# **Chapter 8**

# **Digital Electronics**

# One mark questions (Knowledge):

- 1. What is a digital signal?
- 2. Define the radix or base of a number system.
- 3. What is the base of binary number system?
- 4. What is a bit?
- 5. What is a nibble?
- 6. What is a byte?
- 7. What is a word?
- 8. Expand MSB?
- 9. Expand LSB?
- 10. What is a positive logic?
- 11. What is a negative logic?
- 12. What is the purpose of 1's and 2's complement of a binary number system?
- 13. What is a logic gate?
- 14. What is a basic gate?
- 15. Name any one basic gate?
- 16. What is an OR gate?
- 17. What is an AND gate?
- 18. Write the truth table of an OR gate.
- 19. Write the truth table of an AND gate.
- 20. Write the circuit symbol of NOT gate.
- 21. Write the truth table of NOT gate.
- 22. Write the Boolean expression of NAND gate.
- 23. Write the Boolean expression of two inputs NAND gate.
- 24. Write the Boolean expression of two inputs NOR gate.
- 25. Write the circuit symbol of NAND gate.
- 26. Write the truth table of a NAND gate.
- 27. Write the truth table of a NOR gate.
- 28. Write the logic symbol of NOR gate.
- 29. Mention any one type of pulse generator.
- 30. Write the expression for frequency of astable multivibrator.

## One mark questions (Understanding):

- 1. Give the size of 1k Byte memory.
- 2. How many distinct symbols are there in base 2number system?
- 3. How many distinct symbols are there in base 16 number system?
- 4. How is 2's complement of a binary number obtained?
- 5. How do you represent a logic diagram using basic gates for the Boolean expression,

$$Y = \overline{A} + \overline{B}$$
?

## One mark questions (Application):

1. Convert 85<sub>10</sub> to binary number. Ans: 1010101<sub>2</sub>

2. Convert 1001<sub>2</sub> into decimal number. Ans: 9<sub>10</sub>

3. Convert  $5DC_{16}$  into binary number. Ans: 0101 1101 1100<sub>2</sub>

4. Obtain the decimal equivalent of the binary number  $101_2$ . Ans:  $5_{10}$ 

5. Convert the given hexadecimal number AD2<sub>16</sub> to binary number.

Ans.: 1010 1101 0010<sub>2</sub>

6. Convert the number  $11111000_2$  to hexadecimal number. Ans:  $F8_{16}$ 7. Convert the given number  $(238)_{10}$  to hexadecimal number. Ans:  $EE_{16}$ 8. Obtain the 1's complement of the binary number 110011. Ans:  $001100_2$ 

9. Find the 2's complement of the binary number 10101011. Ans: 01010101<sub>2</sub>

10. Add 110111<sub>2</sub> and 1101<sub>2</sub>. Ans: 1000100<sub>2</sub>

11. Perform binary division 10010<sub>2</sub> by 11<sub>2</sub>. Ans: 110<sub>2</sub>

12. Perform the binary addition for the numbers 110001 and 100001. Ans: 1010010<sub>2</sub>

13. Subtract 111100<sub>2</sub> – 11100<sub>2</sub>.

Ans: 100000<sub>2</sub>

14. Perform binary multiplication 1011<sub>2</sub> and 110<sub>2</sub>.

Ans: 1000010<sub>2</sub>

15. Prove that AB+A = A.

16. Prove that  $AB+A\overline{B} = A$ .

17. Simplify the expression  $Y = (\overline{A}+B) (A+B) (A+1)$  using Boolean laws. Ans: Y = B

### Two marks questions (Knowledge):

1. Distinguish between the digital and analog signals.

2. Write the circuit diagram of a transistor NOT gate.

3. Represent the truth table of NAND gate.

4. Write circuit diagram of DTL NAND gate.

#### Two marks questions (Understanding):

- 1. How is a bit represented? Give an example.
- 2. How is a nibble represented? Give an example.
- 3. How is a byte represented? Give an example.
- 4. How do you represent the Boolean expression and truth table of NOR-gate?
- 5. Why is NAND gates called as DTL circuit? Write its logic circuit.
- 6. Which gates are called Universal gates? Why they are called so?

### Two marks questions (Application):

- 1. Draw the timing diagram of OR gate.
- 2. Draw the timing diagram of AND gate.
- 3. Draw the timing diagram of NOT gate.
- 4. Draw the timing diagram of NAND gate.
- 5. Draw the timing diagram of NOR gate.
- 6. Find the Binary equivalent of (DADA)<sub>16</sub>? Ans: 1101 1010 1101 1010<sub>2</sub>
- 7. Obtain the decimal equivalent and hexadecimal equivalent of the binary number (111101)2.

Ans: Decimal Number= $61_{10}$  Hexadecimal Number =  $3D_{16}$ 

8. Convert  $(AD)_{16}$  into binary and then to decimal system.

Ans: Binary Number =  $1010 \ 1101_2$  Decimal Number =  $173_{10}$ 

9. Convert the given hexadecimal number (DAC) $_{16}$  to binary number and then to decimal number.

Ans: Binary =  $1101\ 1010\ 1100_2\ Decimal = 3500_{10}$ 

10. Convert the given number  $(87)_{10}$  to hexadecimal number and then to binary number.

Ans: Hexadecimal Number = 57<sub>16</sub> Binary Number = 0101 0111<sub>2</sub>

11. Obtain the 1's and 2's complement of the binary number  $101010101_2$ .

Ans: 1's complement = 010101010<sub>2</sub> 2's complement = 010101011<sub>2</sub>

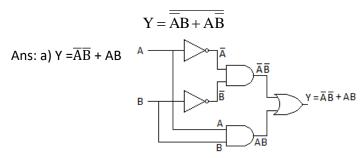
- 12. Prove that  $\overline{A}B+A=A+B$ .
- 13. Prove that A+BC = (A+B)(A+C).
- 14. Prove that A(A+B) = A.
- 15. Prove that  $AB + BC + \overline{B}C = AB + C$
- 16. Simplify the Boolean expression  $Y = A + \bar{A}B + AB$ .

#### Ans: $Y = \overline{A} + B$

## Three marks questions (Knowledge):

- 1. State and prove De-Morgan's Theorems.
- 2. State and prove De-Morgan's Theorem with the truth table and logic circuit.
- 3. Draw the circuit and truth table of two input diode OR gate.
- 4. Draw the circuit and truth table of two input diode AND gate.
- 5. Draw the circuit and the truth table of transistor NOT gate.

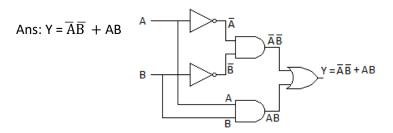
## Three marks questions (Understanding):


- 1. Prove that A+BC = (A+B)(A+C).
- 2. Prove that  $A + \overline{A}B = A + B$ .
- 3. With the circuit diagram write the truth table of DTL NAND gate.
- 4. With the circuit diagram write the truth table of DTL NOR gate.
- 5. Briefly explain the circuit diagram of Monostable Pulse Generator.
- 6. Briefly explain the circuit diagram of Astable Multivibrator.

### Five marks questions (Application):

- 1. Subtract  $27_{10}$  from  $56_{10}$  using 1's complement. Ans:  $11101_2$
- 2. Subtract  $28_{10}$  from  $78_{10}$  using 1's complement. Ans:  $0110010_2$
- 3. Subtract  $34_{10}$  from  $65_{10}$  using 2's complement. Ans:  $00111111_2$
- 4. Subtract 10000<sub>2</sub> from 111110<sub>2</sub>using 2's complement. Ans: 101110<sub>2</sub>
- 5. Simplify the following expression, a)  $Y = (\overline{A} + \overline{B}) (\overline{A} + \overline{C}) (\overline{B} + C)$  b)  $Y = (A + \overline{B}C) (A\overline{B} + C)$

Ans: a) 
$$Y = \overline{AB}$$
 b)  $Y = A\overline{B} + AC + \overline{B}C$ 

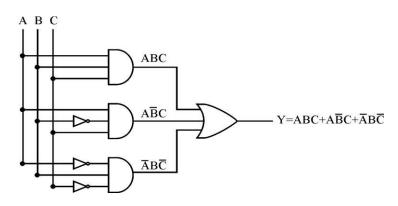

6. Simplify the following Boolean expression and draw the logic diagram for the simplified expression,



7. Simplify the given Boolean expression and draw the logic circuit for the simplified answer.

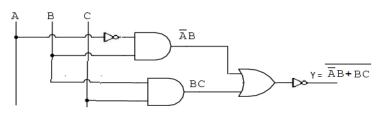
$$Y = AB + ABC + AB\overline{C}$$
. Ans:  $Y = A.B$ 

8. Simplify the given Boolean expression and draw the logic circuit for the simplified answer  $Y = \overline{AB} + \overline{AB}$ .

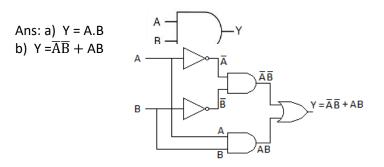



- 9. Simplify the Boolean expression  $Y = AB + A(\overline{B+C})$ .
- Ans:  $Y = AB + A\overline{C}$
- 10. Simplify the given Boolean expression using De-Morgans' theorem,  $Y = \overline{\left(\overline{\overline{AB}}.A\right)}.\overline{\left(\overline{\overline{AB}}.B\right)}.$

Ans: 
$$Y = A\overline{B} + \overline{A}B$$


11. Draw the logic circuit for the given Boolean expression,  $Y = A\overline{B}C + ABC + \overline{A}B\overline{C}$ 

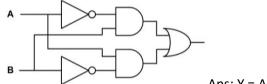
Ans:




12. Draw the logic circuit for the given Boolean expression,  $Y = \overline{\overline{AB} + BC}$ .

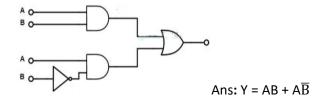
Ans:




- 13. Simplify the Boolean expression and draw the logic circuit for the simplified answer.
  - a)  $Y = AB + ABC + AB\overline{C}$
  - b)  $Y = \overline{A}\overline{B} + \overline{A}B$



14. Simplify the Boolean expression  $Y = \overline{AB} + \overline{ABC} + A(B + \overline{AB})$ .


Ans: Y = 0

15. a) Find the Boolean expression for the following logic circuit,



Ans:  $Y = A\overline{B} + \overline{A}B$ 

b) Find the Boolean expression for the given logic circuit.



# Five marks questions (Understanding):

- 1. State and prove De-Morgans' theorems.
- 2. Explain transistor NOT gate.
- 3. Explain two input diode OR gate.
- 4. Explain two inputs AND gate.
- 5. Explain two inputs NOR gate.
- 6. Explain two input NAND gate.
- 7. Explain the Astable multivibrator using IC 555.
- 8. Explain the monostable multivibrator using IC-555.

\*\*\*\*