CBSE Test Paper 04 Chapter 1 Relations and Functions

- 1. The range of the function f(x) =|x 1| is
 - a. $(-\infty,\infty)$
 - b. $[0,\infty)$
 - c. $(-\infty,0)$
 - d. $(0,\infty)$
- 2. Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then R is
 - a. An equivalence relation.
 - b. Symmetric and transitive but not reflexive.
 - c. Reflexive and symmetric but not transitive
 - d. Reflexive and transitive but not symmetric
- 3. The identity element for the binary operation * defined on Q {0} as a * b = $\frac{ab}{2} \forall$ a, b \in Q - {0} is
 - a. 1
 - b. 0
 - **c.** 2
 - d. $\frac{1}{2}$
- 4. A relation R on a non-empty set A is said to be an equivalence relation if
 - a. R is reflexive and symmetric
 - b. R is reflexive, symmetric and transitive
 - c. R is symmetric and transitive
 - d. R is reflexive and transitive

5. Let f : {1, 3, 4} \rightarrow {1, 2, 5} and g : {1, 2, 5} \rightarrow {1, 3} be given by f = {(1, 2), (3, 5), (4, 1)} and

- g = {(1, 3), (2, 3), (5, 1)}. Then gof is
- a. {(1, 3), (3, 1), (4, 1)}
- b. {(1, 3), (3, 1), (4, 3)}
- c. {(1, 3), (3, 3), (4, 3)}
- d. $\{(1, 3), (3, 3), (4, 1)\}$
- 6. A relation R defined on a set A is said to be _____, if (x, y) \in R and (y, z) \in R \Rightarrow (x, z)

 \in R, where x, y, z \in A.

- 7. The set of second elements of all ordered pairs in R, i.e. {y : (x, y) ∈ R} is called the ______ of relation R.
- 8. The inverse of a bijective function is also a ______ function.
- 9. Show that a one one function f: $\{1, 2, 3\} \rightarrow \{1, 2, 3\}$ must be onto.
- 10. Prove that the function f: $R \rightarrow R$, given by f(x) = 2x, is one one.
- 11. Let $f : R \to R$ be the function defined by $f(x) = 4x 3 \ \forall \ x \in R$. Then write f^{-1}
- 12. Define universal relation. Give example.
- 13. Let $f : R \to R$ be defined as f(x) = 10x + 7. Find the function $g : R \to R$ such that gof = fog = I_R .
- 14. Let T be the set of all triangles in a plane with R a relation in T given by R = { (T_1, T_2) : T₁ is congruent to T₂}.

Show that R is an equivalence relation.

- 15. Let $f: X \to Y$ be an invertible function. Show that the inverse of f^1 is f, i.e., $(f^1)^{-1} = f$.
- 16. Let * be the binary operation on N given by a * b = L.C.M. of a and b, Find:
 - i. 5 * 7, 20 * 16
 - ii. Is * commutative?
 - iii. Is * associative?
 - iv. Find the identity of * in N.
- 17. Give an example of a relation, which is:
 - i. Symmetric but neither reflexive nor transitive.
 - ii. Transitive but neither reflexive nor symmetric.
 - iii. Reflexive and symmetric but not transitive.
 - iv. Reflexive and transitive but not symmetric.
- 18. Show that the relation R defined in the set A of all triangles as $R = \{(T_1, T_2) : T_1 \text{ is similar to } T_2 \}$, is an equivalence relation. Consider three right angle triangles T_1 with sides 3, 4, 5. T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related?

CBSE Test Paper 04 Chapter 1 Relations and Functions

Solution

1. b. $[0,\infty)$

Explanation: We have, f(x) = |x - 1|, which always gives non-negative values of f(x) for all $x \in \mathbb{R}$. Therefore range of the given function is all non-negative real numbers i.e. $[0, \infty)$.

2. d. Reflexive and transitive but not symmetric **Explanation:** The relation R is not symmetric, $(1,2) \in R$, but $(2,1) \notin R$, $(1,3) \in R$,but $(3,1) \notin R$, $(3,2) \in R$, but $(2,3) \notin R$.

3. c. 2

Explanation: If the identity element is e, then, a*e = a = e * a = $\frac{ae}{2} \Rightarrow a = \frac{ea}{2} \Rightarrow e = 2$.

4. b. R is reflexive, symmetric and transitive

Explanation: A relation R on a non empty set A is said to be reflexive if xRx for all $x \in A$.

A relation R on a non empty set A is said to be symmetric if xRy \Leftrightarrow yRx, for all x, $y \in A$.

A relation R on a non empty set A is said to be transitive if xRy and yRz \Rightarrow x Rz, for all x,y,z \in A.

An equivalence relation satisfies all these three properties.

5. b. {(1, 3), (3, 1), (4, 3)}

Explanation: (gof)(1)=g(f(1))=g(2)=3, (gof)(3)=g(f(3))=g(5)=1, (gof) (4)=g(f(4))=g(1)=3,

- 6. transitive
- 7. range
- 8. bijective
- 9. Since, f is one one three elements of {1, 2, 3} must be taken to 3 different elements of the co domain {1, 2, 3} under f. Hence, f has to be onto.
- 10. x_1 , x_2 are two different elements of R

Let $f(x_1) = f(x_2)$

 $2x_1 = 2x_2$

 $x_1 = x_{2}$, hence f is one-one.

- 11. Given that f(x) = 4x 3 = y (say), then 4x = y + 3 $\Rightarrow x = rac{y+3}{4}$ Hence $f^{-1}(y) = rac{y+3}{4} \Rightarrow f^{-1}(x) = rac{x+3}{4}$
- 12. A Relation R in a set A called universal relation if each element of A is related to every element of A.

Eg. Let A = {2,3,4}

 $R = (A \times A) = \{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)\}$

13. Given: f(x) = 10x + 7

Now gof = g[f(x)] = g(10x+7) fog = f[g(x)] = 10g(x) + 7

$$\Rightarrow 10g(x) + 7 = I_R(x) = x$$

$$\Rightarrow g(x) = rac{x-t}{10}$$

14. R is reflextive, since every triangle is congruent to itself.

Now

 $(T_1, T_2) \in \mathbb{R}$ means T_1 is congruent to T_2 . So we can say that T_2 is also congruent to T_1 .

$$\Rightarrow$$
 T₂ \cong T₁

Therefore $(T_{2}, T_{1}) \in \mathbb{R}$

So R is symmetric.

Now

 $(T_1, T_2) \in R \text{ and } (T_2, T_3) \in R$

That means T_1 is congruent to T_2 and T_2 is congruent to T_3

so we can say that ${\rm T}_1$ is congruent to ${\rm T}_3$

 \Rightarrow (T₁, T₃) \in R Since three triangles are congruent to each other.

Therefore, R is transitive

Now since R is reflexive, symmetric and transitive

Therefore, R is an equivalence relation

15. Let $f: X \to Y$ be an invertible function.

Then f is one-one and onto

 \Rightarrow g : y \rightarrow X where g is also one-one and onto such that

$$gof(x) = I_x \text{ and } fog(y) = I_y$$

$$\Rightarrow g = f^{-1}$$

Now, f^{-1}o(f^{-1})^{-1} = I \text{ and } fo[f^{-1}o(f^{-1})^{-1}] = foI

$$\Rightarrow [fof^{-1}]o(f^{-1})^{-1} = f$$

$$\Rightarrow Io(f^{-1})^{-1} = f$$

$$\Rightarrow (f^{-1})^{-1} = f$$

- 16. a * b = L.C.M. of a and b
 - i. 5 * 7 = L.C.M. of 5 and 7 = 35 20 * 16 = L.C.M. of 20 and 16 = 80
 - ii. a * b = L.C.M. of a and b = L.C.M. of b and a = b*aTherefore, operation * is commutative.
 - iii. a*(b*c) = a*(L.C.M. of b and c) = L.C.M. of (a and L.C.M. of b and c)
 = L.C.M. of a, b and c
 Similarly, (a * b)*c = L.C.M. of a, b and c
 Thus, a*(b*c) = (a*b)*c
 Therefore, the operation is associative.
 - iv. Identity of * in N = 1 because a*1 = L.C.M. of a and 1 = a
- 17. i. The relation "is perpendicular to". l_1 is not perpendicular to l_1 , so R is not reflexive. If $l_1 \perp l_2$ then $l_2 \perp l_1$, however if $l_1 \perp l_2$ and $l_2 \perp l_3$ then l_1 is not perpendicular to l_3 .
 - ii. So it is clear that R "is perpendicular to" is a symmetric but neither reflexive nor transitive.
 - iii. Relation R = {(x, y) : x > y}
 We know that x > x is false. Also x > y but y > x is false and if x > y, y > z this implies x > z.
 Therefore, D is transitive, but noith court forming a second seco

Therefore, R is transitive, but neither reflexive nor symmetric.

iv. "is friend of" R = {(x, y) : x is a friend of y}

It is clear that x is friend of x,

 \therefore R is reflexive.

Also x is friend of y and y is friend of x.

∴ R is symmetric.

Also if \boldsymbol{x} is friend of \boldsymbol{y} and \boldsymbol{y} is friend of \boldsymbol{z} then \boldsymbol{x} cannot be friend of \boldsymbol{z}

∴ R is not transitive.

Therefore, R is reflexive and symmetric but not transitive.

v. "is greater or equal to" R = {(x, y) : $x \ge y$ }

It is clear that $x \geqslant x$

 \therefore R is reflexive.

And $x \ge y$ does not imply $y \ge x$

∴ R is not symmetric.

But $x \geqslant y, y \geqslant z \Rightarrow x \geqslant z \therefore R$ is transitive.

Therefore, R is reflexive and transitive but not symmetric.

18. i. Each triangle is similar to itself thus $(T_1, T_1) \in R$

 \therefore R is reflexive.

ii. (T₁, T₂) \in R

```
\Rightarrow T<sub>1</sub> is similar to T<sub>2</sub>
```

```
\Rightarrow T<sub>2</sub> is similar to T<sub>1</sub>
```

 $(T_2, T_1) \in R$

R is symmetric

iii. T_1 is similar to T_2 and T_2 is similar to T_3

 \Rightarrow T₁ is similar to T₃

 \Rightarrow (T₁, T₃) \in R

∴ R is transitive.

Hence R is the equivalence

(II) part T₁ = 3, 4, 5

```
T<sub>2</sub> = 5, 12, 13
```

T₃ = 6, 8, 10

 $\frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \frac{1}{2}$ T₁ is relative to T₃. as T₁ IS SIMILAR TO T₃