Code No. 40-NS

Total No. of Questions: 40]

[Total No. of Printed Pages : 4

July, 2006

ELECTRONICS

(New Syllabus)

Time: 3 Hours]

[Max. Marks : 90

Note: i) The question paper has four Parts A, B, C & D.

- ii) Question No. 23 in Part C and Question No. 32 in Part D are from practicals.
- iii) Read the instructions given for each Part.

PART - A

Note: Answer all questions.

 $10 \times 1 = 10$

- 1. Write the symbol of npn transistor.
- 2. Name the transistor amplifier which has unity voltage gain.
- 3. What happens to the gain of the amplifier when negative feedback is applied?
- 4. What is the voltage gain of an ideal Op-Amp?
- 5. Name the RC oscillator which does not have phase shift in the feedback network.
- 6. Define critical frequency in radio communication.
- 7. Expand the term AGC.
- 8. What is a pair in K-map?
- 9. Convert (101101) $_2$ into gray code.
- 10. What is uplink signal?

PART - B

Note: Answer any ten questions.

 $10 \times 2 = 20$

- 11. If $\alpha = 0.98$, find the value of β .
- 12. Mention the steps involved to obtain dc equivalent circuit of CE-amplifier.
- 13. What is a photo-transistor? Draw its symbol.
- 14. Determine the voltage gain of a negative feedback amplifier given the open loop gain is 1000 and $\beta = 0.02$.

- 15. What is buffer amplifier? Draw the circuit diagram of Op-Amp buffer.
- 16. Mention the Barkhausen's criterion for sustained oscillations.
- 17. Define the following terms:
 - a) skip-distance
 - b) skip-zone

in the radio communication.

- 18. Mention any two limitations of the AM.
- 19. Write the four possible minterms for two variables.
- 20. Draw the pin diagram of IC7400.
- 21. Write the excess-3 code equivalent of the decimal number (8) $_{10}$.
- 22. Define composite video signal.

PART - C

I. Answer the following question.

 $1 \times 4 = 4$

23. Using the following data, calculate the frequency of oscillations for an RC phase shift oscillator. Compare the theoretical and practical values.

R Ω	C μF	T m sec	Frequency	
470	0.1	0.7	Theoretical	Practical
1kΩ	0.1	1.5		

OR

Using the following data, calculate the theoretical and practical values of voltage gain for an Op-Amp inverting amplifier.

$$V_i = 1$$
 volt

R_i in $k\Omega$	R_f in $k\Omega$	V_o in volts	Voltage gain	
			Theoretical	Practical
1	10	- 9.8		
2	15	- 7.3		

II. Answer any five questions.

 $5 \times 4 = 20$

- 24. With the help of the graph explain the terms
 - a) Active region
 - b) Cut-off region and
 - c) Saturation region

for the IE-transistor characteristics.

- 25. In a CE-amplifier, find
 - a) the base current
 - b) the collector current
 - c) output impedance and
 - d) power gain.

Given R $_i$ = 2 k Ω , A $_v$ = 180, V $_i$ = 4 mV, R $_c$ = 5 k Ω , R $_L$ = 4.7 k Ω and β = 75.

- 26. Derive an expression for the input impedance of a voltage series feedback amplifier.
- 27. Design an inverting adder circuit using Op-Amp, so that the output expression as V₀ = (0·1 V₁ + 2V₂ + 5V₃) for R_f = 10 k Ω , where V₁, V₂, V₃ are input voltages.
- 28. With a neat circuit diagram, explain the working of a transistor Hartley's oscillator. Write the expression for the frequency.
- 29. Derive an expression for the instantaneous voltage of AM wave.
- 30. Find the carrier frequency, modulating frequency, modulation index and frequency deviation of an FM wave represented by

 $V = 10 \sin (8 \times 10^8 t + 5 \sin 1000 t) \text{ mV}.$

31. What is a full adder? Explain the working of full adder using block diagrams of two half adders.

PART - D

I. Answer the following question.

 $1 \times 6 = 6$

32. Describe an experiment to study the frequency response of a CB-amplifier.

OR

Describe an experiment to study the RS-flip-flop using NAND gates.

II. Answer any five questions.

 $5 \times 6 = 30$

- 33. a) What is a transistor? Explain the working of n-p-n transistor.
 - b) The value of $\alpha = 0.99$. Find the base current if the emitter current is 10 mA. 4 + 2
- 34. What is a cascade amplifier? Explain the working of a two-stage RC-coupled amplifier.

- 35. a) With the help of circuit diagram, obtain the expression for the output voltage of Op-Amp integrator.
 - b) Calculate the voltage gain of non-inverting Op-Amp with R $_i$ = 1 k Ω and R $_f$ = 10 k Ω .
- 36. a) Explain the generation of oscillations in an LC-tank circuit.
 - b) In phase shift oscillator R $_1$ = R $_2$ = R = 1 k Ω and C $_1$ = C $_2$ = C = 1 μF . Determine the frequency of oscillations.

4 + 2

- 37. Draw the block diagram of SHD receiver and sketch waveforms at different stages. Explain the working of SHD receiver.
- 38. a) Explain the working of DTL NAND-gate.
 - b) Express the function $Y = A + \overline{B}C$ in canonical SOP. 4 + 2
- 39. a) Explain with block diagram, the action of D-flip-flop.
 - b) Realise the Boolean expression $Y = ABC + ABC + BC + \overline{C}$. 4 + 2
- 40. a) Draw the block diagram of a monochrome TV receiver. Mention the function of each block.
 - b) Write a note on e-mail.

4 + 2