$\frac{266}{(TS)}$

Total No. of Questions - 24

Total No. of Printed Pages - 4

Regd. No.

Part - III MATHEMATICS, Paper - II (A) (Algebra and Probability) (English Version)

Time: 3 Hours

Max. Marks: 75

Note: This question paper consists of three Sections A, B and C.

SECTION A

 $10 \times 2 = 20$

- I. Very short answer type questions.
 - Answer all questions.
 - ii) Each question carries two marks.
 - 1. Find the real and imaginary parts of the complex number $\frac{a+ib}{a-ib}$
 - 2. Represent the complex number 2+3i in argand plane.
 - 3. If $1, \omega, \omega^2$ are the cube roots of unity, then prove that

$$\frac{1}{2+\omega} + \frac{1}{1+2\omega} = \frac{1}{1+\omega}.$$

4. Find the values of m, if the equation $x^2 - 15 - m(2x - 8) = 0$ have equal roots.

- 5. Find the polynomial equation whose roots are the reciprocals of the roots of $x^4 3x^3 + 7x^2 + 5x 2 = 0$.
- 6. If ${}^{n}P_{7} = 42 \cdot {}^{n}P_{5}$, then find n.
- 7. Find the number of ways of selecting 4 boys and 3 girls from a group of 8 boys and 5 girls,
- 8. If the coefficients of $(2r+4)^{th}$ term and $(3r+4)^{th}$ term in the expansion of $(1+x)^{21}$ are equal, then find r.
- 9. Find the mean deviation about the median for the following data: 4, 6, 9, 3, 10, 13, 2
- 10. The mean and variance of a binomial distribution are 4 and 3 respectively. Fix the distribution and find $P(X \ge 1)$.

SECTION B

 $5 \times 4 = 20$

- II. Short answer type questions.
 - i) Attempt any five questions.
 - ii) Each question carries four marks.
 - 11. If $x + iy = \frac{1}{1 + \cos\theta + i\sin\theta}$, then show that $4x^2 1 = 0$.
 - 12. Solve $2x^4 + x^3 11x^2 + x + 2 = 0$.
 - 13. Find the sum of all 4-digit numbers that can be formed using the digits 0, 2, 4, 7, 8 without repetition.
 - 14. Find the number of ways of forming a committee of 5 members out of 6 Indians and 5 Americans so that always the Indians will be in majority in the committee.

B-54 (DAY-6)

- 15. Resolve $\frac{x^2 x + 1}{(x+1)(x-1)^2}$ into partial fractions.
- 16. If A, B are two events with $P(A \cup B) = 0.65$, $P(A \cap B) = 0.15$, then find the value of $P(A^C) + P(B^C)$.
- 17. Find the probability of drawing an ace or a spade from a well-shuffled pack of 52 playing cards.

SECTION C

 $5 \times 7 = 35$

- III. Long answer type questions.
 - i) Attempt any five questions.
 - ii) Each question carries seven marks.
 - 18. If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, prove that

$$Cos^{2}\alpha + Cos^{2}\beta + Cos^{2}\gamma = \frac{3}{2} = Sin^{2}\alpha + Sin^{2}\beta + Sin^{2}\gamma.$$

- 19. Solve $3x^3 26x^2 + 52x 24 = 0$, given that the roots are in geometric progression.
- 20. For $r=0,\ 1,\ 2,\ \dots,\ n$, prove that $C_0\cdot C_r+C_1\cdot C_{r+1}+C_2\cdot C_{r+2}+\dots\dots+C_{n-r}\cdot C_n={}^{2n}C_{(n+r)}$ and hence deduce that

i)
$$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = {}^{2n}C_n$$

ii)
$$C_0 \cdot C_1 + C_1 \cdot C_2 + C_2 \cdot C_3 + \dots + C_{n-1} \cdot C_n = {}^{2n}C_{n+1}$$

21	Find the sum of the infinite series	1 1	1.3	1.3.5
	That the sum of the infinite series	3	3.6	3.6.9

22. Find the variance and standard deviation of the following frequency distribution:

x_i	4	8	11	17	20	24	32
f_i	3	5	9	5	4	3	1

23. If A, B, C are three independent events of an experiment such that, $P(A \cap B^C \cap C^C) = \frac{1}{4}$, $P(A^C \cap B \cap C^C) = \frac{1}{8}$, $P(A^C \cap B^C \cap C^C) = \frac{1}{4}$, then find P(A), P(B), P(C).

24. The range of a random variable
$$X$$
 is $\{0, 1, 2\}$. Given that $P(X=0)=3c^3, P(X=1)=4c-10c^2, P(X=2)=5c-1$

(i) Find the value of c.

(ii)
$$P(X < 1)$$
, $P(1 < X \le 2)$ and $P(0 < X \le 3)$.