PRACTICE PAPER

Time: 45 minutes Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

7. The value of $\int \frac{\cos x \, dx}{\sqrt{\sin^2 x - 2\sin x - 3}}$ equals

Section-A

\boldsymbol{C}

Thoose the correct option:						
1.	The matrix $\begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$	5 -7 0 11 -11 0	is known as			
	(a) Upper triang	ular matri	ix	(b) Skew symmetric matrix		
	(c) Symmetric m	atrix		(d) Diagonal matrix		
2.	If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, the	en the va	lue of k if $ 2A = k A $ is			
	(a) 4		(b) -4	(c) 3	(d) 0	
3.	If $A = \begin{bmatrix} \cos \theta \\ -\sin \theta \end{bmatrix}$	sin θ an cos θ	d $A (adj A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then the	ne value of k is		
	(a) 1		(b) -1	(c) 0	(d) 2	
4.	If $f(x) = e^x$ then	f' (5) is e	qual to			
	(a) e		(b) e ⁵	(c) e ⁴	(d) None of these	
5.	Let the parabolas $y = x^2 + ax + b$ and $y = x(c - x)$ touch each other at the point (1, 0). Then					
	(a) $a = -3$		(b) $b = 1$	(c) $c = 2$	(d) $b = -2$	
6.	The value of $\int_{}^{}$	$\frac{2x\ dx}{1-x^2-x}$	quals			
	$(a) \sin^{-1}\left(\frac{2x^2+1}{\sqrt{5}}\right)$	+ C		(b) $\cos^{-1}\left(\frac{2x^2+1}{\sqrt{5}}\right)+C$		
	(c) $\log\left(\frac{2x^2+1}{\sqrt{5}}\right)$	+ C		(d) $\sin^{-1}\left(\frac{2x^2-1}{\sqrt{5}}\right)+C$		

(a)	log	$(\sin x - 1) + \sqrt{\sin^2 x - 2\sin x - 3}$	+ C
(44)	105	(SIII.X = 1) + y SIII. X = 2 SIII.X = 3	

(b)
$$\log |\sin x - 1| - \sqrt{\sin^2 x - 2\sin x - 3}| + C$$

(c)
$$\log \left| (\sin x + 1) + \sqrt{\sin^2 x + 2 \sin x - 3} \right| + C$$

(d)
$$\log |\sin x - 2| + C$$

8. The integral value of
$$\int_{0}^{\frac{\pi}{2}} \frac{\tan x \, dx}{1 + m^2 \tan^2 x}$$
 is

(a)
$$\frac{\log m}{m^2 - 1}$$

(b)
$$\log\left(\frac{m^2-m}{2}\right)$$

9.
$$\int_{1}^{\sqrt{3}} \frac{dx}{1+x^2}$$
 is equal to

(a)
$$\frac{\pi}{3}$$

(b)
$$\frac{2\pi}{3}$$

(c)
$$\frac{\pi}{6}$$

$$(d) \frac{\pi}{12}$$

10. The area of the region included between the parabola
$$y = \frac{3x^2}{4}$$
 and the line $3x - 2y + 12 = 0$ is

- (a) 20 sq. units
- (b) 12 sq. units
- (c) 8 sq. units
- (d) 27 sq. units

11. The differential equation of the family of curves
$$x^2 + y^2 - 2ay = 0$$
, where a is arbitrary constant, is

(a)
$$(x^2 - y^2) y' = 2xy$$

(b)
$$2(x^2 + y^2)y' = xy$$

(c)
$$2(x^2 - y^2) y' = xy$$
 (d) $(x^2 + y^2) y' = 2xy$

(d)
$$(x^2 + y^2)y' = 2xy$$

12. The general solution of
$$(2y-1) dx - (2x+3) dy = 0$$
 is

(a)
$$\frac{2x-1}{2y+3} = k$$

(b)
$$\frac{2y+1}{2x-3} = k$$

$$(c) \ \frac{2x+3}{2y-1} = k$$

$$(d) \quad \frac{2x-1}{2y-1} = k$$

13. Which of the following is not a convex set?

(a)
$$\{(x, y) \mid 2x + 5y < 7\}$$

(b)
$$\{(x, y) | x^2 + y^2 \le 4\}$$

(c)
$$\{x: |x| = 5\}$$

(d)
$$\{(x, y) \mid 3x^2 + 2y^2 \le 6\}$$

 Suppose a random variable X follows the binomial distribution with parameters n and p, where 0<p<1. If P(X = r)/P(X = n - r) is independent of n and r, then p equals to

(a)
$$\frac{1}{2}$$

(b)
$$\frac{11}{3}$$

(c)
$$\frac{2}{5}$$

(d)
$$\frac{3}{7}$$

15. For the binomial distribution $B\left(6, \frac{1}{3}\right)$, the variance is

(a)
$$\frac{4}{3}$$

(d) None of these

Section-B (B1)

16. If a relation R on the set $\{1, 2, 3\}$ be defined by $R = \{(1, 2)\}$, then R is

- (b) Transitive
- (c) Symmetric
- (d) None of these

Let * be binary operation on R given by a * b = b - a + 1 then (5 * 4) is equal to

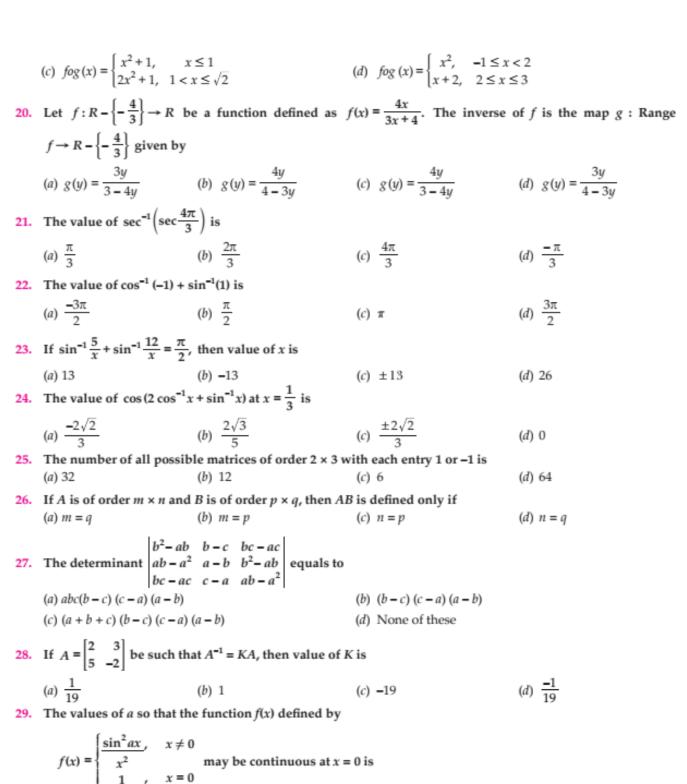
(a) 1

(d) None of these

18. Let the function $f: R \to R$ be defined by $f(x) = 2x + \sin x$ for $x \in R$. Then f is

(a) one-one but not onto

(b) onto but not one-one


(c) neither one-one nor onto

(d) one-one and onto

19. Let
$$f(x) = \begin{cases} x+1, & x \le 1 \\ 2x+1, & 1 < x \le 2 \end{cases}$$
 and $g(x) = \begin{cases} x^2, & -1 \le x < 2 \\ x+2, & 2 \le x \le 3 \end{cases}$ then $f \circ g(x)$ is

(a)
$$fog(x) = \begin{cases} x^2, & -1 \le x < 2 \\ x + 2, & 2 \le x < 3 \end{cases}$$

(b)
$$fog(x) = \begin{cases} x^2 + 1, & -1 \le x < 2 \\ x + 2, & 2 \le x \le 3 \end{cases}$$

(c) - 1

(c) $\frac{1}{\log x}$

 $(a) \pm 1$

30. The value of $\log_{x} 2$ with respect to x is

(a) $\frac{-1}{(\log_2 x)^2} \times \frac{1}{x \log_2 2}$

(d) None of these

(d) $\frac{1}{\log 2}$

31.	If $f(x) = x^2 + 2x + 7$ then va (a) 18	alue of f'(3) is (b) 8	(c) 10	(d) 3	
32.	The set of points where the function f given by $f(x) = 2x - 1 \sin x$ is differentiable is				
	(a) R	(b) $R - \left\{ \frac{1}{2} \right\}$	(c) (0, ∞)	(d) none of these	
33.	The minimum value of f	$(x) = 3\cos^2 x + 4\sin^2 x + \cos$	$\frac{x}{2} + \sin \frac{x}{2}$ is		
	(a) 4	(b) $3 + \sqrt{2}$	(c) $4 + \sqrt{2}$	(d) none of these	
34.	The value of $\int \frac{x dx}{(x^2 + 1)(x - 1)}$ equals to				
	(a) $\frac{1}{2}\log x-1 - \frac{1}{4}\log x^2 $	$\frac{1}{2} + 1 + \frac{1}{2} \tan^{-1} x + C$	(b) $\frac{1}{2}\log x+1 + \frac{1}{4}\log x^2 $	$-1 + \frac{1}{2} \tan^{-1} x + C$	
	(c) $\log x - 1 + \frac{1}{4} \log x^2 +$	$1 + \frac{1}{2} \tan^{-1} x + C$	(d) $\tan^{-1}\left(\frac{(x+1)^2}{x}\right) + C$		
35.	$\int_0^{\frac{2}{3}} \frac{dx}{4 + 9x^2}$ is equal to				
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{12}$	(c) $\frac{\pi}{24}$	(d) $\frac{\pi}{4}$	
36.	$\int_{\frac{1}{3}}^{1} \frac{(x-x^3)^{1/3} dx}{x^4}$ is equal t	do			
	(a) 6	(b) 0	(c) 3	(d) 4	
37.	The area of a minor segment of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{2}$ is				
	(a) $\frac{a^2}{12}(4\pi - 3\sqrt{3})$ sq. units	s	(b) $\frac{a^2}{4}$ (4 π – 3) sq. units		
	(c) $\frac{a^2}{12} \times (3\pi - 4)$ sq. units		(d) None of these		
38.	The solution of differential equation $\frac{dy}{dx} + \frac{y}{x} = \sin x$ is				
	(a) $x(y + \cos x) = \sin x + C$ (c) $xy \cos x = \sin x + C$		(b) $x(y - \cos x) = \sin x + C$ (d) $x(y + \cos x) = \cos x + C$		
39.	The general solution of the differential equation of the type $\frac{dx}{dy} + Px = Q$ is given by				
	(a) $ye^{\int Pdy} = \int (Qe^{\int Pdy}) dy +$		(b) $ye^{\int Pdx} = \int (Qe^{\int Pdx}) dx + C$		
	(c) $xe^{\int Pdy} = \int (Qe^{\int Pdy})dy +$	С	(d) $xe^{\int Pdx} = \int Qe^{\int Pdx} dx + C$		
40.	The value of λ for which the volume of tetrahedron, whose vertices have position vector $\hat{i} - 5\hat{j} + -\hat{i} - 2\hat{j} + 7\hat{k}$, $4\hat{i} - \hat{j} + \lambda\hat{k}$ and $7\hat{i} - 4\hat{j} + 7\hat{k}$ is 6 cubic units, is			position vector $\hat{i} = 5\hat{j} + 9\hat{k}$,	
	(a) 7	(b) 6	(c) 8	(d) 9	
41.	If $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = a\vec{\delta}$, $\vec{\beta} + \vec{\gamma}$ $\vec{\alpha} + \vec{\beta} + \vec{\gamma} + \vec{\delta}$ is	$+\vec{\delta} = b\vec{\alpha}$ and $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ are no	on coplanar and $\tilde{\alpha}$ is not pa	rallel to $\vec{\delta}$ then the value of	
	(a) 2	(b) 3	(c) 1	(d) 0	

44.	The intercepts made by the plane $2x - 3y + 5z + 4 = 0$ on the coordinate axes are					
	(a) -2 , $\frac{4}{3}$ and $-\frac{4}{5}$	(b) $-2, -\frac{4}{3}$ and $\frac{4}{5}$	(c) $\frac{4}{3}$, $-\frac{4}{3}$ and $\frac{7}{3}$	(d) $-2, -\frac{4}{3}$ and $-\frac{4}{5}$		
45.	The angle between the line $(5\hat{i} - \hat{j} - 4\hat{k}) + \lambda(2\hat{i} - \hat{j} + \hat{k})$ and the plane $\vec{r} \cdot (3\hat{i} - 4\hat{j} - \hat{k}) + 5 = 0$ is					
	$(a) \sin^{-1}\left(\frac{5}{2\sqrt{91}}\right) $	(b) $\sin^{-1}\left(\frac{9}{2\sqrt{39}}\right)$	(c) $\sin^{-1}\left(\frac{7}{3\sqrt{80}}\right)$	(d) None of these		
46.	The vector equation of the	the vector equation of the line $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$ is				
	(a) $\vec{r} = (5\hat{i} - 4\hat{j} + 6\hat{k}) + \lambda(3\hat{i} + 6\hat{k})$	$+7\hat{j}+2\hat{k}$	(b) $\vec{r} = (5\hat{i} - 3\hat{j} - 2\hat{k}) + \lambda(2\hat{i} + 6\hat{j} - 3\hat{k})$			
	(c) $\vec{r} = (5\hat{i} - 3\hat{j} - 2\hat{k}) + \lambda(3\hat{i} - 3\hat{k})$	$-7\hat{j}-2\hat{k}$	(d) None of the above			
47.	If O is the origin and A is (a, b, c) , then the direction cosines of the line OA and the equation of plane through A at right angle to OA is					
	(a) $ax + by + cz = a^2 - b^2 - c^2$		(b) $ax + by + cz = a^2 + b^2 + c^2$			
	(c) $ax + by + cz = a^2 + b^2 - c^2$		(d) None of these			
40	Let A and B be two events. If $P(A) = 0.2$, $P(B) = 0.4$, $P(A \cup B) = 0.6$, then $P(A/B)$ is equal to					
40.			$A \cup B$) = 0.6, then $P(A/B)$ is (c) 0	(d) 0.5		
49.				***		
		2	(c) $\frac{3}{8}$	$ (d) \frac{6}{7} $		
50.	Let X be a discrete random variable. The probability distribution of X is given below.					
	X	30	10	-10		
	P(X)	$\frac{1}{5}$	3 10	1/2		
	E(X) equals to					
	(a) 6	(b) 4	(c) 3	(d) -5		

42. If \vec{a} , \vec{b} , \vec{c} are the position vectors of vertices \vec{A} , \vec{B} and \vec{C} of a triangle then the area of the triangle is given by

43. If D, E and F are mid points of the sides BC, CA and AB respectively of a triangle ABC, then $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}$

(c) 2

(c) $\frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times c + \vec{c} \times \vec{a}|$ (d) None of these

(d) None of these

(a) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ (b) $\frac{1}{2} [\vec{a} \ \vec{b} \ \vec{c}]$

(b) 1

is equal to

(a) 0