## Surface Areas and Volumes



## NOTES

## **FUNDAMENTALS**

Cuboid:- A cuboid is a solid bounded by the rectangular plane regions. A cuboid has six faces, 12 edges and 8 vertices.

Total surface Area of the cuboid = 2(lb + bh + hl) sq. units.



Volume of the cuboid =  $l \times b \times h$ 

Diagonal of the cuboid =  $\sqrt{l^2 + b^2 + h^2}$ 

> A cuboidal whose length, breadth and height are equal is called a cube.



If length of each edge of a cube is a,

Then, volume of the cube  $=a^3$ 

Total surface area of the cube =  $6a^2$ 

Diagonal of the cube  $=\sqrt{3a}$ .

> **Cylinder:-** It is formed by rotating one side of a rectangle about its opposite side.



Volume of the cylinder  $= \pi r^2 h$ Area of the base  $= \pi r^2$ Area of the curved surface  $= 2\pi r h$ Total surface Area  $= 2\pi r h + 2\pi r^2 h = 2\pi r (h+r)$ 

> Right Circular Cone:- A right circular cone is a solid generated by a right angled triangle around its height.



Radius = r. Height = h Slant height = 1

Volume of the cone  $=\frac{1}{3}\pi r^2 h$ 

Area of the Base =  $\pi r^2$ 

Area of the curved surface  $= \pi r \sqrt{h^2 + r^2} = \pi r l$ 

**Sphere:-** The set of all points in the space which are equidistant from fixed j3omt is called a sphere.



OX = Radius = r

Volume of a sphere  $=\frac{4}{3}\pi r^3$ 

Surface Area of a sphere  $=4\pi r^2$ 

Hemisphere:- A plane through the centre of the sphere divides the sphere into two equal parts each of which is called a hemisphere.



Radius = OX = r Volume of a Hemisphere  $\frac{2}{3}\pi r^3$ Curved surface area of a Hemisphere =  $2\pi r^2$ 

Total surface area of a Hemisphere =  $3\pi r^2$ 

**Prism:-** Volume of Right prism = Area of  $Base \times Height$ .

Lateral surface area of a prism = perimeter of base  $\times$  Height



> **Pyramid:-** Surface area of pyramid  $=\frac{1}{2}(perimeter \ of \ base) \times Slant \ Height$ Whole surface = The slant surface + the area of the base Volume of pyramid  $=\frac{1}{2}(perimeter \ of \ base) \times Slant \ Height$ 

