<u>CLAS</u>S X : CHAP<u>TE</u>R - 2 <u>POLYNOMIALS</u>

1.	The value of k for which (-4) is a zero of the polynomial $x^2 - x - (2k+2)$ is (a) 3 (b) 9 (c) 6 (d) -1
2.	If the zeroes of the quadratic polynomial $ax^2 + bx + c$, $c \neq 0$ are equal, then (a) c and a have opposite sign (c) c and a have the same sign (d) c and b have the same sign (d) c and b have the same sign
3.	The number of zeroes of the polynomial from the graph is (a) 0 (b) 1 (c) 2 (d) 3
4.	If one of the zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is (a) 10 (b) -10 (c) 5 (d) -5
5.	A quadratic polynomial whose zeroes are -3 and 4 is (a) $x^2 - x + 12$ (b) $x^2 + x + 12$ (c) $2x^2 + 2x - 24$. (d) none of the above.
6.	The relationship between the zeroes and coefficients of the quadratic polynomial $ax^2 + bx + c$ is (a) $\alpha + \beta = \frac{c}{a}$ (b) $\alpha + \beta = \frac{-b}{a}$ (c) $\alpha + \beta = \frac{-c}{a}$ (d) $\alpha + \beta = \frac{b}{a}$
7.	The zeroes of the polynomial $x^2 + 7x + 10$ are (a) 2 and 5 (b) -2 and 5 (c) -2 and -5 (d) 2 and -5
8.	The relationship between the zeroes and coefficients of the quadratic polynomial $ax^2 + bx + c$ is (a) $\alpha.\beta = \frac{c}{a}$ (b) $\alpha.\beta = \frac{-b}{a}$ (c) $\alpha.\beta = \frac{-c}{a}$ (d) $\alpha.\beta = \frac{b}{a}$
9.	The zeroes of the polynomial $x^2 - 3$ are (a) 2 and 5 (b) -2 and 5 (c) -2 and -5 (d) none of the above
10.	. The number of zeroes of the polynomial from the graph is (a) 0 (b) 1 (c) 2 (d) 3
11.	A quadratic polynomial whose sum and product of zeroes are -3 and 2 is (a) $x^2 - 3x + 2$ (b) $x^2 + 3x + 2$ (c) $x^2 + 2x - 3$. (d) $x^2 + 2x + 3$.
12.	The zeroes of the quadratic polynomial $x^2 + kx + k, k \neq 0$, (a) cannot both be positive (c) are always unequal (b) cannot both be negative (d) are always equal
13	A quadratic polynomial can have at most zeroes (a) 0 (b) 1 (c) 2 (d) 3
14.	A cubic polynomial can have at mostzeroes. (a) 0 (b) 1 (c) 2 (d) 3
15.	Which are the zeroes of $p(x) = x^2 - 1$: (a) 1, -1 (b) - 1, 2 (c) -2, 2 (d) -3, 3

- 16. Which are the zeroes of p(x) = (x 1)(x 2): (a) 1, -2 (b) - 1, 2 (c) 1, 2 (d) -1, -2
- 17. Which of the following is a polynomial? (a) $x^2 - 5x + 3$

(a)
$$x^{-1} = 0x^{-1} + 0$$

(b) $\sqrt{x} + \frac{1}{\sqrt{x}}$
(c) $x^{3/2} - x + x^{1/2}$
(d) $x^{1/2} + x + 10$

18. If α , β are the zeroes of the polynomials $f(x) = x^2 + 5x + 8$, then $\alpha + \beta = \dots$ (a) 5 (b) -5 (c) 8 (d) none of these

19. If α , β are the zeroes of the polynomials $f(x) = x^2 + 5x + 8$, then $\alpha\beta = \dots$ (a)0 (b) 1 (c) -1 (d) none of these

- 20. A quadratic polynomial whose sum and product of zeroes are -3 and 4 is (a) $x^2 - 3x + 12$ (b) $x^2 + 3x + 12$ (c) $2x^2 + x - 24$. (d) none of the above.
- 21. A quadratic polynomial whose zeroes are $\frac{3}{5}$ and $\frac{-1}{2}$ is (b) $10x^2 - x - 3$ (b) $10x^2 + x - 3$ (c) $10x^2 - x + 3$ (d) none of the above.
- 22. A quadratic polynomial whose sum and product of zeroes are 0 and 5 is $(c)x^2 5$ (b) $x^2 + 5$ (c) $x^2 + x 5$. (d) none of the above.
- 23. A quadratic polynomial whose zeroes are 1 and -3 is (d) $x^2 - 2x - 3$ (b) $x^2 + 2x - 3$ (c) $x^2 - 2x + 3$ (d) none of the above.
- 24. A quadratic polynomial whose sum and product of zeroes are -5 and 6 is (e) $x^2 - 5x - 6$ (b) $x^2 + 5x - 6$ (c) $x^2 + 5x + 6$ (d) none of the above.
- 25. Which are the zeroes of $p(x) = x^2 + 3x 10$: (a) 5, -2 (b) -5, 2 (c) -5, -2 (d) none of these
- 26. Which are the zeroes of $p(x) = 6x^2 7x 3$: (a) 5, -2 (b) -5, 2 (c) -5, -2 (d) none of these

27. Which are the zeroes of $p(x) = x^2 + 7x + 12$: (a) 4, -3 (b) -4, 3 (c) -4, -3 (d) none of these 28. If the sum of the zeroes of the polynomial $3x^2 - kx + 6$ is 3, then the value of k is: (a) 3 (b) -3 (c) 6 (d)

- 29 A real numbers a is called a zero of the polynomial f(x), then (a) f(a) = -1 (b) f(a) = 1 (c) f(a) = 0 (d) f(a) = -2
- 30. Which of the following is a polynomial:

(a)
$$x^2 + \frac{1}{x}$$
 (b) $2x^2 - 3\sqrt{x} + 1$ (c) $x^2 + x^{-2} + 7$ (d) $3x^2 - 3$

31. Number of zeroes of a polynomial of degree n is

(a) equal to n (b) greater theen n (c) less then n (d) less then or equal to n.

32. Which of the following is not a grph of a quadratic polynomials?

- 33. A polynomial of degree 0 is called a polynomial. (a) linear (b) constant (c) quadratic (d) c
- (a) linear (b) constant (c) quadratic (d) cubic 34. A polynomial p(x) = ax + b of degree 1 is called a polynomial. (a) linear (b) constant (c) quadratic (d) cubic
- 35 A polynomial $p(x) = ax^2 + bx + c$ of degree 2 is called a polynomial. (a) linear (b) constant (c) quadratic (d) cubic
- (d) linear (b) constant (c) quadratic (d) cubic 36 A polynomial $p(x) = ax^3 + bx^2 + cx + d$ of degree 3 is called apolynomial. (a) linear (b) constant (c) quadratic (d) cubic

37. If p(x) and g(x) are any two polynomials with $g(x) \neq 0$, then we can find polynomials q(x) and r(x) such that $p(x) = g(x) \times q(x) + r(x)$, where

- (a) degree of r(x) < degree of g(x) (b) degree of r(x) > degree of g(x)
- (c) degree of r(x) =degree of g(x) (d) none of these

38. Which of the following is true:

(a) $Dividend = Divisor \times Quotient + Remainder$

- (b) Divisor = Dividend \times Quotient + Remainder
- (c) Remainder = Divisor \times Quotient + Dividend
- (d) none of these
- 39. The number of zeroes of the polynomial from the graph is

(a) 0 (b) 1 (c) 2 (d) 3

40 The number of zeroes of the polynomial from the graph is (a) 0 (b) 1 (c) 2 (d) 3

