole are 2.3 m^2/v -s and 0.01 m^2/v -s respectively, then semiconductor is (a) *N*-type and its resistivity is 0.34 ohm-metre (b) P-type and its resistivity is 0.034 ohm-metre (d) *P*-type and its resistivity is 3.40 ohm-metre (c) *N*-type and its resistivity is 0.034 ohm-metre Semiconductor diode

112. The *P-N* junction diode is used as[AFMC 1997; EAMCET 1999; DPMT 2000; MP PMT 2004](a) An amplifier(b) An oscillator(c) A rectifier(d) A modulator

113. In a forward biased *P*-*N* junction diode, the potential barrier in the depletion region is of the form ...[KCET 2004]

114. When *P-N* junction diode is forward biased, then [RPMT 1997; CBSE 1999; UPSEAT 2002; RPET 2003; AIEEE 2004]

(a) The depletion region is reduced and barrier height is increased

- (b) The depletion region is widened and barrier height is reduced
- (c) Both the depletion region and barrier height are reduced
- (d) Both the depletion region and barrier height are increased

115. A crystal diode is a

[MP PET 2004]

				Solid and Semiconductor 15
	(a) Non-linear device	(b) Amplifying device	(c) Linear devic	e (d) Fluctuating device
116.	In a <i>P-N</i> junction photo proportional to	o cell, the value of photo-e	electromotive force	produced by monochromatic light
				[CBSE PMT/PDT Screening 200
	(a) The voltage applied a	t the <i>P-N</i> junction	(b) The barrier	voltage at the <i>P-N</i> junction
	(c) The intensity of the l	ight falling on the cell	(d) The frequen	cy of the light falling on the cell
117.	The peak voltage in the The dc component of the	output of a half-wave diode output voltage is	rectifier fed with a	sinusoidal signal without filter is 10 [CBSE PMT/PDT (Screening) 200
	(a) 20/ <i>πV</i>	(b) $10 / \sqrt{2} V$	(c) 10/ <i>πV</i>	(d) 10 V
118.	In the circuit, if the forw	ard voltage drop for the diod	le is 0.5 <i>V</i> . The curre	nt will be [UPSEAT 200
				0.5 V
	(a) 3.4 <i>mA</i>			
	(b) 2 <i>mA</i>			<u>2.2 KΩ</u>
	(c) 2.5 <i>mA</i>		8	
	(d) 3 <i>m</i> A			
10	In the middle of the depl	etion layer of a reverse-biase	ed <i>P-N</i> junction the	
19.	(a) Potential is zero		(b) Electric field	lis zero
	(a) Potential is maximum		(d) Electric field	
	(c) Potential is maximum	ll	(u) Electric field	i is maximum
20.	If a full wave rectifier cli	$\frac{1}{10} = 1 = 1$	mains, the fundame	ental frequency in the ripple will be
	(a) 50 Hz	(b) 70.7 Hz	(c) 100 Hz	(d) 25 Hz
21.	Barrier potential of a <i>P-N</i>	(b) European division	end on	
	(a) Temperature	(D) Forward blas	(c) Doping dens	ity (a) Diode design
22.	In the depletion region o	t an unbiased <i>P-IN</i> junction di	lode there are	
	(a) Only electrons	(h) Only holes	(c) Both electro	1, 2001; RPM I 2001; MP PM I 1994, 200
~~	(a) Only electrons	(b) Only noies		
23.	(a) Decrease the material	- N Junction aloue	(h)	MP PM1 1991; EAMCET 1994; CBSE 200
	(a) Decreases the potent barrier	ial barrier	(b)	Increases the potent
	(c) Increases the number	r of minority charge carriers	(d) Increases the	e number of majority charge carriers
24.	The electrical circuit use	d to get smooth dc output fro	om a rectifier circuit	is called [KCET 200
	(a) Oscillator	(b) Filter	(c) Amplifier	(d) Logic gates
25.	The approximate ratio of	resistances in the forward a	ind reverse bias of th	he <i>PN</i> junction diode is
	(2) 10 ² · 1	(b) 10^{-2} · 1	(a) $1 \cdot 10^{-4}$	MP PET 2000; MP PMT 1999, 2002, 200
~ ~	(d) IU . I	(U) IU . I	$(c) 1 \cdot 10^{-1}$	
20.	All Ideal diode is connect	eu in series with a resistor R	then voltage across	
	(a) 2V in forward bias			
	(b) V in forward bias			

158 Solid and Semiconductor (d) Zero in forward bias **127.** In a *P*-*N* junction diode [CBSE PMT 2002] (a) Potential at *P* is more than *N* (b) Potential at *P* is less than *N* (c) Potential at *P* and *N* is the same (d) Fluctuating potential between P and N **128.** On increasing the reverse bias to a large value in a *P*-*N* junction diode, the current [BHU 2002] (a) Remains fixed (d) Suddenly increases (b) Decrease slowly (c) Increase slowly 129. The diode shown in the circuit is a silicon diode. The potential difference between the points A and B will be[RPMT 200 (a) 6V (b) 0.6V (c) 0.7V 6V (d) 0V **130.** Function of rectifier is [AFMC 2002] (a) To convert ac into dc (b) To convert dc into ac (c) Both (a) and (b) (d) None of these 131. When the *P* end of *P*-*N* junction is connected to the negative terminal of the battery and the *N* end to the positive terminal of the battery, then the P-N junction behaves like [MP PET 2002] (a) A conductor (b) An insulator (c) A super-conductor (d) A semi-conductor **132.** If the two ends *P* and *N* of a *P*-*N* diode junction are joined by a wire [MP PMT 2002] (a) There will not be a steady current in the circuit (b) There will be a steady current from N side to P side (c) There will be a steady current from *P* side to *N* side (d) There may not be a current depending upon the resistance of the connecting wire **133.** If no external voltage is applied across *P*-*N* junction, there would be [Orissa JEE 2002] (a) No electric field across the junction (b) An electric field pointing from *N*-type to *P*-type side across the junction (c) An electric field pointing from *P*-type to *N*-type side across the junction (d) A temporary electric field during formation of *P-N* junction that would subsequently disappear **134.** Zener breakdown in a semi-conductor diode occurs when [UPSEAT 2002] (a) Forward currents exceeds certain value (b) Reverse bias exceeds certain value (c) Forward bias exceeds certain value (d) Potential barrier is reduced to zero **135.** In the given figure, which of the diodes are forward biased [Kerala PET 2002] , +5V (1)+10V🗎 R $-10V^{d}$ (a) 1, 2, 3 (b) 2, 4, 5 (c) 1, 3, 4 (d) 2, 3, 4 **136.** Different voltages are applied across a *P*-*N* junction and the currents are measured for each value. Which of the following graphs is obtained between voltage and current [MP PET 1996; UPSEAT 2002]

137.	The potential barrier, in t	he depletion layer, is due to			[Pb. PMT 199	9; AIIMS 2002]
	(a) Ions	(b) Holes	(c) Electro	ons	(d) Both (b)	and (c)
138.	When the forward voltage	is increased in the crystal did	ode, then the	thickness of de	pletion layer	
	(a) Decreases		(b) Increas	ses		
	(c) Remains unchanged		(d) Increas	ses in the ratio o	of applied volt	age
139.	Avalanche breakdown is d	ue to				
	(a) Collision of minority of	charge carrier	(b) Increas	se in depletion la	ayer thickness	
	(c) Decrease in depletion	layer thickness	(d) None o	f these		
140.	The cause of potential bar	rier in <i>P-N</i> junction diode is				[RPMT 2001]
	(a) Concentration of (+) <i>v</i>	e charge in P-N junction				
	(b) Defficiency (+)ve char	ge in <i>P-N</i> junction				
	(c) Defficiency (-)ve char	ge in <i>P-N</i> junction				
	(d) Concentration of $(+)v$	e and (–) <i>ve</i> charge near the ju	nction			
141.	Which is reverse biased d $\underline{\underline{a}}$	iode				[DCE 2001]
	T	- 20V				└─── ─
	(a)	(b)	(c) ¹⁵		(d)	
	$\frac{1}{5V}$	- 10V		10V		- 5V
142.	In comparison to a half w	ave rectifier, the full wave rec	tifier gives l	ower		
	(a) Efficiency	(b) Average dc	(c) Averag	e output voltage	e (d) None of t	hese
143.	A full wave rectifier circu	it along with the input and ou	tput voltages	s is shown in the	e figure	
		0u	tpu			
			. .			
			Input			
			\bigcirc			
			\frown			
		<u>ΑΥΒΥ</u> C	<u>Y D</u>			
		Out	put			
	The contribution to outpu	t voltage from diode – 2 is				[MP PMT 2001]
	(a) <i>A</i> , <i>C</i>	(b) <i>B</i> , <i>D</i>	(c) <i>B</i> , <i>C</i>		(d) <i>A</i> , <i>D</i>	
144.	Find V _{AB}					[RPMT 2000]
				<pre></pre>	10Ω	
	(a) 10 V			30 <u>V</u> ↑	\rightarrow	
	(b) 20 V			V_{AB}	10Ω \$10Ω	
	(c) 30 V			¥ ?		
	(d) None of these					
	,					

145. Zener breakdown takes place if (a) Doped impurity is low (b) Doped impurity is high (c) Less impurity in *N*-part (d)Less impurity in P-type **146.** Which one is in forward bias (b) (c) (d) None of these (a) **147.** Out of following the forward based diode is [CBSE PMT 2000] (a) $-\frac{4V}{V}$ (b) $\frac{3V}{V}$ (c) $\frac{0V}{V}$ -2V (d) -2V 2V 148. Consider the following statements A and B and identify the correct choice of the given answers (A) The width of the depletion layer in a *P*-*N* junction diode increases in forward bias (B) In an intrinsic semiconductor the Fermi energy level is exactly in the middle of the forbidden gap (a) A is true and B is false (b) Both A and B are false (c) A is false and B is true (d) Both A and B is true 149. Consider the following statements A and B and identify the correct choice of the given answers (A) A zener diode is always connected in reverse bias (B) The potential barrier of a *P-N* junction lies between 0.1 to 0.3 *V* approximately [EAMCET 2000] (a) A and B are correct (b) A and B are wrong (c) A is correct but B is wrong (d)A is wrong but B is correct 150. The correct symbol for zener diode is (a) (b) $\stackrel{+}{\longrightarrow}$ (c) $\stackrel{+}{\longrightarrow}$ (d) $\stackrel{-}{\longrightarrow}$ 151. What accounts for the flow of charge carriers in forward and reverse biasing of silicon *P*-*N* diode (a) Drift in both reverse and forward bias (b) Drift in forward bias and diffusion in reverse bias (c) Drift in reverse bias and diffusion in forward bias (d) Diffusion in both forward and reverse bias **152.** Which one of the following statements is not correct [SCRA 2000] (a) A diode does not obey Ohm's law (b) A P-N junction diode symbol shows an arrow identifying the direction of current (forward) flow (c) An ideal diode is an open switch (d) An ideal diode is an ideal one way conductor 153. Which of the following semi-conductor diodes is reverse biased

(a) (b) = (c) =

154. The resistance of a reverse biased *P*-*N* junction diode is about

(b) $10^2 ohm$ (c) 10^3 ohm (d) 10^6 ohm (a) 1 *ohm* **155.** In forward bias the width of potential barrier in a *P*-*N* junction diode (b) Decreases (c) Remains constant (d) First (a) then (b) (a) Increases [CBSE 1999]

156. In a junction diode, the holes are due to

				So	olid a	and Semic	onduct	or 161
	(a) Protons	(b) Neutrons	(c) Extra elec	ctrons	((d) Missing	g of elec	trons
157.	<i>P</i> -type crystal of a <i>P</i> - <i>N</i> connected to negative ter	junction diode is connected minal of battery	to a positive	terminal	of t	oattery and	l <i>n</i> -type	e crystal
	(a) Diode is forward bias	ed	(b)		Ι	Diode is rev	verse bi	ased
	(c) Potential barrier in de unchanged	epletion layer increases	(d) Potential	barrier	in	depletion	layer	remains
158.	No bias is applied to a <i>P-1</i>	V junction, then the current					[RP	MT 1999]
	(a) Is zero because the nu	umber of charge carriers flowi	ng on both side	es is same				
	(b) Is zero because the ch	arge carriers do not move						
	(c) Is non-zero							
	(d) None of these							_
159.	Zener diode is used as						[CBSE P	MT 1999]
	(a) Half wave rectifier	(b) Full wave rectifier	(c) ac voltage	e stabilizer	r ((d) dc volta	ige stab	oilizer
160.	The width of forbidden semiconductor the distan	gap in silicon crystal is 1. ce of Fermi level from conduct	1 <i>eV</i> . When th ion band is	he crystal	is	converted	in to a	a <i>N</i> -type
	(a) Greater than 0.55 eV	(b) Equal to 0.55 <i>eV</i>	(c) Lesser th	an 0.55 <i>eV</i>	· ((d) Equal to	0 1.1 eV	
161.	Which one is reverse-bias	sed						
	10V		-10V]		(4)	- 5V•	
	(a) $15V$	(U) - 10V•	(0)	Ţ	l	(u) 10V	┥	
162.	In a <i>P-N</i> junction diode if	<i>P</i> region is heavily doped than	N region then	the deplet	ion l	ayer is		
	(a) Greater in <i>P</i> region		(b) Greater in	n N region				
	(c) Equal in both region		(d) No deplet	ion layer i	s for	med in this	s case	
163.	When a potential differen	ce is applied across, the curre	nt passing thro	ugh			[117-]	JEE 1999]
	(a) An insulator at OK is z zero	zero	(b)		ł	A semi-con	ductor	at OK is
	(c) A <i>P-N</i> diode at 300 K	is finite. If it is reverse biased	(d) All of the	se				
164.	A semiconductor X is mad	le by doping a germanium cry	ystal with arse	nic (<i>Z</i> = 33	3). A	second ser	nicondu	ictor Y is
	made by doping germanit	1m with indium ($Z = 49$). The	two are joined	end to en	d and	d connecte	d to a b	attery as
	shown. Which of the follo	wing statements is correct		XZ X	7			
			,. , [¥			
	(a) X is P-type, Y is N-typ	e and the junction is forward	biased					
	(b) X is N-type, Y is P-typ	e and the junction is forward	biased	1				
	(c) X is P-type, Y is N-typ	e and the junction is reverse b	oiased					
	(d) X is N-type, Y is P-typ	e and the junction is reverse b	biased					
165.	A semiconductor device i pass through the circuit. may be	s connected in a series circui If the polarity of the battery i [MP PET 1995; CBSE 1998]	t with a batter is reversed the	ry and a re current di	esista rops	ance. A cur almost to :	rent is zero. Th	found to ne device

(a) A *P*-type semiconductor (b)

An N-type semiconductor (c) A P-N junction (d)

166.	In <i>P-N</i> junction, which	stops electron and holes to mo	ove from <i>P</i> to <i>N</i> an	d N to P [CPMT 1998]
	(a) Increase in +ve and	d – ve ions at junction	(b) Increase in	n electrons at junction
	(c) Increase in holes a electrons at junction	t junction	(d)	Increase in holes and
167.	The potential in the de	pletion layer is due to		[EAMCET (Engg.) 1998]
	(a) Electrons	(b) Holes	(c) Ions	(d) Forbidden band
168.	The two diodes A and A	B are biased as shown, then		[EAMCET 1997]
	(a) The diodes A and B	3 are reverse biased	-	5 V A - 9 V
	(b) The diode A is forw	vard biased and <i>B</i> is reverse bi	ased	
	(c) The diodes <i>B</i> is for	ward biased and diode A is rev	erse biase o	3V B $-6V$
	(d) The diodes A and E	3 are forward biased		
169.	In <i>P-N</i> junction avala	nche current flows in circui	it when biasing i	s
	(a) Forward	(b) Reverse	(c) Zero	(d) Excess
170.	The circuit shown in a infinite backward res <i>amperes</i>) is	fig. contains two diode D_1 and istance. If the battery voltage	D_2 each with a f t is 6 V, the curre [IIT-JEE 1997]	Forward resistance of 50 <i>ohms</i> and with ent through the 100 <i>ohm</i> resistance (in
	(a) Zero			D_1 50 Ω
	(b) 0.02			
	(c) 0.03		61	
	(d) 0.036			
171.	The electrical conduct is incident on it. The b	ivity of a semiconductor increa and gap (in <i>eV</i>) for the semicor	ases when a radiat nductor is	ion of wavelength shorter than 2480 <i>nm</i>
	(a) 0.9	(b) 0.78	(c) 0.5	(d) 1.1
172.	If the forward voltage	in a semiconductor diode is do	ubled, the width o	f the depletion layer will
	(a) Become half	(b) Become one-fourth	(c) Remain ur	ichanged (d) Become double
173.	In <i>P-N</i> junction, the ba	rrier potential offers resistanc	e to	
	(a) Free electrons in <i>N</i>	V region and holes in P region		
	(b) Free electrons in F	region and holes in N region		
	(c) Only free electrons	s in N region		
	(d) Only holes in P reg	tion		
174.	In the case of forward of flow of carriers	biasing of <i>P-N</i> junction, which	one of the followi	ng figures correctly depicts the direction

[RPMT 1995]

175. Symbolic representation of photodiode is

(a) (b) (c) (d) (d)

176. Which of the following statements concerning the depletion zone of an unbiased *P*-*N* junction are true

(a) The width of the zone is independent of the densities of the dopants (impurities)

(b) The width of the zone is dependent on the densities of the dopants

(c) The electric field in the zone is provided by the electrons in the conduction band and the holes in the balance band

(d) The electric field in the zone is produced by the ionized dopant atoms

177. The depletion layer in the P-N junction region is caused by

(a) Drift of holes (b) Diffusion of charge carriers (c) Migration of impurity ions (d)

178. On increasing the reverse bias to a large value in a *P*-*N* junction diode, current [MP PMT 1994]

(a) Increase slowly (b) Remains fixed (c) Suddenly increases (d) Decreases slowly

179. To make a *P*-*N* junction conducting

(a) The value of forward bias should be more than the barrier potential

(b) The value of forward bias should be less than the barrier potential

(c) The value of reverse bias should be more than the barrier potential

(d) The value of reverse bias should be less than the barrier potential

180. According to diagram an ac source of 50 Hz is connected to a transformer coil by a filter. P and Q ends of the secondary coil are connected to a C.R.O. Choose the correct statement from the following which describes. What we get between terminals P and Q

[RPET 1986, 92]

(a) There is no potential difference

(b) There is alternating voltage

- (c) There is fluctuated dc between terminals P and Q and minimum value of it is zero
- (d) There is a constant dc between P and Q
- **181.** Which is the wrong statement in following sentences ? A device in which P and N-type semiconductors are used is more useful then a vacuum type because
 [MP PET 1992]
 - (a) Power is not necessary to heat the filament
 - (b) It is more stable
 - (c) Very less heat is produced in it
 - (d) Its efficiency is high due to a high voltage across the junction
- **182.** In case of a *P-N* junction diode at high value of reverse bias, the current rises sharply. The value of reverse bias is known as

 \triangleright

0.7 V

700Ω

.777

21

Ν

٨٨٨

R

- **190.** The junction diode in the following circuit requires a minimum current of 1 *mA* to be above the knee point (0.7 *V*) of its I-V characteristic curve. The voltage across the diode is independent of current above the knee point. If $V_B = 5 V$, then the maximum value of *R* so that the voltage is above the knee point, will be
 - (a) 4.3 $k\Omega$
 - (b) 860 kΩ
 - (c) 4.3 Ω
 - (d) 860 Ω
- **191.** The current through an ideal *PN* junction shown in the following circuit diagram will be
 - (a) 5 *mA*
 - (b) 10 *mA*
 - (c) 70 *mA*
 - (d) 100 *mA*
- **192.** If V_A and V_B denote the potentials of A and B then the equivalent resistance between A and B in the adjoining electric circuit is
 - (a) 10 ohms if $V_A > V_B$
 - (b) 5 ohms if $V_A < V_B$
 - (c) 5 ohms if $V_A > V_B$
 - (d) 20 ohms if $V_A > V_B$
- **193.** In junction diode reverse bias is changed from 10 V to 15 V, the current changes from 25 μ A to 75 μ A. The resistance of the junction diode will be

(c) 10 ohm

(a) 0.1 ohm

(b) 10⁵ ohm

195. When *NPN* transistor is used as an amplifier(a) Electrons move from base to collector

(b) Holes move from emitter to base

(d) $10^6 ohm$

	(c) Electrons move from a	collector to base	(d) Holes move from base	e to emitter
196.	The phase difference betw	veen input and output voltage	s of a CE circuit is	[MP PET 2004]
	(a) 0°	(b) 90°	(c) 180°	(d) 270°
197.	An oscillator is nothing bu	ıt an amplifier with		[MP PET 2004]
	(a) Positive feed back	(b) Large gain	(c) No feedback	(d) Negative feedback
198.	The emitter-base junction	of a transistor is biased	while the collector-base jun	ction is biased
	(a) Reverse, forward	(b) Reverse, reverse	(c) Forward, forward	(d) Forward, reverse
199.	In an <i>NPN</i> transistor the c [Kerala PMT 2004]	collector current is 24 mA. If a	80% of electrons reach colle	ector its base current in <i>mA</i> is
	(a) 36	(b) 26	(c) 16	(d) 6
200.	A NPN transistor conducts	s when		
	(a) Both collector and em	itter are positive with respec	t to the base	
	(b) Collector is positive a	nd emitter is negative with re	espect to the base	
	(c) Collector is positive a	nd emitter is at same potentia	al as the base	
	(d) Both collector and em	itter are negative with respec	ct to the base	
201.	In the case of constants α	and β of a transistor		[CET 2003]
	(a) $\alpha = \beta$	(b) $\beta < 1 \alpha > 1$	(c) $\alpha\beta = 1$	(d) $\beta > 1 \alpha < 1$
202.	Which of the following is	true		
	(a) Common base transist	tor is commonly used because	current gain is maximum	
	(b) Common emitter is co	mmonly used because curren	t gain is maximum	
	(c) Common collector is c	commonly used because curre	nt gain is maximum	
	(d) Common emitter is the	e least used transistor		
203.	If α = 0.98 and current the	rough emitter $i_e = 20 mA$, the	value of β is	
	(a) 4.9	(b) 49	(c) 96	(d) 9.6
204.	For a common base confi	guration of PNP transistor $\frac{l_0}{l_0}$	$\frac{2}{2} = 0.98$ then maximum cur	rent gain in common emitter
			E	
	configuration will be			
	(2) 12	(b) 24	(c) 6	(d) =
205.	In a <i>P-N-P</i> transistor wor	king as a common-base ampl	ifier, current gain is 0.96 a	nd emitter current is 7.2 <i>mA</i> .
5	The base current is			
				[AFMC 2002]
	(a) 0.4 <i>mA</i>	(b) 0.2 <i>mA</i>	(c) 0.29 <i>mA</i>	(d) 0.35 <i>mA</i>
206.	If l_1, l_2, l_3 are the lengths of	f the emitter, base and collec	tor of a transistor then	[KCET 2002]
	(a) $l_1 = l_2 = l_3$	(b) $l_3 < l_2 > l_1$	(c) $l_3 < l_1 < l_2$	(d) $l_3 > l_1 > l_2$
207.	In an <i>NPN</i> transistor circut the emitter current (i_E) and	uit, the collector current is 10 nd base current (i_B) are given	mA. If 90% of the electron by	s emitted reach the collector, [KCET 2001]
	(a) $i_E = -1 mA$, $i_B = 9 mA$	(b) $i_E = 9 mA$, $i_B = -1 mA$	(c) $i_E = 1 \ mA$, $i_B = 11 \ mA$	(d) $i_E = 11 \ mA$, $i_B = 1 \ mA$
208.	In the study of transistor	as an amplifier, if $\alpha = I_c / I_e$	and $\beta = I_c / I_b$, where I_c, I_b	and I_e are the collector, base
	and emitter currents, ther	n		[CBSE PMT 2000; KCET 2000]
	(a) $\beta = \frac{1-\alpha}{\alpha}$	(b) $\beta = \frac{\alpha}{1 - \alpha}$	(c) $\beta = \frac{\alpha}{1+\alpha}$	(d) $\beta = \frac{1+\alpha}{\alpha}$
	u	u = u	1 + u	u

209.	In a common emitter to change in base current	ransistor, the current gain is 250 μA	is 80. What is the cl	nange in collector curren	nt, when the
	(a) 80 × 250 μA	(b) (250 – 80) μA	(c) (250 + 80) μ	4 (d) 250/80 μA	
210.	Least doped region in a	transistor			
	(a) Either emitter or co	llector (b)	Base	(c) Emitter	(d)
211.	The transistors provide	good power amplification w	hen they are used in		
	(a) Common collector configuration	onfiguration	(b)	Common	emitter
	(c) Common base config	guration	(d)	None of these	
212.	The transfer ratio of a t	ransistor is 50. The input re he peak value for an A.C inpu	sistance of the transis it voltage of 0.01 <i>V</i> pe	tor when used in the com ak is [CB	imon-emitter SE PMT 1998]
	(a) 100 µA	(b) 0.01 <i>mA</i>	(c) 0.25 <i>mA</i>	(d) 500 μA	
213.	For a transistor the para	ameter β = 99. The value of t	the parameter α is		
	(a) 0.9	(b) 0.99	(c) 1	(d) 9	
214.	A transistor is used in co	ommon emitter mode as an a	amplifier. Then		
	(a) The base-emitter jui	nction is forward biased			
	(b) The base-emitter jui	nction is reverse biased			
	(c) The input signal is c	onnected in series with the	voltage applied to the	base-emitter junction	
	(d) The input signal is c	onnected in series with the	voltage applied to bias	the base collector junction	on
215.	The arrow head in the tr	ransistor symbol always poir	nts in the direction of		
	(a) Hole flow in the emi emitter region	itter region	(b)	Electron flo	w in the
	(c) Majority carrier flow	w in the emitter region	(d) Minority carr	rier flow in the emitter re	gion
216.	In a <i>PNP</i> transistor the b	base is the N-region. Its widt	th relative to the <i>P</i> -reg	gion is	[DCE 1997]
	(a) Smaller	(b) Larger	(c) Same	(d) Not related	d
217.	A common emitter amplies 10 $K\Omega$. The voltage ga	lifier is designed with <i>NPN</i> t in will be	transistor (α = 0.99).	The input impedance is 1	$K\Omega$ and load
	(a) 9.9	(b) 99	(c) 990	(d) 9900	
218.	The symbol given in figu	ire represents		[A	MU 1995, 96]
	(a) <i>NPN</i> transistor		-	$\frac{E}{C}$	
	(b) <i>PNP</i> transistor				
	(c) Forward biased PN j	junction diode		В	
	(d) Reverse biased NP ju	unction diode			
219.	The most commonly use	d material for making transi	istor is		
	(a) Copper	(b) Silicon	(c) Ebonite	(d) Silver	
220.	An NPN-transistor circu	it is arranged as shown in fi	gure. It is		
	(a) A common base amp	onner circuit		N K_L V_{out}	
	(b) A common emitter a	mplifier circuit	V_{in}		
	(c) A common collector	amplifier circuit			
	(d) Neither of the above			÷	

221. In the circuit here, the transistor used has a current gain β = 100. Value of R_B so that V_{CE} = 5V (neglect V_{BE}) is [CBSE 1994] 10V(a) $200 \times 10^3 \Omega$ 1kO(b) $10^6 \Omega$ (c) 500 Ω (d) $2 \times 10^3 \Omega$ **222.** The part of a transistor which is heavily doped to produce a large number of majority carriers, is (b) Emitter (c) Collector (a) Base (d) None of these 223. In an NPN-transistor circuit the collector current is 10mA. If 90% of the electrons are able to reach the collector [IIT-JEE 1992] (a) The emitter current will be 9 mA (b) The emitter current will be 11 mA (c) The base current will be 1mA(d) The base current will be 0.1 *mA* **224.** For a transistor, the current amplification factor is 0.8. The transistor is connected in common emitter configuration. The change in the collector current when the base current changes by 6 mA is (a) 6 *mA* (b) 4.8 mA (c) 24 mA (d) 8 mA 225. In a common base amplifier the phase difference between the input signal voltage and the output voltage is [CBSE PMT (a) 0 (b) $\pi/4$ (c) $\pi/2$ (d) π **226.** In case of *NPN*-transistors the collector current is always less than the emitter current because (a) Collector side is reverse biased and emitter side is forward biased (b) After electrons are lost in the base and only remaining ones reach the collector (c) Collector side is forward biased and emitter side is reverse biased (d) Collector being reverse biased attracts less electrons **227.** In a transistor circuit shown here the base current is 35 μ A. The value of the resistor R_b is (a) 123.5 kΩ R. R_L (b) 257 kΩ (c) 380.05 kΩ 9V(d) None of these **228.** The input resistance of a CE amplifier is 3 Ω and load resistance is 24 Ω . If β = 0.6, then the voltage gain of the amplifier is (c) 3.6 (a) 1.2 (b) 2.4 (d) 4.8 **229.** The box in figure represents an amplifier with an input resistance $R_i = 100 \Omega$. It is connected to an ac voltage source through a resistance $R = 300 \Omega$. The voltage gain of the transistor is 400. If the peak-to-peak voltage of the input ac source is 5.0 V, The peak-to-peak voltage of the Amplifier

(a) 500 V

(b) 400 V

(c) 300 V

(d) 200 V

- **230.** In a transistor, a change of 8.0 *mA* in the emitter current produces a change of 7.8 *mA* in the collector current. What change in the base current is necessary to produce the same change in the collector current
 - (a) $50 \ \mu A$ (b) $100 \ \mu A$ (c) $150 \ \mu A$ (d) $200 \ \mu A$
- **231.** An *NPN* transistor is connected in common emitter configuration. Load resistance is 1000 Ω and voltage drop across it is 1*V*. The current amplification factor is 5/4. If internal resistance of transistor is 200 Ω . Its voltage gain and base current (in *amp*) respectively are
 - (a) $6.25, 8 \times 10^{-4}$ (b) $3.25, 8 \times 10^{-4}$ (c) $4.25, 8 \times 10^{-3}$ (d) $5.25, 8 \times 10^{-3}$
- **232.** A transistor is used as a common emitter amplifier. The load resistance connected to the circuit is 2 *kilo-ohm*. Its current gain β = 50, and input resistance R_I = 0.5 *kilo-ohm*. If input current is changed by 50 μ A, then the change in output voltage will be

(a) 2 V (b) 2.5 V (c) 5 V (d) 5.5 V

${\cal A}$ nswer Sheet

									Assiqı	nment.	s								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	а	b	а	с	а	d	d	d	d	b	d	а	b	а	с	а	d	d	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
а	b	d	а	d	с	d	с	b	а	b	b	с	с	с	b	d	d	а	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	b	b	с	с	а	b	а	а	с	с	с	с	а	d	с	а	d	а	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
а	d	b	b	b	с	с	d	b	d	d	а	b	а	с	b	с	с	d	d
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	d	с	d	а	b	с	b	b	с	а	с	с	d	а	а	а	d	а	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
d	b	b	а	d	d	d	b	а	d	а	с	b	с	а	с	с	а	d	с
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
d	d	b	b	d	b	b	d	b, c	а	b	а	b	b	b	с	d	а	а	d
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	d	b	а	с	b	с	с	а	а	с	d	а	d	b	d	а	b	с	с
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
с	b	d	d	с	а	с	d	b	b	с	а	а	с	с	b	b	с	а	с
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	b	с	b	с	с	b	d	а	а	b	с	b	с	а	с	а	d	d	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220

Solid and Semiconductor 169

d	b	b	b	с	d	d	b	а	b	b	d	b	с	а	а	с	а	b	b
221	222	223	224	225	226	227	228	229	230	231	232								
а	b	b, c	b	а	b	b	d	а	d	а	с								