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Figure 1 Ordered (a) and disordered (b) arrangements of AB ions in the alloy AB. 



CHAPTER 22: ALLOYS 

GENERAL CONSIDERATIONS 

The theory of the band structure of solids assumes that the crystal has 
translational invariancc. Rut supposc that thc crystal is cornposcd of two 
elements A and B that occupy at random the regular lattice sites of the struc- 
ture, in proportions x and 1 - x for the composition A,B,-,. The translational 
symmetv is no longer perfect. Will we then lose the consequences of band 
theory, such as the existence of Ferrr~i surfaces and of energy gaps? Will insula- 
tors becorrie co~iductors because the eriergy gap is gone? We touched on these 
questions in the discussion or amorphous semiconductors in Chapter 19. 

Expcrimrnt and thcory agrcc that thc conscqncnccs of the destnlction of 
perfect translational symmetry are much less serious (nearly always) than we ex- 
pect at first sight. The viewpoint of the effective screened potential of Chapter 9 
is helpful in these matters, first because the effective potentials are relatively 
weak in comparison with a free ion potential and, second and most important, 
tlie differerices betweeri the effective potentials of tlie host arid the additive 
atoms may he very weak in comparison with either alone. Alloys of Si and Ge or 
of Cu and Ag are classic examples of what we may call tlie relative ineffective- 
ncss of alloying. 

In any event, a low concentration of impurity atoms cannot have much 
effect on the Fourier components U ,  of the effective potential U(r) that is re- 
sponsible for the band gaps and for the form of the Fermi surface. (This state- 
ment irr~plies that the G's exist, which implies that a regular lattice exists. This is 
not an inlportalit assumptioii because we know that thermal phonoi~s do not 
have drastic erfects on the band structure, so that lattice distortions described 
as fiozcn-in phonons should not haw drastic cffrcts. If thc distortions arc more 
serious, as with amorphous solids, the electronic changes can be significant.) 

It is true that an impurity atom will introduce Fourier components of U(r) 
at wavevectors that are not reciprocal lattice vectors, but at low impurity con- 
centration such components are never large in comparison with the U,, arguing 
fro111 the statistics of random potentials. The Fourier cornpouents at the recip- 
rocal lattice vectors G will still be large and will give the band gaps, Fermi sur- 
faces, and sharp x-ray diffraction lines charactcristic of a rcgular lattice. 

The consequences of alloying will he particnlarly small when the impurity 
element belongs to the same column of the periodic table as the host element it 
replaces, because the atomic cores will make rather similar contributions to the 
effective pote~itids. 

One measure of the effect of alloying is the residual electrical resistivity, de- 
fined as the lo\v temperature limit of the resistivity. Here we must distinguish 
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Figure 2 Resistivity of a disordered binary alloy of copper and gold. The variation of the residual 
resistivity depends on t l ~ r  cumpuritiun Cqi \u ,_ ,  as x ( l  - x), which is known as Nordheim's Rule 
for a disordered alloy. IIere x ( l  - x) is a measure of the degree of maximum disorder possihle fix 
a givcn valuc of x. (Johansson and Linde.) 

between disordered and ordered alloys. An alloy is disordered if the A and B 
atoms are randonlly arranged, which occurs for a general value of x in the com- 
position A,B1-,. For special values of x, such as 114: 1/2, and 314 for a cubic 
structure, it is possible for ordered phases to form, phases in which the A and B 
atoms lorm an ordered array. Thc distinction between order and disorder is 
shown in Fig. 1. The effect of order on the electrical resistivity is s h o ~ n  in 
Figs. 2 and 3. The residual resistivity increases with disorder, as discussed for 
amorphous materials in Chapter 19. The effect is shawl in Fig. 2 for the Cu-Au 
alloy system. When the specimen is cooled slowly fro~n a high te~nperature, or- 
dered structures are fornred at Cu,Au and CuAu; these structures have a lowcr 
residual resistivity by virtue or their order, as in Fig. 3. 

Thus we can usc thc residual electrical resistivity to measure the effect 
of alloying in a disordered structure. One atomic percent of copper dissolved 
in silver (which lies in the same column of the periodic table) increases the 
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liigure 3 Effect  of ordered pllares UII t l~c  resistivity of a binar). alloy Cu,Au,-,. The alloys 
here have been annealed. whereas those in Fig. 2 have bee11 quc~lclrcd (cooled rapidly). The 
compositions of low rcsidual resistivity correspond to the ordered compositions Cul3Au and CuAu. 
(Johansson and Linde.) 

rcsidnal resistivity by 0.077 pohrr~-cm. This corresponds to a geometrical 
scattering cross section which is only 3 percent of thc naive "projected area" of 
the impurity atom, so that the scattering effect is very small. 

In insulators there is no experimental cbidence for a significant reduction 
of band gap caused by thc random potential components. For exa~nple, silicon 
and germanium form homogeneous solid solutior~s, known as substitutional 
alloys, ovcr the entire composition range, but t l ~ e  band edge energies vary- con- 
tinlionsly with composition from the pure Si gap to the pure Gc gap. 

It is widely believed, however, that the density of states near the band 
edges in amorphous ~naterials is snlearecl by thc gross absence of translational 
syrrln~etry. So~ne of the newr statcs thns formed just inside the gap may not 
r~ecessaril~ he currcnt-carqing states because they may not extend throughout 
the crystal. 



SUBSTITUTIONAL SOLID SOLUTIONS-HUME-ROTHERY RULES 

We now discuss substitutional solid solutions of one metal A in another 
metal B of different valence, where A and B occup): at random; equivalent 
sites in the structure. Hurne-Rothery treated the empirical requirements for 
the stability of a solid solution of A and B as a single phase system. 

One requirement is that the atomic diameters be compatible, which 
means that they should not differ by more than 15 percent. For example, the 
diameters are favorable in the Cu (2.55 A) - Zn (2.65 A) alloy system: zinc 
dissolves in copper as an fcc solid solution up to 38 atomic percent zinc. The 
diameters are less favorable in the Cu (2.55 A) - Cd (2.97 A) system, where 
only 1.7 atomic percent cadmium is soluble in copper. The atomic diameters 
referred to copper are 1.04 for zinc and 1.165 for cadmium. 

Although the atomic diameters may be favorable, solid solutions will not 
form when there is a strong chemical tendency for A and B to form "intermetal- 
lic compoimds," which are compounds of definite chemical proportions. If A is 
strongly electronegative and B strongly electropositive, compounds such as AB 
and A,B may precipitate from the solid solution. (This is different fro111 the for- 
mation of an ordered alloy only by the greater chemical bonding strength 
of the intermetallic compounds.) Although the atomic diameter ratio is favor- 
able for As in Cu (1.02), only 6 atomic percent As is solublr. The diameter ratio 
is also favorable for Sb in Mg (1.06), yet the solllbility of Sb in Mg is very small. 

The electronic stnlctrlre of alloys can often be described by the average 
number of conduction electrons (or valence electrons) per atom, denoted by n. 
In the alloy CuZn the value of n is 1.50; in CuAl, n = 2.00. Changes in electron 
concentration determine stmctural changes in rnany alloy systems. 

The phase diagram of the copper-zinc system1 is shown in Fig. 4. The fcc 
structure of pure copper (n = 1) persists on the addition or  zinc (n. = 2) until 
the electron concentration reaches 1.38. A bcc structure occurs at a minimum 
electron concentration of about 1.48. The y phase exists for the approximate 
range of n between 1.58 and 1.66, and the hcp phase E occurs near 1.75. 

The term electron compound denotes an intermediate phase (such as 
the p phase of CuZn) whose crystal structure is determined by a fairly well de- 
fined electron to atom ratio. For many alloys the ratio is close to the Hume- 
Rothery rules: 1.50 for the P phase, 1.62 for the y phase, and 1.75 for thc 
r phase. Representative experimental values are collcctcd in Table 1, based on 
the usual chemical valence of 1 for Cu and Ag; 2 for Zn and Cd; 3 for A1 and 
Ga; 4 for Si, Ge, and Sn. 

The Hnme-Rothery rilles find a simple expression in terms of the band 
theory of nearly free electrons. The observed limit of the fcc ~11ase occurs 

'The phases of interest are usually denoted by metallurgists by Creek characters: in the 
Cu-Zn system we havc a (fcc), p (bcc), y (complex cubic cell of 52 atoms), E (hcp) and 1) (hcp); E 

and q differ considerably in c/n ratio. The meaning of the characters depends UII the alloy systcm. 
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Figure 4 Equilibrium diagram of phases in the cnpper-zinc alloy system. The a phase is fcc; 
p and p' are bcc; y is a complex structure; E and are both hcp, but E has a cia ratio near 1.56 
and q (for pure ZII) has c/u = 1.86. Tlre B' phase is ordcrod boc, by which wc nlcau that most o l  
the Cu atorns occupy sites on our sr suhlattire and most of the Zn atoms occnpy s i t ~ s  on a second 
sc sublattice that iuterpenetrates the first sublattice. The P phase is disordered bcc: any site is 
rq~rdlly likely to be occupied by a Cu or ZII aturn, al~rrort irrcspcctivc of what alorns arc in Lhe 
neighboring sites. 

Table 1 Electronlatom ratios of electron cnmpnunds 

Mirrirnurr~ 
fcc phase bcc phase y-phase hcp phase 
honndarv ho~rndarv hourrdarier bou~rdaries 

Cu-Zn 1.38 
CII-A1 1.41 
Cu-Ga 1.41 
Cu-Si 1.42 
Cu-Ce 1.36 
Cu-Sn 1.27 
ilg-Zn 1.38 
Ag-Cd 1.42 
Ag-A1 1.41 



close to the electron concentration of 1.36 at which an inscribed Fermi sphere 
makes contact with the Brillouin zone boundary for the fcc lattice. The ob- 
sewed electron concentration of the bcc phase is close to thc concentration 
1.48 at which an inscribed Fermi spherc makes contact with the zone bound- 
ary for the bcc lattice. Contact of the Fermi sphere with the zone boundary for 
the y phase is at thc concentration 1.54. Contact for the hcp phase is at the 
concentration 1.69 for the ideal cla ratio. 

Why is there a connection between the electron concentrations at u.hic11 a 
new phase appears and at which the Fermi surface makes contact with the 
boundary of the Brillouin zone? We recall that thc cncrgy hands split into hvo 
at the region of contact on the zone boundary (Chapter 9). If we add more 
electrons to the alloy at this stage, thcy ~411 have to be accommodated in the 
upper band or in states of high energy near the zone corners of the lower 
band. Both options are possible, and both involve an increase of energy. It may 
also he energetically favorable for the crystal structure to change to one which 
can contain a Fermi surface of larger volun~e (more electrons) before contact 
is made with the zone boundary. In this way H. Jones madc plausible the se- 
quence of structures fcc, bcc, y,  hcp with increasing electron concentration. 

Measurements of the latticc parameter of Li-Mg alloys are shown in 
Fig. 5.  In thc range shown the structure is bcc. The lattice contracts during the 
initial stages of the addition of Mg to Li. When the lithiurn content drops 
below 50 atomic percent, corresponding to an average electron concentration 
increasing above 1.5 per atom, the lattice starts to expand. We have sccn that 

Figure 5 Lattice parameter of body-centered cubic n1agnesrn111-lithiu111 alloys. (After 
D. W. Lewson.) 
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Figure G Number of orbitals per unit energy range 
for the first Brilluui~l zone of the fcc and bcc lat- 
tices, as a function of enera.  

for a spherical Fermi surface, contact with the zone boundaly is established at 
7~ = 1.48 electrons per atom, in a bcc lattice. It appears that the expansion of 
the lattice arises from the onset of overlap across the zone boundary. 

The transformation from fcc to bcc is illustrated hy Fig. 6; this shows the 
numher of orbitals per unit energy range as a fi~nction of enera ,  for the fcc 
and bcc structures. As the number of electrons is increased, a point is reached 
where it is easier to accornmodatc additional electrons in the Brillouin zone of 
the bcc lattice rather than in the Rrillouin zone of the fcc lattice. The figure is 
draw11 for copper. 

ORDER-DISORDER TRANSFORMATION 

The dashed horizontal line in the beta-phase (hcc) region of the phase dia- 
gram (Fig. 4) of the Cu-Zn system represents the transition temperature be- 
tween the ordered (low temperature) and disordered (high temperature) 
states of the alloy. In the common ordered arrange~rient of an AB alloy uith a 
bcc structure, all thc nearest-neighbor atoms of a B atom are A atoms, and vice 
versa. This arrangement results when the dominant interaction among the 
atoms is an attraction between A and B atoms. (If the AR interaction is weakly 
attractive or repulsive, a two-phase system is formrd in which some crystallites 
are largely A and other crystallites are largcly B.) 

The alloy is completely ordercd in equilibrium at absolute zero. It becomes 
less ordered as the temperafixre is increased, until a transition temperature is 
reached above which thr str~icture is disordered. The transition temperature 
niarks the disappearance of long-range order, which is order over many inter- 
atomic distances, but some short-range order or correlation among near 
ncighhors may persist above the transition. Thc long-range order in an AB alloy 
is shown in Fig. 7a. Long- and short-range order for an alloy of con~position 
AB, is given in Fig. 'ib. The degree of order is defined below. 



Short-range order 

3 

Temperature --t 
(b) 

Figure 7 (a) Jang-range order verslts temperature for an AB alloy. The tranrforn~atiun is s euu~~d  
order. (b) Long-range and short-range order for an An, alloy. The transformation for this composi- 
tion is first order. 

If an alloy is cooled rapidly lrom high temperatures to a temperature 
below the transition, a metastablc condition may he produced in which anon- 
cq~iilihrilim disorder is frozen in the structure. The reverse effect occurs when 
an ordered specimen is disordered at constant temperature by heavy irradia- 
tion with nuclear particles. The degree of order may be investigated experi- 
mentally by x-ray diffraction. The disordered structure in Fig. 8 has diffraction 
lines at the same positiorls as if t l ~ e  lattice points were all occupied by only one 
type of atom, because the effective scattering power of each plane is eqlial to 
the average of the A and B scattering powers. The ordered str~tcture has extra 
diffraction lines not posscsscd by the disordered str~icture. The extra lines are 
called superstructure lines. 

The use of the terms order and disorder in this chapter always refers to 
regular lattice sites; it is the occupancy that is ra~ldonrly A or B. Do not con- 
fuse this usage with that of Chapter 19 on noncrystalline solids where therc 
are no regular lattice sites and the structure itself is random. Both possihilities 
occur in nature. 
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(6 
Figure 8 X-ray powder photographs in AuCu, alloy. (a) Disordered by quenching from T > T,; 
(b) ordered by annealing at T < T,. (Courtesy of 6. M. Gordon.) 

The structure of the ordered CuZn alloy is the cesium chloride structure 
of Chapter 1. The space lattice is simple cubic, and the basis has one Cu atom 
at 000 and one Zn atom at &;. The diffraction structure factor 

This cannot vanish because fc, + fin; therefore all reflections of the simple 
cubic space lattice will occur. In the disordered structure the situation is 
different: the basis is equally likely to have either Zn or Cu at 000 and either 
Zn or Cu at &$;. Then the average structure factor is 

(~(hkZ)) = (f) + (f) e-zli(h+k+l) , (2) 

where (f) = $(fc, +fin). Equation (2) is exactly the form of the result for the 
bcc lattice; the reflections vanish when h + k + I is odd. We see that the or- 
dered lattice has reflections (the superstructure lines) not present in the disor- 
dered lattice (Fig. 8). 

Elementary Theory of Order 

We give a simple statistical treatment of the dependence of order on tem- 
perature for an AB alloy with a bcc structure. The case A,B differs from AB, 
the former having a first-order transition marked by a latent heat and the latter 
having a second-order transition marked by a discontinuity in the heat capacity 
(Fig. 9). We introduce a measure of the long-range order. We call one simple 
cubic lattice a and the other b: the bcc structure is composed of the two inter- 
penetrating sc lattices, and the nearest neighbors of an atom on one lattice lie 
on the other lattice. If there are N atoms A and N atoms B in the alloy, the 



Figure 9 Heat capacity versus tem- 
perature of CuZn alloy @-brass). Temperature in "C 

long-range order parameter P is defined so that the number of A's on the 
lattice a is equal to :(1 + P)N.  The number of A's on lattice h is equal to 
: ( I -P )N .  When P = 2 1 ,  the order is perfect and each lattice contains only 
one type of atom. When P = 0, each lattice contains equal numbers of A and B 
atoms and there is no long-range order. 

We consider that part of the internal energy associated with the bond en- 
ergies ofAA, AB, and BB nearest-neighbor pairs. The total bond energy is 

where Nq is the number of nearest-neighhor ij bonds and U,i is the energy of 
an ij bond. 

The probability that an atom A on lattice a will have an AA bor~d is equal 
to the probability that an A occupies a particular nearest-neighbor site 011 b, 
times the number of nearest-neighbor sites, which is 8 Tor the bcc structure. 
We assume that the probabilities are independent. Thus, by the preceding ex- 
pressions for the number of A's on a and 6, 
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The energy ( 3 )  becorrles 

E  = E,  + 2NP2u . 
where 

E o z 2 N ( C ' , , + l i , B + 2 U A n ) ;  U = 2 U A u - U A 4 - C T u B .  (6) 

\tie now calculate the entropy of this distribution of atoms. There are 
i ( 1  + P)N atoms A and i ( 1  - P)N atoms B on lattice a; there are i ( 1  - Y ) N  
atoms A and i ( 1  + P)N atoms B on lattice b. The number of arrangements G of 
these atoms is 

From thc dcfinition of the entropy as S = kB  In G, we have, nsing Stirling's 
approximation, 

S = 2Nk, In 2  - hlkB[(l  + P) ln ( l  + P) + ( 1  - P) In (1  - P)] . (8 )  

This defines the entropy of mixing. For P  = t-1: S = 0; for P  = 0, S = 2NkB In 2. 
The equilibrium order is determined by the requirement that the free 

energy F = E - TS be a minimum with respect to the order parameter P. On 
differentiating F with respect to P, we have as the condition for the minimum 

1 + P  4NPL' + NkBT In - = 0 . 
I - P  

The transcendental equation for P map be solved graphically; we find the 
sr~~oothly decreasirlg curve sl~owr~ in Fig. 7a. Near the transition we may 
expand ( 9 )  to find 4NPL' + 2Nk,?'Y = 0. At the transition tenlperature P = 0, 
so that 

For a transition to occur, the effective interaction U must be negative. 
The short-range order parameter r is a Irieasure of tlle fraction of the 

average number q of nearest-neighbor bonds that are AL3 bo~lds. \Vlien com- 
pletely disordered, an AB alloy has an average of four AB bonds about each 
atom A. Thc total possiblc is eight. N7e may define 

so that r = 1  in complete order and r = 0 in complete disorder. Observe tlrat r 
is a measiire only of thc local ordcr about an atom, whereas the long-range 
order parameter P  refers to the piirity of the entire popillation on a given s i~h-  
lattice. Above the transition temperature T,  the long-range order is rigorously 
zero, but the short-range order is not. 



PIUSE DIAGRAMS 

There is a large amount of information in a phase diagram even for a bi- 
nary system, as in Fig. 4. The areas enclosed by curves relate to the equilib- 
rium state in tltat region of conrposition and te~nperature. The curves miark the 
course of phase transitions as plotted in the T-x pla~ie, where x is the composi- 
tion parameter. 

The eq~iilibril~m statc is thc statc of minimum free energy of the binary 
system at given T, x. Thus the analysis of a phase diagram is the snbject of 
thermodynamics. Several extraordinary results come out of this analysis, in 
particular the existence of low-melting-point eutectic compositions. Because 
the analysis has been treated in Chapter 11 of TP, we only outline the principal 
results here. 

Two substances will dissolve in each other and form a homogeneous mix- 
ture if that is the configuration of lowcst frcc cncrgy accessible to thc compo- 
nents. The substances will form a heterogeneous mixtiire if the combined free 
energy of the two separate phases side by side is lower than the free e n e r g  of 
the homogeneous mixture. Now we say that the mixture exhibits a solubility 
gap. In Fig. 4 we see that conipositions near Cuo6,Zn,,, are in a solubility gap 
and are mixtures of fcc and bcc phases of different structures and con~pusi- 
tions. The phase diagram represents the temperature dependence of the solu- 
bility gaps. 

When a small fraction of a homogcncous liquid frcczcs, thc composition of 
the solid that forms is almost always different from that of the liquid. Consider 
a horizontal section near the composition Cu, ,,Z%.,, in Fig. 4. Let x denote the 
weight percent of zinc. At a given temperature, there are three regions: 

x > x,, the equilibrium system is a l~omogeneous liquid. 
xs < x < x,, there is a solid phase of composition xs and a liquid phase 

of composition xL. 
x < x,, equilibrium system is a homogeneous solid. 

The point xL traces a curve called the liquidus curve, and the point xs traces 
the solidus curve. 

Eutectics. Mixtures with two liquidus branches in their phase diagram are 
called eutectics, as in Fig. 10 for the Au-Si system. The minimum solidification 
temperature is called the entectic temperature; here the composition is the 
eutectic composition. The solid at this composition consists of two separate 
phases, as in the microphotograph of Fig. 11. 

There are many binary systems in which the liquid phase persists to tem- 
peratures below the lower rrielting temperature of the constituents. Thus 
Auo69Sio,0, solidifies at 370°C as a two-phase heterogeneous mixture, although 
Au and Si solidify at 1063OC and 1404"C, respectively. One phase of thc eutec- 
tic is nearly pure gold; the other nearly purc silicon. 
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Pure Au Atomic percent silicon Pure Si 

Figure 10 Eutectic phase diagram of gold-silicon alloys. The eutectic consists of two 
branches that come together at T, = 370 "C and xg = 0.31 atomic percent Si. (After Kittel and 
Kroemer, TP.) 

c---.l 

10 fi111 

Figure 11 Microphotograph of the Ph-Sn eutectic. (Courtesy of J. D. Hunt and K. A. Jackson.) 



The Au-Si eutectic is important in semiconductor technology because the 
entectic permits low temperature welding of gold contact wires to silicon de- 
vices. Lead-tin alloys have a similar eutectic of Pbo,,Sno 74 at 183'C. This or 
nearby compositions are used in solder: nearby if a range of melting tempera- 
tures is desired for ease in handling. 

TRANSITION METAT, ALLOYS 

When we add copper to nickel, the effective magneton number per atom 
decreases linearly and goes through zero near Cu, 60Ni0 40, as shown in Fig. 12. 
At this composition the extra electron from the copper has filled the 3d band, 
or the spin-up and spin-down 3d sub-bands that were shown in Fig. 12.7b. The 
situation is shown schematically in Fig. 13. 

Figure 12 Bohr magneton numbers 
of nickel-copper alloys. 

0.60 Electron 

Figure 13 Distribution of electrons in the alloy 
60Cu40Ni. The extra 0.6 electron provided by 
the copper has filled the d band entirely and in- 
creased slightly the number of electrons in the s 
band with respect to Fig. 12.7b. 4s 
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Figure 14 Density of states in nickel. (V L. Moruzzi, J .  F. Janak. and A. R.  IVilliams.) 

For simplicity the block drawings represent (he density of statcs as uni- 
forrri in energy. The actual density is known to be far from nniform; the result 
of a 11iodern calculatio~l is shown in Fig. 14 for nickel. The width of the 3d 
band is about 5 eV. .4t thc top, where the magnetic effects are determined, the 
density of states is particularly high. The average density of states is an order 
of magnitude higher in the 3d band than in the 4s band. This enhanced density 
of states ratio gives a rough indication of the expected enhancement of the 
electronic heat capacity and of the paramagnetic susceptibility in the nonfcr- 
romagnetic trar~sition ~rletals as compared with the simple monovalent metals. 

Figure 15 shows the effect of thc addition of small amounts of other ele- 
ments to nickrl. On the hand model an alloymg metal with .: valence electrons 
ontside a filled d shell is expected to decrease the magnetization of nickel by 
approximately z Bohr magnetons per solute atom. This sirriple relation holds 
well for Sn, Al, Zn, and Cu, with z = 4, 3, 2, and 1, respectively. For Co, Fe, 
and Mn the localized rrlorrler~t model of Friedel accounts lor effective z values 
of -1, -2, and -3, respectively. 

The average atomic magnctic moments of binaly alloys of the elements 
in thc iron gronp are plotted in Fig. 16 as a function of the concentratio11 of 



Added elenlents in atum percent 

Figure 15 Saturation nlagnctizatio~r of nickel alloys in Buhr nragnetons per atorra as a fu11ctiu11 of 
the atomic percent of salute element. 

electrons outside the 3p  shell. This is called a Slater-Yauling plot. The main se- 
qucnce of alloys on the right-hand branch follows the rules discussed in con- 
nection with Fig. 15. As the electron concentration is decreased, a point is 
reached at which neither of the 3d sub-hands is entirely filled, and the mag- 
netic moment then decreases toward the left-hand side of the plot. 

Electrical Conductivity. It might be thought that in the transition metals the 
availability of the 3d band as a path for conduction in parallel with the 4s band 
would increase the conductivity, but this is not the way it works out. The resistiv- 
ity of the .s electron path is increased by collisions with the d electrons; this is a 
powerfill extra scattering mechanism not availablr when the d band is fillcd. 
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Figure 16 Averagc atomic moments of binav alloys of the elements in the iron group. (Bozorth.) 

llrc: compare the values of the electrical resistivities of Ni, Pd, and Pt in 
microhm-cm at 18'C with that of the noble metals Cu, Ag, and Au immedi- 
ately following them in the periodic table: 

The resistivities of the noble metals are lower than those of the transition 
metals by a factor of the order of 5. This shows the effectiveness of the s-d 
scattering mechanism. 

KONDO EFFECT 

In dilute solid solutions of a magnetic ion in a nonmagnetic metal crystal 
(such as Mn in Cu), the exchange coupling between the ion and the conduc- 
tion electrons has important consequences. The conduction electron gas is 



Figure 17 Magnetization of a free e lec t ro~~ Fer~rli gas at T = 0 in neighborhood of a point mag- 
netic moment at the origin r = 0, according to the RKKY theory The horizontal axis is 2k,r, where 
k, is the wavevector at the Fermi surface. (de Gennes.) 

magnetized in the Vicinity of the magnetic ion, with the spatial dcpendencc 
shown in Fig. 17. This magnetization causes an indirect exchange interaction" 
between two magnetic ions, because a second ion perceives the magnetization 
induced by the first ion. The interaction, known as the Friedel or RKKY inter- 
action, also plays a role in the magnetic spin order of the rare-earth metals, 
where the spins of the 4f ion cores are coupled together by the rriag~ietizatiorl iri- 
duced in the conduction electron gas. 

A conseqlience of the magnetic ion-conduction clcctron interaction is the 
Kondo effect, discussed in a different context in Chapter 18. A minimnm in 
the electrical resistiVity-temperature curve of dilute magnetic alloys at low 
temperatures has been observed in alloys of Cu, Ag, Au, Mg, Zn with Cr, Mn, 
and Fe as impurities, among others. 

The occurrence of a resistance minimum is connected with the existence 
of localized magnetic moments on the impurity atoms. Where a resistance 
minimum is found, there is inevitably a local moment. Kondo showed that the 
anomalorisly high scattering probability of magnetic ions at low tcmperaturcs 

'A r e v i c ~  of indirect excharige iriteractiu~is iri metals is giver1 by C. Kittel, Solid state pliysics 
22, 1 (1968); a review of the Kondo effect is given by J .  Kondo, "Theory of dihte magnetic alloys," 
Solid state physics 23, 184 (1969) and A. I. Heeger, "Localized moments and nonmoments in 
metals: the KUII~IJ effect," Solid state physics 23, 248 (1969). The notation RKKY stands for 
Ruderman, Kittel, Kasuya, and Yosida. 



Figure 18 A comparison of experimental and theoretical results for the increase of electrical re- 
sistivity at low temperatures in dilute alloys of iron in gold. The resistance minimum lies to the 
right of the figure, for the resisti\.ity iircreases at high temperatures because of scattering of elec- 
trons by thermal phonons. The experiments are due to D. K. C. MacDonald, W. B. Pearson, and 
I. M. Templeton; the tlreo~y is by J. Kondo. 4 n  exact sohitiu~~ was given by K. Wilson. 

is a consequence of the dynamic nature of the scattering by the exchange 
coupling and of the sharpness of the Fermi surface at low temperatures. The 
temperature region in which the Kondo effect is important is shown in Fig. 18. 

The central result is that the spin-dependent contribution to the resistivity is 

p,,,,, = cp,  I + - ln T = cp,  - cp ,  In T , [ :! ] 
where J is the exchange energy; z the numher of nearest neighbors; c the con- 
centration; and p, is a measure of the strength of the exchange scattering. 
We see that the spin resistivity increases toward low temperatures ifJ is nega- 
tive. If the pho~lon contribution to the electrical resistivity goes as T5 in the 
region of interest and if the resistivities are additive, then the total resistivity 
has the form 



with a minimum at 

clp/dT = 5aT' - cp, l?' = 0 , (14) 

whence 

T,, = ( C ~ , / S ~ ) ~ ~  

The ten~perature at  which tlie resistivity is a minimum varies as the one-fifth 
power of the concentration of the magnetic impurity, in agreement with experi- 
ment, at least for F e  in Cu. 

Problems 

1.  Superlattice lines in C u d u .  Cu,Au alloy (75% Cu, 25% Au) has an ordered state 
below 40OoC, in which the gold atoms occupy the 000 positiorrs and the copper 

11 I I 1 1  atoms the ,,0, 505, and 05, positions in a face-centered cubic lattice. Give the in- 

dices of the new x-ray reflections that appear when the alloy goes fro111 the disor- 
dered to the ordered state. List all new reflections with indices s 2 .  

2.  Configurational heat capacity. Derive an expression in terms of P(T) for the heat 
capacity associated with ordeddisorder effects in an AB alloy [The entropy (8) is 
called the configurational entropy or entropy of mixing.] 


