|° Classes and Objects

e A

(Bl OBJECTIVES OF THIS CHAPTER)

o S

7.1 Class

7.2 Objects

7.3 Static Members

7.4 Constructors

7.5 Overloading in Java (Methods and Constructors)

INTRODUCTION:

Languages like BASIC, C are considered to be Procedural Languages where
each program is nothing more than a crisscross of functions. There is a lack of
data binding among function and data members. Such a programming type
fails to design a robust application. To deal with this drawback, java offers
Object Oriented Programming paradigm which is also known as OOP. Here,
“Object” means a real-world entity such as a pen, chair, table, computer, watch,
etc. An Object-Oriented Programming is a methodology to design a program
using classes and objects. This programming technique simplifies software
development and maintenance by providing some concepts like Inheritance,
Polymorphism, Abstraction etc. Let's learn more about OOPs by understanding
class and object,

71CLASS:

A class in java is a user defined prototype from which objects are created. It
represents the set of properties or methods that are commaon to all objects of one
type. In general, a class can be defined as a template / blueprint that describes the
behavior and / or state that the object of its type supports. Thus, we can simply
say, “class in Java determines how an object will behave and what the object will
contain”. Usually a class contains fields and methods related to an object to be
used ina program. We can explain the concept of Class and Object in the form of
adiagramas follows:

student]d: 101

* smamea: John
G Sudem] | LMt | 2 o i

studentld: 102

String sime; Ohjeet? | E — s Emima

addNew Studentt), studentld: 103
Bt Al Stadents 1. Objectd | ? - sname: aran
Py adiievadent

Fig 7.1 Concept of Class and Objects

In Java, aclass declaration can include some of the components given bellow.

7.1.1 Basic Components of Java Class:
Modifiers : Modifiers are the keywords which describes the access rights
of members of a class. In java, a class can be public or has default access i.e.

friendly.
Class Keyword :class keyword is used to create aclass.
Class Name : Thisis an identifier of class. This name of class should begin
with letter. As per java naming conventions, first letter of each class name
should be capital.
Body : The class body is surrounded by braces, i.e. | |. Body part of java
class cancontain two type of elements.

o Fields

o Methods
Each of these components are having their own importance. A general syntax
of creating aclass is as under:

|[Modifier| class ClassName

{
Body of Java Class

J/ Fields
J/ Methods

}
Note : Modifier shown in square brackets specifies that it is optional part of class.

Exumple Program 7.1:
public class CompApp
{
Fields OR ¢ 10 ohl ch2; //Instance Variables
Membwr
Variables L Stk String title; A Class Variables
s vioid show Title()
{
mt a=110 /! Local Variables
Methods ; . ;
Snfies "< Svstemout printingTitle of Chap. is " ntlel
L H
H

7.1.2 Fields (Member Variables) in Class:

Variables declared inside the class are called Fields. We can declare fields with
different access specifiers such as private, public, protected etc.We can categorize
the member variable in following types:

Instance Variables : These are the variables that are inherent to an object
and that can be accessed from inside any method, constructor or
block.They are destroved when the object is destroyed.

Class Variables : Class variables or static variables are declared with the
static keyword in a class. They are similar to instance variables, but they
are created when the program starts and destroyed when the program
stops. The main difference with instance variables is in what scope they
are available. A class variable can be accessed with class name, while an
instance variable is accessible only by class object.

7.1.3 Methods in Class:

A method in Java is a group of instructions that performs a specific task. It
provides the reusability of code. We can divide a complex problem into smaller
parts known as modules which makes our program easy to understand and
reusable. In Java, there are two basic types of methods:

Standard Library Methods: These type of methods are also known as Pre-
defined Methods. These built-in methods in Java are already defined in
Java library. Examples of this type of method can be print() method that
comes that under java.io. PrintSteam which prints the string that is written
within the quotation. sqrt() is another method of Math class which returns
the square root of specific number given as an argument.

User-Defined Methods: We can create our own method based on our
requirements in java. All methods designed by user itself are called “User

Defined Methods”. We can create any number of methods in a java class to
define behavior of our Object.

User can design the method according to the requirement by using data fields
or local variables and statements to preform requisite task. We can define local
variable of a method as under:

Local variables: These are the temporary variables defined inside
methods. They are declared and initialized within that method, and will
be made eligible for garbage collection once the execution of method is
completed. These variables are not accessible outside the methods they are
declared in.
7.1.4 Access Modiliers
The access modifiers in Java specifies the accessibility or scope of a field, method,
constructor, or class. We can change the access level of these elements by
applying the access modifier on them. There are four access modifiers in java.
Private: Accessible within same class only.
Default: Accessible within same class and same package only.
Protected: Accessible within same class, same package and outside
the package using subclass only.
"ublic: Accessible anywhere outside the class and package.
We can easily understand the difference between all these access modifiers with
the help of a table given following;:

Access | Within Within |Outside Packageby| Outside

Modifier | Class Package Subclassonly | Package
Private Yes No No No
Default Yes Yes No No
Protected Yes Yes Yes No
Public Yes Yes Yes Yes

Tahle 7.1 Access Modifiers in Java
Mote : Java package is a group of similar type of classses, interfaces and
subpackages. Think of it as a folder in afile system.

Following program shows the basic program of Java class with its component

class Find Area

|
Hoatradius, area; / / Fields
void getRadius(float r) / / Method

{

radius=r;
}
void showArea () / / Method
{
final float PIE=(float)3.143;
area=PIE*radius*radius;
System.out.printin("The Area of Circle is: "+area);

}

7.20BJECTS
A Java object is a member (also called an instance) of a Java class. Each
object has an identity, a behavior and a state, The identity is an internal ID
assigned to each object, state of an object is stored in fields (variables),
while methods (functions) display the object's behavior. Objects are
created at runtime from templates, also known as classes. It is a basic unit
of Object-Oriented Programming and represents real life entities. A
typical Java program creates many objects, which as we know, interact by
invoking methods.
If we consider the real-world, we can find many objects around us like
cars, dogs, humans, etc. All these objects have a state and a behavior. In the
case of a dog as an example of Object, its states can be - name, breed, color,
and the behavior is - barking, wagging the tail, running. Similarly, in
software development, methods operate on the internal state of an object
and the object-to-object communication is also done via methods.An
object has two characteristics:

» State:represents the data (value) stored in every field of an object.

* DBehavior: represents the functionality of an object given in the form

of method, suchasread Value, display Valueetc.

We shall have a look on all these terms in the form of a program later, and
trv to understand the importance of each one.
7.2.1 Use of new Keyword in Java
The Java new keyword is used to create an instance of the class. In other
words, it instantiates a class by allocating memory for a new object and
returning a reference to that memory. We can also use the new keyword to
create the array object. Some of the main characteristics of new keyword
are as under:

e ltisused tocreate the object.

e ltallocates the memory atruntime.

e All objects occupy memory in the heap area.
e [ltinvokes the object constructor.

7.2.2 Creating Object in Java:

The object is a basic building block of JAVA Program. We cannot use the attributes
or methods of any class without creating an object. There are various ways to
create an object in Java. Usually, we use new keyword to create an objectin java. It
allocates memory (heap) for the newly created object and also returns the
reference of that object to allocated memory. The syntax for creating an object is:

Syntax of creating object using new Keyword:
ClassName Object_Name=new ClassName ([argument list-if any]);
Or
ClassName Object_Name;

Object_Name =new ClassName ([argument list-if any]);
For Example:

Find Area obj=new Find Area();
Or

Find Area obyj;

obj=new FindArea();

Now we have understood the concept of Class and Objects. Lets make a
simple Java programs to demonstrate Class and Objects in JAVA.

Program 7.2 (CAProgl.java) Program for creation and use of aclass in Java

class Find Area
|
float radius, area; / [Fields
void getRadius(floatr) / /Method
{
radius=r;
}
void show Area () / /Method

I
final float PIE=(float)3.143; //usingtype casting

area=PlE*radius*radius;
System.out.printin("The Area of Circle is; "+area);

|
|/ /end of Find Area Class

class CAProgl

I
public static void main(String arg[]) {
Find Area obj=new Find Area(); / / creating object
obj.get Radius(1.5f);

obj.showArea();

Compilation, Execution and Output of Program 7.2 (CAProgl.java)

7.3 STATIC MEMBERS (CLASS VARIABLES)
The static modifier means that the entity to which itisapplied is available outside
any parficular instance of the class. It also means that the static methods or
attributes are a part of the class and not an object. The memory is allocated to
such an attribute or method at the time of class loading. The use of a static
modifier makes the program more efficient by saving memory. A static field
exists across all the class instances, and can be called without creating an object
of the class. The use of a static modifier can be understood in the form of a
program given below:
Program 7.3 (CAProg2.java) Program for static variable/class variable

class StaticDataMember

I
int Variable=10;
staticintStatic Member=10);
void showValue()
{
System.out.println("Variable: "+Variable);

System.out.println("Static._ Member: "+Static. Member);

void incValue()
{
Variable++;

Static_Member++;

|
class CAProg?2 |

public static void main(String arg[]) |

StaticDataMember objl=new StaticDataMember();
objl.showValue();

objl.incValue();

objl.showValue();

objl.incValue();

StaticDataMember obj2=new StaticDataMember();
obj2.showValue();

obj2.incValue();

objl.show Value();

|

Compilation, Execution and Qutput of Program 7.3 (CAProg2.java)

In the given example, we can clearly see the importance of static and instance
data fields in a class. We have declared two different variables named Variable
and Static. Member in the given class Static Data Member. We created two
methods, showValue(); to display the values of both these fields whereas
incValue(); to increase the value of both these variables with one. We created
two different objects named objl and obj2. We called the given methods with
both these objects in certain order. We can notice that the static variable of the
class is free from the object with which itis called. The value of the static variable

is being shared among all the objects. On the other hand, Variable (instance
variable) is associated with object. It gives different values when called with
different objects. This is the main function of static variable which makes the
field shared among all the objects of the same class.

7TACONSTRUCTORSINJAVA

A constructor in Java is a special method that is used to initialize objects. The
constructor is called when an object of a class is created. It can be used to set
initial values for object attributes. In Java, a constructor is a block of codes similar
to the method but having some special properties. Constructor is called
automatically when an instance of the class is created. At the time of calling the
constructor, memory for the object is allocated . It is a special type of method
which is mainly used to initialize the object. We can explain the difference
between method and constructor as under:

‘Method
Method can be named as per the
opetation performed by it.

Constructor

Constructors must have the same name
as the elass within which it is defined,

Method can return upto one value of
any given type. However any number
of arguments can be passed to a
method.

Constructors do not return any value of
any type. However any number of
arguments can be passed 1o a
constructor similar to the method.

A Method can be called explicitly any
number of time when required.

Constructors are called only once at the
time of Object creation.

7.4.1 Rules to be followed while defining constructors

There are some rules for creating constructors in java class. We can explain
some of them as follows;

o Constructor of a class must have the same name as the class name in
which it is declared.

e Access modifiers can be used in constructor declaration to control its
access.

* A constructor in Java cannot be abstract, final, static, or Synchronized.

e A Constructor must have no explicit return type, even not void type.

7.4.2 Types of Constructors in Java
Now is the correct time to discuss the types of the constructor, so primarily
there are two types of constructors in java:

1. Default Constructor (No-Argument Constructor) : A constructor that has
no parameter is known as the default constructor, If we don't define a
constructor in a class, then the compiler automatically creates a default
constructor{with no arguments) for the class. And if we write a constructor

with arguments or no arguments then the compiler does not automatically
create a default constructor. The default constructor initializes any
uninitialized instance variables with default values as per given bellow:

Type Default Value
boolean fulse
byte 0
short 0
int 0
long 0L
char \gﬂ[ﬁl{]{}
float 0.0f
 double 0.0d
object Reference null

Table: Default values of instance variables

2, Parameterized Constructor: A constructor that has parameters is known
as parameterized constructor. If we want to initialize fields of the class
with our ownvalues, then use a parameterized constructor. For example:

Program 7.4 (CAProg5.java) Java Program for Constructors

class Constructors

{

int nol,no2,total;/ /fields
Constructors() // default constructor
{

nol=no2=2;

f

Constructors(int inpl) // Parameterized constructor

{

nol=no2=inpl;

}

void show()/ / method

{

total=nol+no2;

System.out. println("Sum is: "+total);

i

} Creating object without
passing any argument
class CAProg5 X
— - e
{ ___.-".ff____.-"'-

public static void mam{Stﬁng“lrg[J}

{ =5

Constructors objl=new Constructors(); // call to default constructor

objl.show();

Constructors obj2=new Constructors(5);/ /call to parameterizal
.

constructor i

obj2.show(); e ' Creating object passing

|, I argumentis) to Constructor

}

Compilation, Execution and OQutput of Program 7.4 (CAProg5.java)

We can pass an object of a class as an argument to a constructor also. Such a
constructor is known as Copy Constructor. Such kind of constructors are
beneficial in the case when we want to create a copy of an existing object in JAVA
program. For Example:

Constructors(Constructor obj) //Copy Constructor

|
nol=obj.nol;

}

75 OVERLOADING IN JAVA

Overloading allows different methods or constructors to have the same name,
but different signatures where the signature can differ by the number of
parameters or data type of parameters or both. Overloading is related to compile-
time (or static) polymorphism. Overloading can never be based on the return
type of a method. We can classify the overload in following two types:

1. Method Overloading

2. Constructor Overloading

121

7.5.1 Method Overloadingin Java

Sometime, we may need to define multiple operations associated with one
common behavior of a class based on number of arguments, then we can use
method overloading. In this case, multiple methods are having same name but
different in number of parameters or data type of parameters. Such a way of
creating methods is known as Method Overloading. It increases the readability of
the program. Suppose you have to perform addition of the given numbers but
there can be any number of arguments. In the given problem, if you write the
method such as sum Two (int, int) for two parameters, and sum Three (int, int, int)
for three parameters and so on, then it may be difficult for us as well as other
programmers to efficiently use the behavior of the method because of differences
in their names. We can overcome this problem using method overload.

Method Overloading can further be used in differentways:

1. Method Overloading by changing number of arguments : In this type of
method overloading, we can have two or more methods with same name but
different number of arguments. For example: we can declare first set Value()
method to assign any default value to the field of a class and then another
method with same name but with argument to assign the given value to the
class field. Lets see the implementation in a program as follows.

Program 7.5 (CAProgé6.java) Java Program for Method Overloading:

class CAProg6 |

int marks:

void setValues() |
marks=0;

I

void setValues(intinpl) {/Method overloading
marks=inpl;

I

void show() |

System.out.println("Marks: "+marks);

I

publicstatic void main(Stringarg[]) |
CAProg6 objl=new CAProgé();
CAProgé obj2=new CAProg6();

3

objl.setValues();

obj2.setValues(450);
System.out.printin("Member of Object 1");
objl.show();

System.out.println("Member of Object 2");
obj2.show();

|
|
{ -.‘-:r-pi!.“.i'.i-'-r'-_. Executionand (Jutput of Program 7.5 (CAProgb.java)

As we can see in the output, when we passed no argument with setValues
methods then method without argument selected for execution and
marks variable assigned 0 value. When we passed 450 value as an
argument to the setValues method then method with argument selected
for execution and passed value assigned to the marks variable. This is a
main conception of method overload by changing number of arguments.
Method Overloading by changing data type of arguments : In this type
of method overload, we can have multiple methods with same name but
different data type of argument. For example: we can use setValues
method to assign different values to different fields of a class. Such as:

Program 7.6 (CAProg7.java) Java Program tor Method Overloading:
class CAProg7
int marks;

String name;
void setValues(intinp1) {
marks=inp1;

(LT

name= |

}
void setValues(String inp2) {//Method overloading

marks=0;
)

name=inp2;
-—

void show() {
System.out.printin("Marks: "+marks);
System.out.printin("Name: "+name);

public static void main(String arg([])

CAProg7 obji=new CAProg7();
CAProg7 obj2=new CAProg7();
obj1.setValues("Shivpreet");
obj2.setValues(450);
obj1.show();
obj2.show();

}

MWlend of class

-

-

Method Overloading by changing both, number of arguments and data
type of arguments : As its name implies, we can overload the methods by
declaring multiple methods with same name but different number of
arguments as well as different data types. We can implement this type of
Method Overloading according to the application requirement. We can
create methods as in previous examples by making changes like:

void setValues(String inp1)

I

}

void setValues(int inp1,String inp2)

BEE BEE SEE BEE RS AR

I

Based on the sequence of data types in parameters: The method
overloading also depends on the ordering of data types of parameters
within the method. We can use this type of Method Overloading by
creating methods in previous examples with different arguments like:

@

-_—

void setValues(String inpl, int inp2)

7.5.2 Constructor Overloading in Java

We can also overload constructors as we do in method overloading. The
constructor overloading can be defined as the concept of having more than one
constructor with different parameters so that every constructor can perform a
different task. Constructors are used to initialize the class fields. Sometimes, we
need to pass different variables in different combination of arguments. In that
case, constructor overloading becomes more convenient to do the needful. As
like methods, we canalso use constructor overloading in following types:

1. Constructor Overloading by changing number of arguments : In this
type of Constructor overloading, we can have two or more Constructors
with different number of arguments. For example: we can assign same
value to all the fields of a class in one constructor and different values to
different fields in other constructor.

Program 7.7 (CAProg8.java) Program for Constructor Overloading
class CAProg8

{
int studentld;

CAProg8() { fidefault consturtor
studentld=101;

'
CAProg8(int sid) {// overloading constructor
studentld=sid;

}
void show() //method
{

System.out.printin("Your student 1D is: "+studentld);

}
public static void main(String arg(])

{
CAProg8 obj1=new CAProg8();
CAProg8 obj2=new CAProg8(2462);

3

System.out.printin{"Member of Object 1");
obj1.show();

System.out.printin("---—--—--—- \n Member of Object 2");
obj2.show();

Compilation, Execution and Output of Program 7.7 (CAProg8.java)

Constructor Overloading by changing data type of arguments : In this
type of Constructor overloading, we can have multiple Constructors with
different data type of arguments. For example: we can declare two
Constructors to assign integer value in one constructor and string value in
other one. As we have studied in Method D".-'crlunding; we can use this

ty pe of constructor overloading using following constructors:

CAProg8(intinp1)

CAProg8 (String inp2)/ / overloading constructor with different type
of arguments

}

Constructor Overloading by changing both, number of arguments and
data type of arguments : As we can understand by its name, constructors
can overload by giving different number of arguments as well as different
data type: For example: we can declare multiple constructor with only one
integer argument, both integer and string argument and/or only string
argument. As we have studied in Method Overloading, we can use this
ty pe of constructor overloading using following constructors:

126

-

4.

CAProg8(intinp1)
1

I
CAProg8 (int inp1,String inp2)

Based on the sequence of data types in parameters : The constructor
overloading also depends on the ordering of data types of parameters
within the constructor. As we have studied in Method Overloading, we
can use this type of constructor overloading using following constructors:

CAProg8(String inpl, int inp2)

CAProg8 (int inp1,String inp2)
{

}

7.5.3 Advantages of Overloading in Java:

There are several advantages of Overloading in JAVA

r
2.

]

1

Overloading injavaimproves code re-usability and readability.
Overloading in java offers flexibility to call similar methods with different
types of data.

By using overloading in java, it is easier to remember one method name
instead of multiple names. We can also create objects in different ways to
define the default values of fields in different cases.

Consistency in naming method in java can be achieved using Overloading
inmethods of aclass.

We can pass different amount of data to an object during instantiation
process using constructor overloading.

P

$

Points to Remember

A class can be defined as a template/ blueprint that describes the behavior
and/or state that the object of its type supports.

Modifiers are the keywords which describes the access rights of members
of aclass.

Variables declared inside the class are called Fields.

Instance Variable are variables that are inherent to an object and that can
be accessed from inside any method, constructor or block of a class.

Class variables or static variables are declared with the static keyword
in a class. A class variable is accessible from an object instance, while an
instance variable is not accessible from a static method.

A method in Java is a group of instructions that performs a specific task. It
provides the reusability of code.

A Java object is a member (also called an instance) of a Java class. Each
object has anidentity, a behavior and a state,

The Java new keyword is used to create an instance of the class.

A constructor in Java is a special method that is used to initialize objects.
The constructor is called when an object of a class is created.

10. Constructor of a class must have the same name as the class name in

which it is declared.

11. A constructor that has no parameter is known as the default constructor.

12. Method Dvurluading means rnuli-iple methods are having same name but

different in number of parameters or data ty pe of parameters,

13. We canalso overload constructors as we do in method overloading,

Exercise Byxe

Que:l Multiple Choice Questions:

ii.

Aninstance of a Java class is known as:
A.Method B. Field
C. Object D.Constructor

Declaring multiple methods with same name but different number of
arguments is called.

A.Method Overloading B. Declaration
C. Inheritance D.None of These

iii, is invoked automatically when we create an object of a class.

A_Field B. Method
C.Static Member D. Constructor
iv. Aconstructor that has no parameter is knownas:
A. Default Constructor B. Constructor Overloading
C. Parameterized Constructor D. Weak Constructor
V. A Constructor can not be .
A. Abstract B. Final
C. Static D. All of theabove
Que:2 Fill in the blanks:
i. Aclasscanbedefinedasa of all its objects.
ii. are the variables declared inside the class.
iii. keyword is used to create an objectin Java.
iv. Method Overloading can be achieved based on _______ or

v. Declarin gmu ItiplE constructor in aclass is called

Que:3 Short Answer type Questions:

i. Define class in JAVA.

ii. Whatare the basic components of java class?

iii. Explain Fields in a class.

iv. What do you mean by Object?

v. Define Instance variable?

vi. What do you mean by class variable?

vii, What are methods in JAVA?

viii. Explain Private and Protected modifier.

ix. How an object of a class can be created?

x. What is constructor?

xi. Explain the difference between Methods and Constructors.

Que:d Long Answer type Questions:

i. Whatis class? Explain Fields and methods in class.

ii. Define Constructors. Explain different types of constructors with
suitable example.

iii. What do you mean by Method overloading? Explain any two ways of
method loading,.

iv. How constructor Overloading take place? Write a program to explain
different types of constructor overloading,

