MODEL PAPER - II

MATHEMATICS

Time allowed : 3 hours

Maximum marks : 100

General Instructions

- 1. All question are compulsory.
- The question paper consists of 29 questions divided into three sections A, B and C. Section A comprises of 10 questions of one mark each, Section B comprises of 12 questions of four marks each and Section C comprises of 7 questions of six marks each.
- 3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- 4. There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculators is not permitted.

SECTION A

Question number 1 to 10 carry one mark each.

- 1. Evaluate : $\int \frac{1}{x + x \log x} dx$.
- 2. Evaluate : $\int_{0}^{1} \frac{1}{\sqrt{4x+1}} dx.$
- 3. If the binary operation * defined on Q, is defined as a * b = 2a + b ab, for all $a, b \in Q$, find the value of 3 * 4.
- 4. If $\begin{pmatrix} y + 2x & 5 \\ -x & 3 \end{pmatrix} = \begin{pmatrix} 7 & 5 \\ -2 & 3 \end{pmatrix}$, find the value of y.
- 5. Find a unit vector in the direction of $2\hat{i} \hat{j} + 2\hat{k}$.

6. Find the direction cosines of the line passing through the following points:

(-2, 4, -5), (1, 2, 3)

7. If
$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{pmatrix} 2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2 \end{pmatrix}$$
 and $B = \begin{bmatrix} b_{ij} \end{bmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ -3 & 4 & 4 \\ 1 & 5 & 2 \end{pmatrix}$, then find

 $a_{22} + b_{21}$.

- 8. If $|\overrightarrow{a}| = \sqrt{3}$, $|\overrightarrow{b}| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = \sqrt{3}$, find the angle between \overrightarrow{a} and \overrightarrow{b} .
- 9. If $A = \begin{pmatrix} 1 & 2 \\ 4 & 2 \end{pmatrix}$, then find the value of k if |2A| = k |A|.

10. Write the principal value of $\tan^{-1}\left[\tan\frac{3\pi}{4}\right]$.

SECTION B

Question number 11 to 22 carry 4 marks each.

11. Evaluate :
$$\int \frac{\cos x \, dx}{(2 + \sin x)(3 + 4 \sin x)}.$$

OR

Evaluate : $\int x^2 \cos^{-1} x \, dx$.

- 12. Show that the relation *R* in the set of real numbers, defined as $R = \{(a, b) : a \le b^2\}$ is neither reflexive, nor symmetric, nor transitive.
- 13. If log $(x^2 + y^2) = 2 \tan^{-1} \left(\frac{y}{x}\right)$, then show that $\frac{dy}{dx} = \frac{x + y}{x y}$.

OR

If
$$x = a$$
 (cos $t + t \sin t$) and $y = a$ (sin $t - t \cos t$), then find $\frac{d^2 y}{dx^2}$.

14. Find the equation of the tangent to the curve $y = \sqrt{4x - 2}$ which is parallel to the line 4x - 2y + 5 = 0.

OR

Using differentials, find the approximate value of f (2.01), where $f(x) = 4x^3 + 5x^2 + 2$.

15. Prove the following :

$$\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right).$$

OR

Solve the following for x:

$$\cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) + \tan^{-1}\left(\frac{2x}{x^2-1}\right) = \frac{2\pi}{3}$$

- 16. Find the angle between the line $\frac{x+1}{2} = \frac{3y+5}{9} = \frac{3-z}{-6}$ and the plane 10x + 2y 11z = 3.
- 17. Solve the following differential equation :

$$(x^3 + y^3) dy - x^2 y dx = 0$$

18. Find the particular solution of the differential equation

$$\frac{dy}{dx}$$
 + y cot x = cosec x, (x ≠ 0), given that y = 1 when x = $\frac{\pi}{2}$.

19. Using properties of determinants, prove the following :

 $\begin{vmatrix} a^{2} + 1 & ab & ac \\ ba & b^{2} + 1 & bc \\ ca & cb & c^{2} + 1 \end{vmatrix} = 1 + a^{2} + b^{2} + c^{2}$

XII - Maths

20. The probability that A hits a target is $\frac{1}{3}$ and the probability that B hits it

is $\frac{2}{5}$. If each one of *A* and *B* shoots at the target, what is the probability that

- (i) the target is hit?
- (ii) exactly one of them hits the target?
- 21. Find $\frac{dy}{dx}$, if $y^x + x^y = a^b$, where *a*, *b* are constants.
- 22. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are vectors such that \overrightarrow{a} . $\overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$, $\overrightarrow{a} \neq \overrightarrow{0}$ then prove that $\overrightarrow{b} = \overrightarrow{c}$.

SECTION C

Question number 23 to 29 carry 6 marks each.

- 23. One kind of cake requires 200 g of flour and 25g of fat, and another kind of cake requires 100g of flour and 50g of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes. Formulate the above as a linear programming problem and solve graphically.
- 24. Using integration, find the area of the region :

$$\{(x, y) : 9x^2 + y^2 \le 36 \text{ and } 3x + y \ge 6\}$$

25. Show that the lines $\frac{x+3}{-3} - \frac{y-1}{1} = \frac{z-5}{5}$ and $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$

are coplanar. Also find the equation of the plane containing the lines.

26. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius *R* is $\frac{2R}{\sqrt{3}}$. Also find the maximum volume.

OR

Show that the total surface area of a closed cuboid with square base and given volume, is minimum, when it is a cube.

27. Using matrices, solve the following system of linear equations :

$$3x - 2y + 3z = 8$$

 $2x + y - z = 1$
 $4x - 3y + 2z = 4$

28. Evaluate :
$$\int \frac{x^4 dx}{(x-1)(x^2+1)}$$
.

OR

Evaluate :
$$\int_{1}^{4} [|x - 1| + |x - 2| + |x - 4|] dx.$$

29. Two cards are drawn simultaneously (or successively without replacement) from a well shuffled pack of 52 cards. Find the mean and variance of the number of red cards.

ANSWERS

MODEL PAPER - II

SECTION A

1. $\log |(1 + \log x)| + c$ 3. -25. $\frac{2}{3}\hat{i} - \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}$ 7. 5 9. k = 42. $\frac{1}{2}(\sqrt{5} - 1)$ 4. y = 36. $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$ 8. $\theta = \frac{\pi}{3}$ 10. $-\frac{\pi}{4}$

SECTION B

11. $\frac{1}{5} \log \left| \frac{3+4 \sin x}{2+\sin x} \right| + c$ 13. OR $\frac{1}{at} \sec^3 t$ 14. 4x - 2y = 114. OR 54.68 15. OR $x = 2 - \sqrt{3}$ 16. $\theta = \sin^{-1} \left(\frac{8}{21} \right)$ 17. $\frac{-x^3}{3y^3} + \log |y| = c$ 18. $y \sin x = x + 1 - \frac{\pi}{2}$ 20. (i) $\frac{3}{5}$ (ii) $\frac{7}{15}$

21.
$$\frac{dy}{dx} = \frac{-\left[y^x \log y + yx^{y-1}\right]}{xy^{x-1} + x^y \log x}$$

SECTION C

- Maximum number of cakes = 30 of kind one and 10 cakes of another kind.
- 24. $3(\pi 2)$ square units
- 25. x 2y + z = 4.
- 27. x = 1, y = 2, z = 3
- 28. $\frac{x^2}{2} + x + \frac{1}{2}\log|x-1| \frac{1}{4}\log|x^2+1| \frac{1}{2}\tan^{-1}x + c$ OR
- 28. $\frac{23}{2}$
- 29. Mean = 1, Variance = 0.49