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CHAPTER 22: ALLOYS

GENERAL CONSIDERATIONS

The theory of the band structure of solids assumes that the crystal has
translational invariance. But supposc that the crystal is composed of two
elements A and B that occupy at random the regular lattice sites of the struc-
ture, in proportions x and 1 — x for the composition A,B,_,. The translational
symmetry is no longer perfect. Will we then lose the consequences of band
theory, such as the existence of Fermi surfaces and of energy gaps? Will insula-
tors become conductors because the energy gap is gone? We touched on these
questions in the discussion of amorphous semiconductors in Chapter 19.

Experiment and theory agree that the consequences of the destruction of
perfect translational symmetry are much less serious (nearly always) than we ex-
pect at first sight. The viewpoint of the effective screened potential of Chapter 9
is helpful in these matters, first because the effective potentials are relatively
weak in comparison with a free ion potential and, second and most important,
the differences between the effective potentials of the host and the additive
atoms may be very weak in comparison with either alone. Alloys of Si and Ge or
of Cu and Ag are classic examples of what we may call the relative ineffective-
ness of alloying,

In any event, a low concentration of impurity atoms cannot have much
effect on the Fourier components Ug of the effective potential U(r) that is re-
sponsible for the band gaps and for the form of the Fermi surface. (This state-
ment implies that the G’s exist, which implies that a regular lattice exists. This is
not an important assumption because we know that thermal phonons do not
have drastic effects on the band structure, so that lattice distortions described
as frozen-in phonons should not have drastic cffects. If the distortions are more
serious, as with amorphous solids, the electronic changes can be significant.)

It is true that an impurity atom will introduce Fourier components of U(r)
at wavevectors that are not reciprocal lattice vectors, but at low impurity con-
centration such components are never large in comparison with the Ug, arguing
from the statistics of random potentials. The Fourier components at the recip-
rocal lattice vectors G will still be large and will give the band gaps, Fermi sur-
faces, and sharp x-ray diffraction lines characteristic of a regular lattice.

The consequences of alloying will be particularly small when the impurity
element belongs to the same column of the periodic table as the host element it
replaces, because the atomic cores will make rather similar contributions to the
effective potentials.

One measure of the effect of alloying is the residual electrical resistivity, de-
fined as the low temperature limit of the resistivity. Here we must distinguish
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Figure 2 Resistivity of a disordered binary alloy of copper and gold. The variation of the residual
resistivity depends on the composition CuAu,—, as x(1 — x), which is known as Nordheim’s Rule
for a disordered alloy. Ilere x(1 — x) is a measure of the degree of maximnm disorder possible for
a given valuce of z. (Johansson and Linde.)

between disordered and ordered alloys. An alloy is disordered if the A and B
atoms are randomly arranged, which occurs for a general value of x in the com-
position AB,_,. For special values of x, such as 1/4, 1/2, and 3/4 for a cubic
structure, it is possible for ordered phases to form, phases in which the A and B
atoms form an ordered array. The distinction between order and disorder is
shown in Fig. 1. The effect of order on the electrical resistivity is shown in
Figs. 2 and 3. The residual resistivity increases with disorder, as discussed for
amorphous materials in Chapter 19. The effect is shown in Fig. 2 for the Cu-Au
alloy system. When the specimen is cooled slowly from a high temperature, or-
dered structures are formed at CuzAu and CuAu; these structures have a lower
residual resistivity by virtue of their order, as in Fig. 3.

Thus we can usc the residual electrical resistivity to measure the effect
of alloying in a disordered structure. One atomic percent of copper dissolved
in silver (which lies in the same column of the periodic table) increases the
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Yigure 3 FEffect of ordered phases ou the resistivity of a binary alloy Cu,Au,_,. The alloys
here have been annealed. whereas those in Fig. 2 have been quenched (cooled rapidly). The
compositions of low residual resistivity correspond to the ordered compositions CuzAu and CuAu.
(Johansson and Linde.)

residnal resistivity by 0.077 pohm-cm. This corresponds to a geometrical
scattering cross section which is only 3 percent of the naive “projected area” of
the impurity atom, so that the scattering effect is very small.

In insulators there is no experimental cvidence for a significant reduction
of baud gap caused by the random potential components. For example, silicon
and germanium form homogeneous solid solutions, known as substitutional
alloys, over the entire composition range, but the band edge energies vary con-
tinuously with composition from the pure Si gap to the pure Ge gap.

It is widely believed, however, that the density of states near the band
edges in amorphous materials is smeared by the gross absence of translational
symimetry. Some of the new states thus formed just inside the gap may not
necessarily be current-carrying states because they may not extend throughout
the crystal.
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SUBSTITUTIONAL SOLID SOLUTIONS—HUME-ROTHERY RULES

We now discuss substitutional solid solutions of one metal A in another
metal B of different valence, where A and B occupy, at random, equivalent
sites in the structure. Hume-Rothery treated the empirical requirements for
the stability of a solid solution of A and B as a single phase system.

One requirement is that the atomic diameters be compatible, which
means that they should not differ by more than 15 percent. For example, the
diameters are favorable in the Cu (2.55 A) — Zn (2.65 A) alloy system: zinc
dissolves in copper as an fce solid solution up to 38 atomic percent zinc. The
diameters are less favorable in the Cu (2.55 A) — Cd (2.97 A) system, where
only 1.7 atomic percent cadmium is soluble in copper. The atomic diameters
referred to copper are 1.04 for zinc and 1.165 for cadmium.

Although the atomic diameters may be favorable, solid solutions will not
form when there is a strong chemical tendency for A and B to form “intermetal-
lic compounds,” which are compounds of definite chemical proportions. If A is
strongly electronegative and B strongly electropositive, compounds such as AB
and A,B may precipitate from the solid solution. (This is different from the for-
mation of an ordered alloy phase only by the greater chemical bonding strength
of the intermetallic compounds.) Although the atomic diameter ratio is favor-
able for As in Cu (1.02), only 6 atomic percent As is soluble. The diameter ratio
is also favorable for Sb in Mg (1.06), yet the solubility of Sb in Mg is very small.

The electronic structure of alloys can often be described by the average
number of conduction electrons (or valence electrons) per atom, denoted by n.
In the alloy CuZn the value of n is 1.50; in CuAl, n = 2.00. Changes in electron
concentration determine structural changes in many alloy systems.

The phase diagram of the copper-zinc system' is shown in Fig. 4. The fcc
structure of pure copper (n = 1) persists on the addition of zinc (n = 2) until
the electron concentration reaches 1.38. A bece structure occurs at a minimum
electron concentration of about 1.48. The y phase exists for the approximate
range of n between 1.58 and 1.66, and the hep phase € occurs near 1.75.

The term electron compound denotes an intermediate phase (such as
the B phase of CuZn) whose crystal structure is determined by a fairly well de-
fined electron to atom ratio. For many alloys the ratio is close to the Hume-
Rothery rules: 1.50 for the B phase, 1.62 for the y phase, and 1.75 for the
€ phase. Representative experimental values are collected in Table 1, based on
the usual chemical valence of 1 for Cu and Ag; 2 for Zn and Cd; 3 for Al and
Ga; 4 for Si, Ge, and Sn.

The Hume-Rothery rules find a simple expression in terms of the band
theory of nearly free electrons. The observed limit of the fee phase occurs

“The phases of interest are usually denoted by metallurgists by Greek characters: in the
Cu-Zu system we have a (fee), B (bee), ¥ (complex cubic cell of 52 atoms), € (hep) and n (hep); €
and 7 differ considerably in ¢/a ratio. The meaning of the characters depends on the alloy systcm.
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Figure 4 Equilibrium diagram of phases in the copper-zinc alloy system. The « phase is fec;
B and B’ are bece; y is a complex structure; € and 7 are both hep, but € has a ¢/ ratio near 1.56
and n (for pure Zn) has ¢/a = 1.86. The B’ phase is ordered bee, by which we mean that most of
the Cu atoms occupy sites on one sc sublattice and most of the Zn atoms ocenpy sites on a secand
sc sublattice that interpenetrates the first sublattice. The 8 phase is disordered bece: any site is
equally likely to be occupied by a Cu or Zn atom, almost irrespective of what atoms arc in the
neighboring sites.

Table 1 Electron/atom ratios of electron compounds

Minimuimn

fee phase bee phase "y-phase hep phase
Alloy hound. boundary boundaries boundaries
Cu-Zn 1.38 1.48 1.58-1.66 1.78-1.87
Cu-Al 141 1.48 1.63-1.77
Cu-Ga 1.4]
Cu-Si 1.42 1.49
Cu-Ge 1.36
Cu-Sn 1.27 1.49 1.60-1.63 1.73-1.75
Ag-Zn 1.38 1.58-1.63 1.67-1.90
Ag-Cd 1.42 1.50 1.59-1.63 1.65-1.82

Ag-Al 141 1.55-1.80
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close to the electron concentration of 1.36 at which an inscribed Fermi sphere
makes contact with the Brillouin zone boundary for the fcc lattice. The ob-
served electron concentration of the bee phase is close to the concentration
1.48 at which an inscribed Fermi spherc makes contact with the zone bound-
ary for the bece lattice. Contact of the Fermi sphere with the zone boundary for
the y phase is at the concentration 1.54. Contact for the hcp phase is at the
concentration 1.69 for the ideal ¢/a ratio.

Why is there a connection between the electron concentrations at which a
new phase appears and at which the Fermi surface makes contact with the
boundary of the Brillouin zone? We recall that the energy bands split into two
at the region of contact on the zone boundary (Chapter 9). If we add more
electrons to the alloy at this stage, they will have to be accommodated in the
upper band or in states of high energy near the zone corners of the lower
band. Both options are possible, and both involve an increase of energy. It may
also be energetically favorable for the crystal structure to change to one which
can contain a Fermi surface of larger volume (more electrons) before contact
is made with the zone boundary. In this way H. Jones made plausible the se-
quence of structures fec, bee, v, hep with increasing electron concentration.

Measurements of the lattice parameter of Li-Mg alloys are shown in
Fig. 5. In the range shown the structure is bee. The lattice contracts during the
initial stages of the addition of Mg to Li. When the lithium content drops
below 50 atomic percent, corresponding to an average electron concentration
increasing above 1.5 per atom, the lattice starts to expand. We have scen that
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Figure 5 Lattice parameter of body-centered cnbic magnesium-lithium alloys. (After
D. W. Levinson.)



22 Alloys

0.40
=
: N
g bee
&
£ 0.30 k
S
- el
g, /)
o 0.20
-
4]
g /
©
g 0.10
5
&)

L | Figure 6 Number of orbitals per unit energy range

0 1 | | i
01 2 3 4 5 6 7 8 9 forthe first Brillouin zonc of the fec and bee lat-

Energy in eV tices, as a function of energy.

for a spherical Fermi surface, contact with the zone boundary is established at
n = 1.48 electrons per atom, in a bec lattice. It appears that the expansion of
the lattice arises from the onset of overlap across the zone houndary.

The transformation from fcc to bee is illustrated by Fig. 6; this shows the
number of orbitals per unit energy range as a function of energy, for the fce
and bec structures. As the number of electrons is increased, a point is reached
where it is easier to accommodate additional electrons in the Brillouin zone of
the bee lattice rather than in the Brillouin zone of the fcc lattice. The figure is
drawn for copper.

ORDER-DISORDER TRANSFORMATION

The dashed horizontal line in the beta-phase (hece) region of the phase dia-
gram (Fig. 4) of the Cu-Zn system represents the transition temperature be-
tween the ordered (low temperature) and disordered (high temperaturc)
states of the alloy. In the common ordered arrangement of an AB alloy with a
bee structure, all the nearest-neighbor atoms of a B atom are A atoms, and vice
versa. This arrangement results when the dominant interaction among the
atoms is an attraction between A and B atoms. (If the AB interaction is weakly
attractive or repulsive, a two-phase system is formed in which some crystallites
are largely A and other crystallites are largely B.)

The alloy is completely ordercd in equilibrium at absolute zero. It becomes
less ordered as the temperature is increased, until a transition temperature is
reached above which the structure is disordered. The transition temperature
marks the disappcarance of long-range order, which is order over many inter-
atomic distances, but some short-range order or correlation among near
ncighbors may persist above the transition. The long-range order in an AB alloy
is shown in Fig. 7a. Long- and short-range order for an alloy of composition
AB; is given in Fig. 7b. The degree of order is defined below.
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Figure 7 (a) J.ong-range order versus temperature for an AB alloy. The transformation is second
order. (b) Long-range and short-range order for an ABj; alloy. The transformation for this composi-
tion is first order.

If an alloy is cooled rapidly from high temperaturcs to a temperature
below the transition, a metastable condition may be produced in which a non-
equilibrium disorder is frozen in the structure. The reverse effect occurs when
an ordered specimen is disordered at constant temperature by heavy irradia-
tion with nuclear particles. The degree of order may be investigated experi-
mentally by x-ray diffraction. The disordered structure in Fig. 8 has diffraction
lines at the same positions as if the lattice points were all occupied by only one
type of atom, because the effective scattering power of each plane is equal to
the average of the A and B scattering powers. The ordered structure has extra
diffraction lines not posscssed by the disordered structure. The extra lines are
called superstructure lines.

The use of the terms order and disorder in this chapter always refers to
regular lattice sites; it is the occupancy that is randomly A or B. Do not con-
fuse this usage with that of Chapter 19 on noncrystalline solids where therc
are no regular lattice sites and the structure itself is random. Both possibilities
occur in nature.
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Figure 8 X-ray powder photographs in AuCuj alloy. (a) Disordered by quenching from T > T;
(b) ordered by annealing at T < T,. (Courtesy of G. M. Gordon.)

The structure of the ordered CuZn alloy is the cesium chloride structure
of Chapter 1. The space lattice is simple cubic, and the basis has one Cu atom

at 000 and one Zn atom at 333. The diffraction structure factor

S(hKI) = foy + fone T (1

This cannot vanish because f, # fz,; therefore all reflections of the simple
cubic space lattice will occur. In the disordered structure the situation is
different: the basis is equally likely to have either Zn or Cu at 000 and either

Zn or Cu at 333. Then the average structure factor is

(SAD)Y ={f) + ( fye mh+k+d | (2)

where () = 5(fou + fzn)- Equation (2) is exactly the form of the result for the
bec lattice; the reflections vanish when b + k + [ is odd. We see that the or-
dered lattice has reflections (the superstructure lines) not present in the disor-
dered lattice (Fig. 8).

Elementary Theory of Order

We give a simple statistical treatment of the dependence of order on tem-
perature for an AB alloy with a bce structure. The case A;B differs from AB,
the former having a first-order transition marked by a latent heat and the latter
having a second-order transition marked by a discontinuity in the heat capacity
(Fig. 9). We introduce a measure of the long-range order. We call one simple
cubic lattice @ and the other b: the bee structure is composed of the two inter-
penetrating sc lattices, and the nearest neighbors of an atom on one lattice lie
on the other lattice. If there are N atoms A and N atoms B in the alloy, the
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long-range order parameter P is defined so that the number of A’s on the
lattice @ is equal to 5(1 + P)N. The number of A’s on lattice b is equal to
H1—P)N. When P = =*1, the order is perfect and each lattice contains only
one type of atom. When P = 0, each lattice contains equal numbers of A and B
atoms and there is no long-range order.

We consider that part of the internal energy associated with the bond en-
ergies of AA, AB, and BB nearest-neighbor pairs. The total bond energy is

E =N, Ups + NggUpgp +N,gUyp . (3)

where Nj; is the number of nearest-neighbor #j bonds and Uy is the energy of
an ij bond.

The probability that an atom A on lattice a will have an AA bond is equal
to the probability that an A occupies a particular nearest-neighbor site on b,
times the number of nearest-neighbor sites, which is 8 for the bee structure.
We assume that the probabilities are independent. Thus, by the preceding ex-
pressions for the number of As on ¢ and b,

Ny = 8[5(1 + PN][5(1 = P)] = 2(1 = PAN ;
Nps = 8[X(1 + PINI[3(1 - P)] =2(1 - PN ; (4)
Nag = 8NIz(1 + P)* + 8N[{(1 —P)* = 4(1 + PN .
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The energy (3) becomes
E = E, + 2NPU , (5)
where
Ey=2N(Uaa + Ugy +2U4g) ; U=2Usp ~ Upa — Uspg . (6)

We now calculate the entropy of this distribution of atoms. There are
1(1 + P)N atoms A and 3(1 — P)N atoms B on lattice a; there are X1 — P)N
atoms A and 3(1 + P)N atoms B on lattice b. The number of arrangements G of
these atoms is

N! ’
“ [[g(l +P)N|!5(1 — P)NJ!] 7

From the definition of the entropy as § = kp In G, we have, using Stirling’s
approxjmation,

S =2NkpIn 2 — Nkg[(1+P)In(1+P)+ (1 —P)In(1 —P)] . (8)

This defines the entropy of mixing. For P = +1,§ = 0;for P =0, S = 2Nkg In 2.
The equilibrium order is determined by the requirement that the free
energy F = E — TS be a minimum with respect to the order parameter P. On
differentiating F with respect to P, we have as the condition for the minimum
ANPU + Nk;T In % =0 . 9)
The transcendental equation for P may be solved graphically; we find the
smoothly decreasing curve shown in Fig. 7a. Near the transition we may
expand (9) to find 4NPU + 2NkgTP = 0. At the transition temperature P = 0,
so that

T, = —2Ulky . (10)

For a transition to occur, the effective interaction U must be negative.

The short-runge order parameter r is a measure of the fraction of the
average number g of nearest-neighbor bonds that are AB bonds. When com-
pletely disordered, an AB alloy has an average of four AB bonds about each
atom A. The total possible is cight. We may define

r=1{g—4), (11)

so that ¥ = 1 in complete order and r = 0 in complete disorder. Observe that r
is a measure only of the local order about an atom, whereas the long-range
order parameter P refers to the purity of the entire population on a given sub-
lattice. Above the transition temperature T, the long-range order is rigorously
zero, but the short-range order is not.
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PHASE DIAGRAMS

There is a large amount of information in a phase diagram even for a bi-
nary system, as in Fig. 4. The areas enclosed by curves relate to the equilib-
rium state in that region of composition and temperature. The curves mark the
course of phase transitions as plotted in the T-x plane, where x is the composi-
tion parameter.

The equilibrium state is the statc of minimum free energy of the binary
system at given T, x. Thus the analysis of a phase diagram is the subject of
thermodynamics. Several extraordinary results come out of this analysis, in
particular the existence of low-melting-point eutectic compositions. Because
the analysis has been treated in Chapter 11 of TP, we only outline the principal
results here.

Two substances will dissolve in each other and form a homogeneous mix-
ture if that is the configuration of lowest free energy accessible to the compo-
nents. The substances will form a heterogeneous mixture if the combined free
energy of the two separate phases side by side is lower than the free energy of
the homogeneous mixture. Now we say that the mixture exhibits a solubility
gap. In Fig. 4 we see that compositions near Cug gyZng 49 are in a solubility gap
and are mixtures of fcc and bee phases of different structures and composi-
tions. The phase diagram represents the temperature dependence of the solu-
bility gaps.

When a small fraction of a homogencous liquid freezes, the composition of
the solid that forms is almost always different from that of the liquid. Consider
a horizontal section near the composition Cuy gZny o in Fig. 4. Let x denote the
weight percent of zinc. At a given temperature, there are three regions:

x > x;, the equilibrium system is a homogeneous liquid.
xg < x <uxy, there is a solid phase ol composition x5 and a liquid phase
of composition x;.
x < x5, equilibrium system is a homogeneous solid.

The point x;, traces a curve called the liquidus curve, and the point x5 traces
the solidus curve.

Eutectics. Mixtures with two liquidus branches in their phase diagram are
called eutectics, as in Fig. 10 for the Au-Si system. The minimum solidification
temperature is called the eutectic temperature; here the composition is the
eutectic composition. The solid at this composition consists of two separate
phases, as in the microphotograph of Fig. 11.

There are many binary systems in which the liquid phase persists to tem-
peratures below the lower melting temperature of the constituents. Thus
Auy 595ig 5 solidifies at 370°C as a two-phase heterogeneous mixture, although
Au and Si solidify at 1063°C and 1404°C, respectively. One phase of the eutec-
tic is nearly pure gold; the other nearly pure silicon.
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Figure 11 Microphotograph of the Pb-Sn eutectic. (Courtesy of J. D. Hunt and K. A. Jackson.)
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The Au-Si eutectic is important in semiconductor technology because the
eutectic permits low temperature welding of gold contact wires to silicon de-
vices. Lead-tin alloys have a similar eutectic of PbgeSng 74 at 183°C. This or
nearby compositions are used in solder: nearby if a range of melting tempera-
tures is desired for ease in handling.

TRANSITION METAL ALLOYS

When we add copper to nickel, the effective magneton number per atom
decreases linearly and goes through zero near Cuy 5Nig 49, as shown in Fig. 12.
At this composition the extra electron from the copper has filled the 3d band,
or the spin-up and spin-down 3d sub-bands that were shown in Fig. 12.7b. The
situation is shown schematically in Fig. 13.
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0.60 Electron

Figure 13 Distribution of electrons in the alloy
60Cu40Ni. The extra 0.6 electron provided by
the copper has filled the d band entirely and in-
creased slightly the number of electrons in the s
band with respect to Fig. 12.7b.
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Figure 14 Density of states in nickel. (V. L. Moruzzi, J. F. Janak. and A. R. Williams.)

For simplicity the block drawings represent the density of states as uni-
form in energy. The actual density is known to be far from uniform; the result
of a modern calculation is shown in Fig. 14 for nickel. The width of the 3d
band is about 5 eV. At the top, where the magnetic effects are determined, the
density of states is particularly high. The average density of states is an order
of magnitude higher in the 3d band than in the 4s band. This enhanced density
of states ratio gives a rough indication of the expected enhancement of the
electronic heat capacity and of the paramagnetic susceptibility in the nonfer-
romagnetic transition metals as compared with the simple monovalent metals.

Figure 15 shows the effect of the addition of small amounts of other ele-
ments to nickel. On the band model an alloying metal with z valence electrons
outside a filled d shell is expected to decrease the magnetization of nickel by
approximately z Bohr magnetons per solute atom. This simple relation holds
well for Sn, Al, Zn, and Cu, with z = 4, 3, 2, and 1, respectively. For Co, Fe,
and Mn the localized moment model of Friedel accounts for effective z values
of =1, =2, and —3, respectively.

The average atomic magnetic moments of binary alloys of the elements
in the iron group are plotted in Fig. 16 as a function of the concentration of
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Figure 15 Saturation magnetization of nickel alloys in Bohr magnetons per atom as  function of
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electrons outside the 3p shell. This is called a Slater-Pauling plot. The main se-
quence of alloys on the right-hand branch follows the rules discussed in con-
nection with Fig. 15. As the electron concentration is decrecased, a point is
reached at which neither of the 3d sub-bands is entirely filled, and the mag-
netic moment then decreases toward the left-hand side of the plot.

Electrical Conductivity. It might be thought that in the transition metals the
availability of the 3d band as a path for conduction in parallel with the 4s band
would increase the conductivity, but this is not the way it works out. The resistiv-
ity of the s electron path is increased by collisions with the d electrons; this is a
powerful extra scattering mechanism not available when the d band is filled.
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Figure 16 Average atomic moments of binary alloys of the elements in the iron group. (Bozorth.)

We compare the values of the electrical resistivities of Ni, Pd, and Pt in
microhm-cm at 18°C with that of the noble metals Cu, Ag, and Au immedi-
ately following them in the periodic table:

Ni Pd Pt

7.4 10.8 10.5

1.7 1.6 2.2

The resistivities of the noble metals are lower than those of the transition
metals by a factor of the order of 5. This shows the effectiveness of the s-d
scattering mechanism.

KONDO EFFECT

In dilute solid solutions of a magnetic jon in a nonmagnetic metal crystal
(such as Mn in Cu), the exchange coupling between the ion and the conduc-
tion electrons has important consequences. The conduction electron gas is
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Figure 17 Magnetization of 4 free electron Fermi gas at T = 0 in neighborhood of a point mag-
netic moment at the origin r = 0, according to the RKKY theory. The horizontal axis is 2k r, where
k7 is the wavevector at the Fermi surface. (de Gennes.)

magnetized in the vicinity of the magnetic ion, with the spatial dependence
shown in Fig. 17. This magnetization causes an indirect exchange interaction®
between two magnetic ions, because a second ion perceives the magnetization
induced by the first ion. The interaction, known as the Friedel or RKKY inter-
action, also plays a role in the magnetic spin order of the rare-earth metals,
where the spins of the 4fion cores are coupled together by the magnetization in-
duced in the conduction electron gas.

A consequence of the magnetic ion-conduction clectron interaction is the
Kondo effect, discussed in a different context in Chapter 18. A minimum in
the electrical resistivity-temperature curve of dilute magnetic alloys at low
temperatures has been observed in alloys of Cu, Ag, Au, Mg, Zn with Cr, Mn,
and Fe as impurities, among others.

The occurrence of a resistance minimum is connected with the existence
of localized magnetic moments on the impurity atoms. Where a resistance
minimum is found, there is inevitably a local moment. Kondo showed that the
anomalously high scattering probability of magnctic ions at low temperatures

%A review of indirect exchange interactions in metals is given by C. Kittel, Solid state physics
22, 1 (1968); a review of the Kondo effect is given by J. Kondo, “Theory of dilute magnetic alloys,”
Solid state physics 23, 184 (1969) and A. J. Heeger, “Localized moments and nonmoments in
metals: the Kondo effect,” Solid state physics 23, 248 (1969). The notation RKKY stands for
Ruderman, Kittel, Kasuya, and Yosida.



22 Alloys

0.090 0.200
AuFe

0.088 —0.198

0.086 —0.196

0.084 —0.194
g g
C=:1. 0.082 0.02 at. % Fe _ 0.192 ci
5 k=
=3 z
& 0.0801~ —0.190
] A

0.078 —0.188

0.076 0.006 at. % 0.186

0.074~ o 0.184

o
\
o
0 | | | |
0 1 2 3 4
T, K

Figure 18 A comparison of experimental and theorctical results for the increase of electrical re-
sistivity at low temperatures in dilute alloys of iron in gold. The resistance minimum lies to the
right of the figure, for the resistivity increases at high temperatures because of scattering of elec-
trons by thermal phonons. The experiments are due to D. K. C. MacDonald, W. B. Pearson, and
L. M. Templeton; the theory is by J. Kondo. An exact solution was given by K. Wilson.

is a consequence of the dynamic nature of the scattering by the exchange
coupling and of the sharpness of the Fermi surface at low temperatures. The
temperature region in which the Kondo effect is important is shown in Fig. 18.

The central result is that the spin-dependent contribution to the resistivity is

3z]
Pspin = CPy 1+€—FlnT =cpp~cpyInT | (12)

where [ is the exchange energy; z the number of nearest neighbors; ¢ the con-
centration; and p,, is a measure of the strength of the exchange scattering.
We see that the spin resistivity increases toward low temperatures if | is nega-
tive. If the phonon contribution to the electrical resistivity goes as T® in the
region of interest and if the resistivities are additive, then the total resistivity
has the form

p=aT’+cpy—cpInT , (13)
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with a minimum at
dp/dT = 5aT" — cpy /T =0 (14)
whence
T = (cp/5a)Y% (15)

The temperature at which the resistivity is a minimum varies as the one-fifth
power of the concentration of the magnetic impurity, in agreement with experi-
ment, at least for Fe in Cu.

Problems

1. Superlattice lines in CugAu. CujAu alloy (75% Cu, 25% Au) has an ordered state
below 400°C, in which the gold atoms occupy the 000 positions and the copper
atoms the 330, 203, and 033 positions in a face-centered cubic lattice. Give the in-
dices of the new x-ray reflections that appear when the alloy goes from the disor-
dered to the ordered state. List all new reflections with indices <2.

2. Configurational heat capacity. Derive an expression in terms of P(T) for the heat
capacity associated with order/disorder effects in an AB alloy. [The entropy (8) is
called the configurational entropy or entropy of mixing. ]



