TRIGONOMETRY

FUNDAMENTALS

> Trigonometry is the study of relationship between the sides and angles of a triangle.

Trigonometrical ratio

> Trigonometric ratio of angle in a right angled AABC are defined as follows:

$$\sin\theta = \frac{AB}{AC} = \frac{P}{h}$$

$$Cos\theta = \frac{AB}{AC} = \frac{b}{h}$$

$$\tan \theta = \frac{AB}{AC} = \frac{p}{b}$$

The ratio $\csc\theta$, $\sec\theta$ and $\cot\theta$ are respectively the reciprocals of the $\sin\theta$, $\cos\theta$ and $\tan\theta$.

i.e.,
$$\sin \theta = \frac{1}{\csc \theta}, \cos \theta = \frac{1}{\sec \theta}$$
 and $\tan \theta = \frac{1}{\cot \theta}$

Trigonometric ratio of some specific angles

$\angle \theta$	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
an heta	0	$\frac{1}{\sqrt{3}}$	1	√3	Not defined
$\cos ec\theta$	Not defined	2	$\sqrt{2}$	2	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
$\cot \theta$	Not defined	√3	1	$\frac{1}{\sqrt{3}}$	0

$$ightharpoonup sec^2\theta - tan^2\theta = 1$$

$$ightharpoonup cosec^2\theta - \cot^2\theta = 1$$

$$\Rightarrow$$
 $\sin(90^{\circ} - \theta) = \cos\theta; \cos(90^{\circ} - \theta) = \sin\theta$

$$\Rightarrow$$
 $sec(90^{\circ} - \theta) = cosec\theta$; $cosec(90^{\circ} - \theta) = sec\theta$

$$\Rightarrow$$
 $tan(90^{\circ} - \theta) = cot\theta$; $cot(90^{\circ} - \theta) = tan\theta$