Chapter -5

Linked List:

Linked listis a linear data structure that contains sequence of elements such that each element
links to its next element in the sequence. Each element in a linked list is called as "Node".

Simply a listis a sequence of data, and linked list is a sequence of data linked with each other.
linked list is the second most-used data structure after array. Following are the important
terms to understand the concept of Linked List.

Node — Each node contains data item and a pointer which is address of next node in list
Next— A pointer field which contains address of next node in list

Linked List Representation:
Linked list can be visualized as a chain of nodes, where every node points to the next node.

Head Mext MNeaxt MNeaxt
» Data ltems » | Data Hems » Data tems

Type -r‘T’Tl

Follo NULL
Single Linked List— Item navigation is forward only.
Doubly Linked List — Items can be navigated forward and backward.
Circular Linked List — Last item contains link of the first element as next and the first
element has a link to the last element as previous.

Advantages of Linked list: Following are advantages of linked list-

(a) Linked List is Dynamic Data Structure.

(b) Linked List can grow and shrink during run time.

(c)Insertion and Deletion Operations are easier

(d) Efficient Memory Utilization, i.e, no need to pre-allocate memory

(e) Faster Access time can be expanded in constant time without memory overhead

(f) Linear Data Structures such as Stack, Queue can be easily implemented using Linked
list

Disadvantages of Linked list:
(a) Memory wastage if required space is known
(b) Searching operations is difficult.

Basic Operations:

Basic operations supported by a list are
Insertion — Adds an element at the beginning of the list.
Deletion — Deletes an element at the beginning of the list.
Display — Displays the complete list.

(66)

LENOVO
Text Box
Chapter - 5

Search — Searches an element using the given key.

Insertion Operation:

Adding a new node in linked list is a more than one step activity. We shall learn this with

diagrams here. First, create a node using the same structure and find the location where it has
to be inserted.

Head Meot

Meat
» Dataltems

» Data tems

NULL
MNext
Data tems
Imag d C
(Righk
point B.nextto C and NewNode.next—> RightNode;
It should look like this —
Haad Mext heat
. Dataltems _____._-—-—-—'—'_'_'_'_. Data ltems
~TT
NULL
L34
Data ltems
Now,
LeftNode.next —>NewNode;
Head MNeaxt Mext
» Data ltems Data ltams
NULL
Mext
Data ltems

Thisw

(67)

Head Mext MNext Mext
» Data hems » Data ltems » Data hems

MNULL

Silliiicn sriopo vivuiu Uv M 11 WY VB S USRS UV SR S Y Ui, o ur v e il
inserting it at the end, the second last node of the list should point to the new node and the new
node will pointto NULL.

Deletion Operation:
Deletion is also a more than one step process. We shall learn with pictorial representation.
First, locate the target node to be removed, by using searching algorithms.

Head Next Next
» Dataltems » Dataltems » Data ltems

The . ; 9 A NULL-get
node—
LeftNode.next — TargetNode.next;

Heac Nexm Mext
Data ltems Data tems Data ltems

— —

This at | de,
wew _ NULL
TargetNode.next—>NULL;

Haad Nlm/—_hl Mext
Data ltems Data ltems Data ltems

—

We NULLY
deallocate memory and wipe off the target node completely.

Head Mext Menxct
» Dataltems _ » Dataltems

Linked List' l r
#include <stc -

(68)

#include <string.h>
#include <stdlib.h>
#include <stdbool.h>

structnode {
int data;
intkey;
struct node *next;

3

struct node *head=NULL;
structnode *current=NULL;

//display the list

void printList() {
struct node *ptr=head;
printf("\n[");

//start from the beginning

while(ptr '=NULL) {
printf("(%d,%d) ",ptr->key,ptr->data);
ptr=ptr->next;

}

printf(" 1");
H

//insert link at the first location
void insertFirst(int key, int data) {
//create a link
struct node *link = (struct node*) malloc(sizeof(struct node));

link->key =key;
link->data = data;

//pointitto old first node
link->next=head;

//point first to new first node

head=link;
§

//delete firstitem
struct node* deleteFirst() {

//save reference to first link
struct node *tempLink =head;

(69)

//mark next to first link as first
head =head->next;

//return the deleted link
return tempLink;

}

/fis list empty
bool isEmpty() {
returnhead==NULL;

}

intlength() {
intlength=0;
struct node *current;

for(current=head; current !=NULL; current = current->next) {
length++;

}

return length;

}

//find a link with given key
structnode* find(intkey) {

//start from the first link
struct node* current =head;

//iflistis empty

if(head==NULL) {
return NULL;

}

//mavigate through list
while(current->key !=key) {

/fifitis lastnode
if(current->next==NULL) {
return NULL;
telse {
//go tonext link
current = current->next;

}
}

//if data found, return the current Link
return current;

(70)

}

//delete a link with given key
struct node* delete(intkey) {

//start from the first link
struct node* current =head;
structnode* previous=NULL,;

//iflistis empty

if(head==NULL) {
return NULL;

}

//mavigate through list
while(current->key !=key) {

/fifitis lastnode
if(current->next==NULL) {
return NULL;
telse {
/Istore reference to current link
previous = current;
//move to next link
current = current->next;

}
}

//found a match, update the link
if(current==head) {
//change first to point to next link
head =head->next;
telse {
//bypass the current link
previous->next = current->next;

}

return current;

}

void sort() {
int1,j, k, tempKey, tempData;
struct node *current;

struct node *next;

int size =1length();
k=size;

(71)

for(i=0;i<size-1;it++k--){
current=head;
next=head->next;

for(j=1:j<k;j++){

if (current->data >next->data) {
tempData = current->data;
current->data=next->data;
next->data =tempData;

tempKey = current->key;
current->key =next->key;
next->key =tempKey;

}

current = current->next;
next=next->next;

}
}
}

void reverse(struct node** head ref) {
structnode* prev. =NULL,;
struct node* current=*head_ref;
struct node* next;

while (current '=NULL) {
next = current->next;
current->next=prev;,
prev =current;
current =next;

}

*head ref=prev;

}

main() {
insertFirst(1,10);
insertFirst(2,20);
insertFirst(3,30);
insertFirst(4,1);
insertFirst(5,40);
insertFirst(6,56);

printf("Original List: ");

(72)

//print list
printList();

while(!isEmpty()) {
struct node *temp = deleteFirst();
printf("nDeleted value:");
printf("(%d,%d) ",temp->key,temp->data);
}

printf("\nList after deleting all items: ");
printList();

insertFirst(1,10);

insertFirst(2,20);

insertFirst(3,30);

insertFirst(4,1);

insertFirst(5,40);

insertFirst(6,56);

printf("\nRestored List: ");
printList();
printf("\n");

struct node *foundLink = find(4);

if(foundLink !=NULL) {
printf("Element found: ");
printf("(%d,%d) ",foundLink->key,foundLink->data);
printf("\n");
telse {
printf("Element not found.");

}

delete(4);

printf("List after deleting an item: ");
printList();

printf("\n");

foundLink =find(4);

if(foundLink !=NULL) {
printf("Element found: ");
printf("(%d,%d) ",foundLink->key,foundLink->data);
printf("\n");
telse {
printf("Element not found.");

}

printf("\n");
sort();

(73)

printf("'List after sorting the data: ");
printList();

reverse(&head);
printf("\nList after reversing the data: ");
printList();

}

If we compile and run the above program, it will produce the following result —

Original List:
[(6,56)(5,40)(4,1)(3,30)(2,20)(1,10)]
Deleted value:(6,56)

Deleted value:(5,40)

Deleted value:(4,1)

Deleted value:(3,30)

Deleted value:(2,20)

Deleted value:(1,10)

List after deleting all items:

[]

Restored List:
[(6,56)(5,40)(4,1)(3,30)(2,20)(1,10)]
Element found: (4,1)

List after deleting an item:
[(6,56)(5,40)(3,30)(2,20)(1,10)]
Element not found.

List after sorting the data:
[(1,10)(2,20)(3,30)(5,40)(6,56)]

List after reversing the data:
[(6,56)(5,40)(3,30)(2,20)(1,10)]

Important Points

e Linked list is a linear data structure that contains sequence of elements such
that each element links to its next element in the sequence. Each element in a

linked listis called as "Node".

e Linear Data Structures such as Stack, Queue can be easily implemented using

Linked list.
e Linked Listis Dynamic data Structure.

Exercise
Objective type questions.

(74)

Q1. Linked lists are best suited
a. for relatively permanent collections of data
b. for the size of the structure and the data in the structure are constantly changing
c. for both of above situation
d. for none of above situation
Q2. Generally collection of Nodes is called as

a. Stack

b. Linked List
c. Heap

d. Pointer

Q3. Which of the following is not a type of Linked List
a. Doubly Linked List
b. Singly Linked List
c. Circular Linked List
d. Hybrid Linked List
Q4. Linked list is generally considered as an example of type of memory
allocation.
a. Static
b. Dynamic
c. Compile Time
d. None of these
Q5. In a circular linked list
a. Components are all linked together in some sequential manner.
b. There is no beginning and no end.
c¢. Components are arranged hierarchically.
d. Forward and backward traversal within the list is permitted.

Short answer type questions.

QL. Define linked list ?

Q2. What is header linked list ?

Q3. Which is better In array and linked list ?
Q4. Define circular linked list ?

Essay type questions.

Q1. Explain doubly linked list ?

Q2. Differentiate between singly and doubly lined list ?
Q3. Which types of memory allocates linked list ?

Q4. Explain the uses of linked list ?

Answers
Ansl. b Ans2. b Ans3.d
Ans4. b Ans5. b

Chapter 6

(75)

