CBSE Test Paper 03 CH-7 Triangles

- 1. *In* a \triangle ABC, If $\angle A = 45^{0}$ and $\angle B = 70^{0}$. Determine the shortest sides of the triangles.
 - a. AC
 - b. BC
 - c. CA
 - d. all are equal
- 2. In $\triangle ABC$ and $\triangle PQR$, AB = PR and $\angle A = \angle P$. Then, the two triangles will be congruent by SAS axiom if:
 - a. BC=QR
 - b. BC = PQ
 - c. AC=PQ
 - d. AC=QR
- 3. In the adjoining figure, ABCD is a quadrilateral in which AD = CB and AB = CD, then \angle ACB is equal to

- b. ∠BAD
- c. ∠CAD
- d. ∠ACD
- 4. Find the measure of each exterior angle of an equilateral triangle.
 - a. 110°
 - b. 100°
 - c. 150°
 - d. 120°
- 5. In the adjoining figure, if AC = AD, then

6. Fill in the blanks:

The sum of any two sides of a triangle is greater than _____ the median drawn to the third side.

7. Fill in the blanks:

In any triangle, the side opposite to the larger angle is _____.

- 8. If the base of an isosceles triangle is produced on both sides, prove that the exterior angles so formed are equal to each other.
- 9. The angles of a triangle are $(x 40)^{\circ}$, $(x 20)^{\circ}$ and $(\frac{1}{2}x 10)^{\circ}$. Find the value of x.
- 10. In a given figure, prove that $p \parallel m$.

11. In figure, PS = QR and \angle SPQ = \angle RQP. Prove that PR = QS and \angle QPR = \angle PQS.

12. Prove that \triangle ABC is an isosceles, if bisector of \angle BAC is perpendicular to BC.

13. The image of an object placed at a point A before a plane mirror LM is seen at point B by an observer at D as shown in the figure. Prove that the image is as far behind the mirror as the object is in front of the mirror.

- 14. O is a point on the side SR of a \triangle PSR such that PQ = PR. Prove that PS > PQ.
- 15. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of triangle PQR. Show that : \triangle ABM $\cong \triangle$ PQN, \triangle ABC $\cong \triangle$ PQR

Solution

1. (b) BC

Explanation:

 $egin{aligned} & & {$\angle A + {$\angle B + {$\angle C = 180^\circ$}$}$ \ & {$\angle A = 45^\circ$}$ \ & {$\angle B = 70^\circ$}$ \ & {$\angle C + 45^\circ + 70^\circ = 180^\circ$}$ \ & {$\angle C + 115^\circ = 180^\circ$}$ \ & {$\angle C = 180^\circ - 115^\circ$}$ \ & {$\angle C = 65^\circ$} \end{aligned}$

igtriangle A is shortest angle and the side opp to shortest angle is shortest

so BC is the shotest side

2. (c) AC=PQ

Explanation:

 $\angle A$ is included between AB and AC and $\angle P$ is included between PQ and PR and corresponding sides must be equal . Since AB = PR, hence AC=PQ for the given triangles to be congruent by SAS axiom.

3. (c)∠CAD

Explanation:

As AB = CD, so , $\angle ACB = \angle CAD$ (alternate angles)

4. (d) 120°

Explanation:

We know that in equilateral triangle each angle is 60°

and we know sum of interior angle and exterior angle is 180°

let exterior angle be x

$$60^\circ$$
 + x = 180°

$$x$$
 = 180° - 60°

$$x$$
 = 120°

5. (d) AB > AD

Explanation:

Angle D = angle C (As AC = AD) and angle C > angle B and angle D > angle B hence AB > AD

- 6. twice
- 7. longer

 \angle DBA = \angle ACB + \angle A(i) [: Exterior angle = sum of oppsite interior angles] \angle ACE = \angle ABC + \angle A(ii) [: Exterior angle = sum of opposite interior angles] But \angle ACB = \angle ABC (: AB = AC) \therefore From (i) and (ii)

 $\angle DBA = \angle ACE$

9. $(x - 40)^{\circ} + (x - 20)^{\circ} + (\frac{1}{2}x - 10)^{\circ} = 180^{\circ}$ (:: sum of all angles of a triangle is equl to 180°) $\Rightarrow \frac{5}{2}x - 70^{\circ} = 180^{\circ}$ $\Rightarrow \frac{5}{2}x = 250^{\circ}$

$$\Rightarrow$$
 x = 100^o

Consider $\triangle PO'Q$, we have, $\angle O'PQ + \angle PO'Q + \angle PQO' = 180^{\circ}$ $\Rightarrow \angle 1 + 45^{\circ} + 35^{\circ} = 180^{\circ}$ $\Rightarrow \angle 1 = 180^{\circ} - 80^{\circ}$ $\Rightarrow \angle 1 = 100^{\circ}$ Since $\angle QPD$ and $\angle 1$ form a linear pair. $\therefore \angle QPD + \angle 1 = 180^{\circ}$ $\Rightarrow \angle QPD + 100^{\circ} = 180^{\circ}$ $\Rightarrow \angle QPD = 80^{\circ}$ Since $\angle BOP = \angle QPD = 80^{\circ}$ (Corresponding angles are equal) $\Rightarrow p \parallel m$ [Since p and m are two lines such that a transversal n intersects them at O and P respectively] Hence proved.

11. In DQPR and DPQS

QR = PS ...[Given] \angle RQP = \angle SPQ ...[Given] PQ = PQ ...[Common] \therefore DQPR \cong DPQS ...[SAS axiom] \therefore PR = QS ...[c.p.c.t.] and \angle QPR = \angle PQS ...[c.p.c.t.]

12. In \triangle ABD and \triangle ACD

 $\angle BAD = \angle CAD \dots$ [Given] $\angle ADB = \angle ADC \dots$ [Each 90^o]

AD = AD [Common]

 $\therefore \triangle ABC \cong \triangle ACD \dots \text{ [ASA axiom]}$ $\triangle AB = AC \dots \text{ [c.p.c.t.]}$ Hence, ABC is an isosceles triangle.

13. Let AB intersect LM at O. We have to prove that AO = BO.

Now, $\angle i = \angle r$...(1)

[:: Angle of incidence = Angle of reflection]

Since , BA || CN & BD intersects both ,hence

 $\angle B = \angle r$ [Corres. $\angle s$] ...(2)

Since , BA \parallel CN & AC intersects both, hence

 $\angle A = \angle i$ [Alternate int. $\angle s$]...(3)

From (1), (2) and (3), we get

 $\angle B = \angle A$(4)

Also, $\angle BOC = \angle AOC$ (each 90°)(5)

Subtracting both sides of equation (5) from 90°, we get :-

90° - $\angle BOC$ = 90° - $\angle AOC$

 $\Rightarrow \angle BCO = \angle ACO$ (6)

Now, in ΔBOC and ΔAOC we have

$$\angle BOC = \angle AOC$$
 [Each = 90°]

OC = OC[Common side]

 $\angle BCO = \angle ACO$ [from (6)]

 $\therefore \Delta BOC \cong \Delta AOC$ [ASA congruence rule]

Hence, AO = BO[CPCT]. PROVED.

14. Given: PQ = PR

To prove: PS > PQ Proof: In \triangle PRQ, we have PR = PQ [Given] $\Rightarrow \angle 1 = \angle R$

[.:. Angles opposite to the equal side of the triangle are equal]

But, $\angle 1 > \angle S$ [.:. Exterior angle of a triangle is greater than each of the remote interior angles]

 $\Rightarrow \ \angle R > \angle S \ [\because \angle 1 = \angle R]$

 \Rightarrow PS < PR [:: In a triangle, side opposite to the large is longer] Hence, proved.

15. Given : Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of triangle PQR.

To Prove :

(i) $\triangle ABM \cong \triangle PQN$ (ii) $\triangle ABC \cong \triangle PQR$ Proof :

i. In \triangle ABM and \triangle PQN

```
AB = PQ ... [Given] ....(1)

AM = PN and BC = QR ... [Given] ... (2)

As M and N are the mid-points of BC and QR respectively

2BM = 2QN

BM = QN ... (3)

According to (1), (2) and (3)

\triangle ABM \cong \triangle PQN \dots [By SSS rule]

ii. \triangle ABM \cong \triangle PQN

\angle ABM \cong \angle PQN \dots [c.p.c.t.]

\therefore \angle ABC = \angle PQR \dots (4)

In \triangle ABC and \triangle PQR,

AB = PQ and BC = QR ... [Given]

\angle ABC = \angle PQR \dots [From (4)]

\therefore \triangle ABC \cong \triangle PQR \dots [By SAS]
```