MATHEMATICS
NPP

DAILY PRACTICE PROBLEMS

DPP No. 51

Total Marks : 30

Max. Time : 33 min.

Торіс	: Vector						
Type of Questions M.M							
Single choice Objective (no negative marking) Q.1,2,3(3 marks, 3 min.)Multiple choice objective (no negative marking) Q.4(5 marks, 4 min.)Subjective Questions (no negative marking) Q.5,6,7,8(4 marks, 5 min.)				(5 marks, 4 min.)	[9, [5, [16,	9] 4] 20]	
1.	Let \hat{a} , \hat{b} , \hat{c} are three unit vectors such that $\hat{a} + \hat{b} + \hat{c}$ is also a unit vector. If pairwise angles						
	between \hat{a} , \hat{b} , \hat{c} are $\theta_{_1}$, $\theta_{_2}$ and $\theta_{_3}$ respectively then cos $\theta_{_1}$ + cos $\theta_{_2}$ + cos $\theta_{_3}$ equals						
	(A) (- 3/2)	(B) – 3	(C) 1	(D) – 1			
2.	A tangent is drawn to the curve $y = \frac{8}{x^2}$ at a point A(x ₁ , y ₁), where x ₁ = 2. The tangent cuts the x-						
	axis at point B . Then the scalar product of the vectors $\stackrel{ ightarrow}{AB}$ and $\stackrel{ ightarrow}{OB}$ is :						
	(A) 3	(B) -3	(C) 6	(D) –6			
3.	If the angle between \vec{a} and \vec{c} is 25° and the angle between \vec{b} and \vec{c} is 65° and $\vec{a} + \vec{b} = \vec{c}$ then the						
	angle between \vec{a} and \vec{b}						
	(A) 45°	(B) 60°	(C) 65°	(D) 90°			
4.	The vectors $\vec{a} = 3\hat{i} - 2\hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} - 2\hat{k}$ are adjacent sides of a parallelogram. Then angle between its diagonals is						
	(A) π/4	(B) π/3	(C) 3π/4	(D) 2π/3			
5.	If $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{OB} = 3\hat{i} + 4\hat{j} + 7\hat{k}$, $\overrightarrow{OC} = -3\hat{i} - 2\hat{j} - 5\hat{k}$ where O is origin then find the ratio in which point B divide AC.						
6.	If \vec{a} and \vec{b} are non collinear vectors and $\vec{A} = (p + 4q)\vec{a} + (2p + q + 1)\vec{b}$, $\vec{B} = (-2p + q + 2)\vec{a} + (2p - 3q - 1)\vec{b}$ then determine p and q such that $3\vec{A} = 2\vec{B}$						
7.	In a triangle OAB, E is mid point OB and D is point on AB such that AD : DB = 2 : 1. If OD and AE intersects at P determine ratio OP : PD using vector method (where O is origin)						
8.	In a $\triangle ABC$, D divides BC in the ratio 3 : 2 internally and E divides CA in the ratio 1 : 3 internally. The lines AD and BE meet at H and CH meet AB in F, Find the ratio in which F divides AB						

Answers Key

- **1.** (D) **2.** (A) **3.** (D) **4.** (A)(C)
- **5.** 1:3 externally **6.** p = 2, q = -1
- **7.** 3:2 **8.** 2:1