Mechanical Oscillations (Part -1)

Q. 1. A point oscillates along the x axis according to the law x = a cos (ot — n/4).
Draw the approximate plots

(a) of displacement x, velocity projection v,, and acceleration projection w, as
functions of time t;

(b) velocity projection v« and acceleration projection w, as functions of the
coordinate Xx.

_ am[m-:’—]
Ans. 1. (a) Given, x = :
vl"*"“1“*5m(t;a:_%] and w, = x = - aw’ mS{W"%] (1)
So

On-the basis of obtained expressions plots x(t) , v.(t) and w,(t) can be drawn as shown
in the answersheet, (of the problem book ).

(b) From Eqgn (1)

v, = -am-sin[mi-ﬁ] So, v2 = aﬂmzsinz[mr--’f)
* 4 4 )

But from the law x = a cos (ot - 7/4), S0, X? = a2 €0s? (wt - 1/4)

x‘l
- 1——2-
or, cos (ot - w/4) - X2/ = 2 or sin? (ot - 3t/4) = N )
) ) “E-ﬂzmz[l-ﬁ:J o vi=w(a-x)
Using (3) in (2), a 4)

Again from Eqn (4), w, = -aw’cos (ot - 1/4) = -®*X

Q. 2. A point moves along the x axis according to the law x = a sinz(owt — m/4).
Find: (a) the amplitude and period of oscillations; draw the plot x (t); (b) the
velocity projection v, as a function of the coordinate x; draw the plot v« (X).

Ans. 2. (a) From the motion law of the particle



x = asin® (wt-n/4) = %[l-m(lmt-—;—:”

a a ELY a . a .,
or, x—E-—Ems{lmt-i-]--zsmlmr-251n[2ml+n}
. a_a._
i.e. x-z zsm[i‘.mrfn}.
1)

Now compairing this equation with the general equation of harmonic oscillations: X - A
sin(wot + a) Amplitude, A = a/2 and angular frequency, w, - 2m.

T=2%, 2

Thus the period of one full oscillation, @o @
(b) Differentiating Eqn (1) w.r.t. time

vy=awcos (2wt +x) or u;-azmzmsz{2m1+ﬂjua2 w? [1 -ain2{2 m:+:ﬂ:}} (2)

2 2
From Egn (1) (xa—%) = %sini{Zmn-:u]
¥ dy 4
or, 4—,1+l—-—-=sin2|[2m.r+nj or 1-sm2(2m”;3¢_1[1_£J 3)
a” a a a

From Eqns (2) and (3), v,=a"w’ f‘fj—x{l - E] =dw’ x(a-x)

Plot of v, (x) is as shown in the answersheet.

Q. 3.A particle performs harmonic oscillations along the x axis about the
equilibrium position x = 0. The oscillation frequency is ® =4.00 s* . At a certain
moment of time the particle has a coor- dinate X, =25.0 cm and its velocity is
equal to v, =100 cm/s. Find the coordinate x and the velocity v, of the particle t =
2.40s after that moment.

Ans. 3 Let the general equation of S.H.M. be
h=acos (ot + a)
S0, Vi =-a m sin (ot + a)

Let us assume thatatt =0, x = h, and Ya =
Thus from Eqns (1) and (2) fort =0, h, =acos a, and "= -a wsin a

v 1} v
Therefore ano = - ——  and a = nfi- [—lﬂ] = 35.35 cm
w X [

Under our assumption Eqns (1) and (2) give the sought x and v, if

2 W
t=1=240s, a =\ x /ot ada =tan ! |-——] =%
8, a xn"’(",;aﬁ.'l) and @ = tan e 3

Putting all the given numerical values, we get :

\",ﬁ.




=-29cmand v, =-81cm/s

Q. 4.Find the angular frequency and the amplitude of harmonic oscillations of a
particle if at distances x; and x, from the equilibrium position its velocity equals
v; a nd v, respectively.

Ans. From the Egn

vf=— mz{az—f} (see Eqn. 4 of 4.1)

vi= @’ (e’ -x) and vi = w®(a’-x})

Solving these Eqns simultaneously, we get

m”'\/f‘-’; “2}/{f Iﬂ}, 4'V{V1 ‘\‘21: "’f "f’%]

Q. 5. A point performs harmonic oscillations along a straight line with a period T
= 0.60 s and an amplitude a = 10.0 cm. Find the mean velocity of the point
averaged over the time interval during which it travels a distance a/2, starting
from

(a) the extreme position;

(b) the equilibrium position.

Ans. (a) When a particle starts from an extreme position, it is useful to write the
motion law as x = a cos ot (1)

(However x is the displacement from the equlibrium position)

It tx be the time to cover the distence a/2 then from (1)

a a . T
a - 5 =E=GLDﬁmI] OF COSafy = E -co.s-al—l[as H=T/4)
7 T
Thus T . R——
U 3w 3(2a/T) 6
As X=gcoswi, S0,V, = =gwiinwmf
Thus vel|lv|==-v, =awsinwet, for st = T/6

Hence sought mean velocity

-:v}-j}r -Iﬁ['lqu}Smml'drf Tfﬁ-a?a-ﬂ"smfs

(b) In this case, it is easier to write the motion law in the form:
X =asin ot (2)
If t, be the time to cover the distance a/2, then from Eqn (2)



2n

1 . n
T fy = o = sing (ast<T74)

ﬂﬂ-asmgi.&ﬁ or sin

n T
Thus Trz-ﬁ cr,t;-u

Differentiating Eqn (2) w.r.t time, we get

v, = amcosot = a = cos 22y
X T T

So, v-|v,[-n%,’£cusg?!:, for t= t = TA12

Hence the sought mean velocity

fva’:_ 1 r’”ﬂz_m 2x 6a
fa " T4 0T

Q. 6. At the moment t = 0 a point starts oscillating along the x axis according to the
law x = a sin ot. Find:

(a) the mean value of its velocity vector projection (v:);

(b) the modulus of the mean velocity vector |(V)] ;

(c) the mean value of the velocity modulus (v) averaged over 3/8 of the period after
the start.

Ans. (a) As x = a sin ot SO, Vi =am Cos ot
ir
famms[?.nfi"}rdz V3
o 2V2law . 2n
T <> o=t B (v 72 3
8

(b) In accordance with the problem

— — —
vo=v.i, 50 |<v]|=|<v,>|

Zﬁnu} Zﬁﬂm

irn in

Hence, using part (a), |<v>| = |

(c) We have got, v, = a o cos ot

So, v=|v.| =awcosmt, for 15 T/4

3
= —gweoswi, for T/4= 1t = ET




T4 3T/8
fﬂmcmmhﬁ +j —awcoswidl
.Jl'vdr 5

TA4
Henece, €V = = —

[ar 37/8

Using o =2 /T, and on evaluating the integral we get

24-V2)an
= In

V>
Q. 7. A particle moves along the x axis according to the law x = a cos ot. Find the
distance that the particle covers during the time interval fromt=0tot.

Ans. From the motion law, X = a cos mt,, it is obvious that the time taken to cover the
distance equal to the amplitude (a), starting from extreme position equals T/4.
Now one can write

[ = nETHﬁ, where I e:;rand n = {}.1,2,.,,]

As the particle moves according to the law, x .= a cos ot, soatn =1,3,5 ... or for odd n
values it passes through the mean positon and for even numbers of n it comes to an
extreme position (if t, = 0).

Case (1) when n is an odd number: In this case, from the equation
X = x a sin o, if the t is counted from nT/4 and the distance covered in the time interval
to be comes

. . T , nm
.'i‘]-rlﬁ.lﬂﬂ'rfn-ﬂ'ﬁiﬂﬂ,} I—HE = q 5In {I;:II'—T

Thus the sought distance covered for odd n is

= na+F = na+asi L si ¢- X
& m -31 n @ 51 | 2 = o+ 50| 2
Case (2), when n is even, In this case from the equation x = a cos t, the distance

covered ( s ) in the interval t,, is given by

T E
@—% = aCOS Wiy = acoﬁm[r—nz} = acos w:—n—]

2
l—cm(mt—ﬂj—n]]

ao=dl

or



Hence the sought distance for n is even

nm nm
£ = na+s; = na+a[1-m&(mr-T]] = a[u+1-ms(mr-T}]

In general

, R 15 even

nm
a[n+1~ms(wr-——]

2

f 1

u[n+sintu,:—$\ﬁ;. n s odd
=11

Q. 8. At the moment t = 0 a particle starts moving along the x axis so that its
velocity projection varies as v, = 35 cos wt cm/s, where t is expressed in seconds.
Find the distance that this particle covers during t = 2.80 s after the start.

Ans. Obviously the motion law is of the from, x = a shoot, and v, = ® a cos ot.
Comparing v« - @ a cos ot with v, - 35 cos nit , we get

@=n,am=> thus Tm2%a2 and T/4 = 055
F ¢ w
Now we can write

T T
f=28Bs=5x 4+ﬂ-3 (whcm " l]-Ss]

As n =5is odd, like (4 = 7), we have to basically find the distance covered by the
particle starting from the extreme position in the time interval 0 = 3 s.
Thus from the Egn.

X=gcoswi = %mu[ﬂ-i]

15--.:1 = Eom:r:[ﬂ*ﬂ] or 5; = E [l-mﬂ*ﬂu}
n n n

Hence the sought distance

5 -5x£+£{lv¢a:ﬂ»‘.’nn}
X =X

= %{ﬁ-msﬂ'ﬁn}- %x?[ﬁ-ms&d"}- 60 em



Q. 9. A particle performs harmonic oscillations along the x axis according to the
law x = a cos ot. Assuming the probability P of the particle to fall within an
interval from —a to +a to be equal to unity, find how the probability density dP/dx
depends on x. Here dP denotes the probability of the particle falling within an
interval from x to x dx. Plot dP/dx as a function of x.

Ans. As the motion is periodic the particle repeatedly passes through any given region
intherange-a<x<a.

The probability that it lies in the range (x, x + dx) is defined as the fraction

At
— (as t—= =) . : . .
t where At is the time that the particle lies in the range (x, x + dx) out of the

total time t. Because of periodicity this is

deI dt 2dx

dP = dx =T =T

where the factor 2 is needed to take account of the fact that the particle is in the range (
X, X +d x ) during both up and down phases of its motion. Now in a harmonic
oscillator.

V=i=wmacoswi=aV a-x

Thus since ®T =2 = ( T is the time period)

dP - ﬂdl’ - l d.l'
dx IRV JE R
We get
+a
Note that -=
dp 1 __1
S0 X n PRI

Q. 10. Using graphical means, find an amplitude a of oscillations resulting from
the superposition of the following oscillations of the same direction:

(@) x: =3 .0 cos (ot -1- w/3), x, =8 .0 sin (ot + 71/6);

(b) X, = 3.0 cos ot, x, = 5.0 cos (ot+ w/4), X; =6 .0 sin ot.

Ans. (a) We take a graph paper and choose an axis (X - axis) and an origin. Draw a



vector of magnitude 3 inclined at an angle n/3 with the X -axis. Draw another vector of
magnitude 8 inclined at an angle - &/3 (Since sin (ot+ t/ 6 ) » cos (ot- &/ 3)) with the
X - axis. The magnitude of the resultant of both these vectors (drawn from the origin)
obtained using parallelogram law is the resultant, amplitude.

nl3
/3
Clearly ﬂ*-3’+s=+2-3~s~m%i'i 9+ﬁ4*4ﬂm%
Thus R = R7 units

(b) One can follow the same graphical method here but the result can be obtained more
quickly by breaking into sines and cosines and adding:
Resultant

5 5 .
x = (3+ﬁ]msmf+[ﬁ- ﬁ]smm:

= Acos(wr+al

Then

2 2
5 5 30 - 60
At =34 —=|+|6-—=]| =9+25+ 36
ﬁ] [ ﬁ] va2
- T0-15V2 = 70-212

So, A =6-985 =7 units

Note- In using graphical method convert all oscillations to either sines or cosines but do
not use both.



Mechanical Oscillations (Part -2)

Q. 11. A point participates simultaneously in two harmonic oscillations of the same
direction: x1 = a cos ot and

X2 = a cos 2mt.

Find the maximum velocity of the point.

Ans. Given, X1 =acoswotand x 2 =a cos 2 ot

so, the net displacement,

I=n+iy=af{coswi+cos2mt } = ﬂ{mﬁmi‘+2m51mi‘-1}

and Wy=r=a{-wsinor-4dmcosmesinwe}

For x to be maximum,

X = amzcmml-4amzuu51m£+4amzﬁinzmt =0

Solving for acceptable value
cos ot = 0.644
thus sin ot = 0.765

Vmar = |Ve_ | = +@0 [0765+4 %0765 x 0644 | = +273 a o
And

Q. 12. The superposition of two harmonic oscillations of the same direction results
in the oscillation of a point according to the law x = a cos 2.1t cos 50.0t, where t is
expressed in seconds. Find the angular frequencies of the constituent oscillations
and the period with which they beat.

Ans. We write:

acos21teos 5001 = % {maﬂ*l [+ cos 4?-9:}

Thus the angular frequencies of constituent oscillations are
52.1stand 47.9s?

To get the beat period note that the variable amplitude a cos 2.1t becomes maximum
(positive or negative), when



2.1t = nxt Thus the interval between two maxima is

=, 1:5 s nearly.

21

Q. 13. A point A oscillates according to a certain harmonic law in the reference
frame K which in its turn performs harmonic oscillations relative to the reference
frame K. Both oscillations occur along the same direction. When the K* frame
oscillates at the frequency 20 or 24 Hz, the beat frequency of the point A in the K
frame turns 167 out to be equal to v. At what frequency of oscillation of the frame
K" will the beat frequency of the point A become equal to 2v?

Ans. If the frequency of A with respect to K' is vo and K ' oscillates with frequency ¥
with respect to K, the beat frequency of the point A in the .K-frame will be v when

Vo=

In the present case ¥ = 20 or 24.
This means vo - 22. & v - 2
Thus beats of 2v = 4 will be heard when ¥ =26 or 18 .

Q. 14. A point moves in the plane xy according to the law x = a sin ot, y = b cos ot,
where a, b, and ® are positive constants. Find:

(a) the trajectory equation y (x) of the point and the direction of its motion along
this trajectory;

(b) the acceleration ® of the point as a function of its radius vector r relative to the
origin of coordinates.

Ans. (a) From the Egn : x = a sin ot

2
sin‘ot = rjfaz or cos wi = 1 - IT

R €Y
And from the equation :
y=hcoswit

cos’ @t = yszz 2)

From Eqgns (1) and (2), we get :
2 2

x l’iu:lr“;.i-d-'t-'-l

1- ==

a b a B

which is the standard equation of the ellipse shown in the figure, we observe that,



at t=0,x=0andy=Db
and at

n
Iﬂzm,xnﬂx and y =0

Thus we observe that at t = 0, the point is at point 1 (Fig.) and at the following
moments, the co-ordinate y diminishes and x becomes positive. Consequently the
motion is clockwise.

(b) As x =d sin ot and y=b cos ot

A — i i e
S0 we may write r = asinwit [+bcosmi |
—

Thus * = W - @' F

Q. 15. Find the trajectory equation y (x) of a point if it moves according to the
following laws:

(a) x = a sin ot, y = a sin 20t;

(b) x = a sin cot, y = a cos 2ot.

Plot these trajectories.

Ans. (a) From the Eqgn. : x = a sin ot , we have
cosint =V 1 = (£/a*)
and from the Eqn. :y = a sin 2 ot

y =2asinotcoswe=2xV 1-(a") or yz-q:z{l-i;]
(b)-Fr_om the Eqri. : X =asin ot

sin? ot = x ?/a?
Fromy = acos 2 ot
y-a{l-ﬂsiuzml}-a{l-zj—i]

For tiie plots see the plots of answer sheet of tlve problem book.

Q. 16. A particle of mass m is located in a unidimensional potential field where the
potential energy of the particle depends on the coordinate x as U (x) = Uo (1 — cos
ax); Uo and a are constants. Find the period of small oscillations that the particle
performs about the equilibrium position.

Ans. As U (x) = Uo (1 - cos ax)



F, = -%IE = =Uyasinax
So,
or, Fx=-Upaa x (because for small angle of oscillations sinax =ax)
or, Fe=-Upa'x (1)

2 . .
But we know fx = - m@x  for small oscillation

2 Uﬂﬂz 1"‘ U{.
Wy = or wy =4 i

Thus m m

Hence the sought time period

T.Z_ﬂ_z_rr«.,fuﬂ c2xy -

g a [} a Uy

Q. 17. Solve the foregoing problem if the potential energy has the form U (x) =
alx> — blx, where a and b are positive constants.

U(x) - 12_

E
® |

Ans.

then the equilibrium position is X = xowhen U™ (Xo) =0

[
=

-[Iz;,j:nngb—a

+

2|
&l

or,

Now write: X = Xoty

Then U{x]-i%-:—ﬂq-{r—xn}[!'{xn] +;—{x-xg]2U"(xu}

8a 22 _(2a/b)? (3b-2b) = b/8d

Xp Xp

But U (%) =

4
U(x) - U:xm-%{g?—s]y%
So finally: a

We neglect remaining terms for small oscillations and compare with the P.E. for a
harmonic, oscillator:

1 2. 18" b
TR

8 Veom




Note: Equilibrium position is generally a minimum of the potential energy. Then U’ (
Xo)-0,U"(X0)>0.The equilibrium position can in principle be a maxim um but
then U" (Xo) < 0 and the frequency of oscillations about this equilibrium position will be
imaginary.

The answer given in the book is incorrect both numerically and dimensionally.

Q. 18. Find the period of small oscillations in a vertical plane performed by a ball
of mass m = 40 g fixed at the middle of a horizontally stretched string | = 1.0 min
length. The tension of the string is assumed to be constant and equal to F = 10 N.

Ans. Let us locate and depict the forces acting on the ball at the position when it is at a
distance x down from the unreformed position of the string.

At this position, the unbalanced downward force on the ball

=mg - 2.F sinf

By Newton's law, mx =mg-2Fsin 0
= mg-2F0 (when Ois small )

= mg-ZFi- mg-ii.r

172 I
: AF __AF( mgl
Thus x = g- 7" mf(‘ _4F]

puiting x' = x-’-’l]g-{,we get
., 4T,
-—x

x = mi

Thus T=n ¥ HFI = (23

Q. 19. Determine the period of small oscillations of a mathematical pendulum, that
Is a ball suspended by a thread | = 20 cm in length, if it is located in a liquid whose
density is 1 = 3.0 times less than that of the ball. The resistance of the liquid is to
be neglected.



Ans. Let us depict the forces acting on the oscillating ball at an arbitrary angular
position 0. (Fig.), relative to equilibrium position where Fg is the force of buoyancy.
For the ball from the equation:

a
Nz - IB. (where we have taken the positive sense of Z axis in the direction of angular

velocity i.e. @ of the ball and passes through the point of suspension of the pendulum
0O), we get :

-mg!siuﬂ+F,.’sinﬂ-mn‘2E‘i' (1)

. m-g—xrsu,f‘g-gnrip ) )
Using and sin 6 = 6 for small 6, in Eqn (1), we get:
0 - "%[1*5]9

Thus the sought time period

Q. 20. A ball is suspended by a thread of length | at the point 0 on the wall,
forming a small angle a with the vertical (Fig. 4.1). Then



the thread with the ball was deviated through a small angle B(p > a) and set free.
Assuming the collision of the ball against the wall to be perfectly elastic, find the
oscillation period of such a pendulum.

Ans. Obviously for small p the ball execute part of S.H.M. Due to the perfectly elastic

collision the velocity of ball simply reversed. As the ball is in S.H.M. (|6] < o on the
left) its motion law in differential from can be written as

0 =-%0--wlo
! 1)

If we assume that the ball is released from the extreme position, 0 = f att = 0, the
solution of differential equation would be taken in the form

ﬁ-ﬁmsmﬂl-ﬁmsﬁ: 2)

If t ' be the time taken by the ball to go from the extreme position 6 = 3 to the wall i.e. 0
= - a, then Eqn. (2) can be rewritten as

+u-ﬂ-cosﬁr‘

Thus the sought time T = 2¢' = 2"'“' é [I'L-ms'lg]

-ZVL X esin~12 . [hecause:;in']x+cm"lx-nf2]
g \2 p



Mechanical Oscillations (Part -3)

Q.21. A pendulum clock is mounted in an elevator car which starts going up with a
constant acceleration w, with w < g. At a height h the acceleration of the car
reverses, its magnitude remaining constant. How soon after the start of the motion
will the clock show the right time again?

Ans. Let the downward acceleration of the elevator car has continued for time t then the
sought time

t =7y % +t", where obviously v 24

w is the time of upward acceleration of the elevator.

One should i/ote that if the point of suspension of a mathematical pendulum moves with
an acceleration ¥ : then the time period of the pendulum becomes

[

2m —
“¥1  (see 4.30)

'

|

b

In this problem the time period of the pendulum while it is moving upward with
acceleration w becomes

]
8*+w and its time period while the elevator moves downward with the
same magnitude of acceleration becomes

E=-W

2n

2h

As the time of upward acceleration equals ~ " , the total number of oscillations
during this time equals

¥V 2h/w
2n'V I‘}"{g+ iy

2h/w .”f
- 2av lig =V 2hiw I:g-rw:lf:‘rg
2ny ;i{g+w}

Thus the indicated time

Similarly the indicated time for the time interval t'



we demand that

V2w Vigew)g+t'Vig-w)g = V2hiw+1’

[ 'E"'w_ﬁ
or, t' =V 2h/w E-m

Hence the sought time

f o= E-y—:‘- u ﬁ E"‘w_ g'w
b W \"rE—\"rg—w

V 2h V1= -Vi-p where ff = w/
ST W TiViop £
Q.22. Calculate the period of small oscillations of a hydrometer (Fig. 4.2) which
was slightly pushed down in the vertical direction. The mass of the hydrometer is
m = 50 g, the radius of its tube is r = 3.2 mm, the density of the liquid is p = 1.00
g/cm®. The resistance of the liquid is assumed to be negligible.

Ans. If the hydrometer were in equlibrium or floating, its weight will be balanced by
the buoyancy force acting on it by the fluid. During its small oscillation, let us locate
the hydrometer when it is at a vertically downward distance x from its equilibrium
position. Obviously the net unbalanced force on the hydrometer is the excess buoyancy
force directed upward and equals m r? x p g. Hence for the hydrometer.

mx = - xr pPEX
:|'[.F2
X = - --—P—E'x
Or m

Hence the sought time period

m

3 =255,
nripg

T=2o

Q.23. A non-deformed spring whose ends are fixed has a stiffness x = 13 N/m. A
small body of mass m = 25 g is attached at the point removed from one of the ends
by n = 1/3 of the spring's length. Neglecting the mass of the spring, find the period
of small longitudinal oscillations of the body. The force of gravity is assumed to be
absent.



Fig. 4.3

Ans. At first let us calculate the stiffness ki and k2 of both the parts of the spring. If we
subject the original spring of stiffness k having the natural length lo (say), under the
deforming forces F - F (say) to elongate the spring by the amount x y then

F=kx(1)

Therefore the elongation per unit length of the spring is x / lo . Now let us subject one o

f the parts of the spring of natural length n\ lo under the same deforming forces F - F.
Then the elongation of the spring will be

i Nl =nx
Thus F =% (nx) (2)

Hence from Eqns (1) and (2)

K =T1K of K = K/

—K X=KyX = mMX

(X Ny Z - Kzx
or, mt gl L 2 K; Kioe Kp
A BT0OBHUTH0605000] ™ MEEEE
. 1 1 i ra
Thus X = - w|£~—-—-—Jt: r
mr{m) 0 «—xi—

Hence the sought time period
T=2a¥n(lin)m/xk = 0135

Q.24. Determine the period of small longitudinal oscillations of a body with mass
m in the system shown in Fig. 4.3. The stiffness values of the springs are x; and Xa.
The friction and the masses of the springs are negligible.

Ans. Similar to the Soln of 4.23, the net unbalanced force on the block m when it is at a
small horizontal distance x from the equilibrium position becomes (k1 + k2)x.



From F, = mw, for the block :
(K +K3)x = mx

K +K
Thus X o= (J—i]x
m
Hence the sought time period T = 2=
Ky + Ky

Alternate : Let us set the block m in motion to perform small oscillation. Let us locate
the block when it is at a distance x from its equilibrium position.

As the spring force is restoring conservative force and deformation of both the springs
are same, so from the conservation of mechanical energy of oscillation of the spring-
block system :

2
Lo(d)y 1, 2,1
Zm[df] +2x1x +2||:1r2 Constant

Differentiating with respect to time

1 cae 1 .
Emzxx +E[x|+x1}2.rx =10

K: +K
i e (Kitka)
M

Hence the sought time period T = 21‘!'\# o
Ky + K3

Q.25. Find the period of small vertical oscillations of a body with mass m in the
system illustrated in Fig. 4.4. The stiffness values of the springs are x: and Xz, their
masses are negligible.

or,

Ans. During the vertical oscillation let us locate the block at a vertical down distance x
from its equilibrium position. At this moment if X1 and x. are the additional or further
elongation of the upper & lower springs relative to the equilibrium position, then the net
unbalanced force on the block will be k2x2 directed in upward direction. Hence

—KyXy = mx (]_)

We also have X=x1+x2 (2)

As the springs are massless and initially the net force on the spring is also zero so for
the spring

kix1 = KaXo (3)



Solving the Egns (1), (2) and (3) simultaneously, we get

Ki K .
= 122 X = mI
Ky + K3
. (%) K/ Ky +K3)
¥ om o e
Thus m

T-Znymw

Hence the sought time period k1%

Q.26. A small body of mass in is fixed to the middle of a stretched string of length
2/. In the equilibrium position the string tension is equal to T,. Find the angular
frequency of small oscillations of the body in the transverse direction. The mass of
the string is negligible, the gravitational field is absent.

]
%
m
Fig. 4.4.

Ans. The force F, acting on the weight deflected from the position of equilibrium is 2
To sin 0.

F=zn§

Since the angle 0 is small, the net restoring force,

or, F = bkx, where k = —

So, by using the formula,

VE o . V%
Wy = m"’ o = ml

4.27. Determine the period of oscillations of mercury of mass m =200 g poured
into a bent tube (Fig. 4.5) whose right arm forms an angle 0 = 30° with the vertical.
The cross-sectional area of the tube is S = 0.50 cm?. The viscosity of mercury is to
be neglected.

Ans. If the mercury rises m the left arm by x it m ust fall by a slanting length equal to x
in the other arm.



Total pressure difference in the two arms will then be pg x + pgx cosf = pgx (1 + cos0)
This will give rise to a restoring force - pgSx (1+ cos0)

This must equal mass times acceleration which can be obtained from work energy
principle.

LR T ETTT

JI'.

d]

The K.E. of the mercury in the tube is clearly : %mxg

So mass times acceleration must be : mx’
Hence mx +pgS(1+cosB)x =0
This is S.H.M. with a time period

m
T- EEVPESII-rcmH}'

Q. 28. A uniform rod is placed on two spinning wheels as shown in Fig. 4.6. The
axes of the wheels are separated by a distance | = 20 cm, the coefficient of friction
between the rod and the wheels is k = 0.18. Demonstrate that in this case the rod
performs harmonic oscillations. Find the period of these oscillations.

o

Fig. 4.6.

Ans. In the equilibrium position the C.M. of the rod lies nid way between the two
rotating wheels. Let us displace the rod horizontally by some small distance and then
release it Let us depict the forces acting on the rod when its C.M. is at distance x from
its equilibrium position (Fig.). Since there is no net vertical force acting on the rod,

Newton’s second law gives:

S

R

Ny +N; = mg (1)




For the translational motion of the rod from the Eqn. : Fx = m wex
kN} —sz = I'l‘t.lr. (2)

As the rod experiences no net torque about an axis perpendicular to the plane of
the Fig. through the C.M. of the rod.

H’[th} N’[;;x ] 3)

Solving Egns. (1), (2) and (3) simultaneously we get

X = -E%S‘I

Hence the sought time period
T-Z:Itv ﬁ '-J'rv %é: = 1-53

Q.29. Imagine a shaft going all the way through the Earth from pole to pole along
its rotation axis. Assuming the Earth to be a homogeneous ball and neglecting the
air drag, find:

(a) the equation of motion of a body falling down into the shaft;

(b) how long does it take the body to reach the other end of the shaft;

(c) the velocity of the body at the Earth’s centre.

Ans. (a) The only force acting on the ball is the gravitational force F of

4
magnitude Y3 ™P™" where y is the gravitational constant p, the density of the Earth
and r is the distance of the body from the centre of the Earth.

4

g=Y3 PR, . .

But, 3 so the expression for ¥ can be written as,
. g
F=-mg—, ) . ] . . o
R here R is the radius of the Earth and the equation of motion in projection

MX + ﬂﬁgx =0
form has the form, or,

(b) The equation, obtained above has the form of an equation of S.H.M. hawing the
time period,



]'"-'2..11:‘,#}'1r
g

Hence the body will reach the other end of the shaft in the time,

(c) From the conditions of the speed of the body at the centre of the Earth will be
maximum, having the magnitude,

v=Rw=RVg/R =VgR =7 9kms.

Q.30. Find the period of small oscillations of a mathematical pendulum of length 1
if its point of suspension 0 moves relative to the Earth’s surface in an arbitrary
direction with a constant acceleration w (Fig. 4.7). Calculate that period if | = 21
cm, ® = g/2, and the angle between the vectors w and g equals p = 120°.

Fig. 4.7. Fig. 4.8.

Ans. In the frame of point of suspension the mathematical pendulum of mass m (say)
will oscillate. In this frame, the body m will experience the inertial force m (=) in
addition to the real forces during its oscillations. Therefore in equilibrium position m is
deviated by some angle say a. In equilibrium position

Theosa = mg+mweos (n—-B) and Tysing = mwsin(x-f)

So, from these two Eqns

E-WBDSE
lana =

w sin

and mm-\/-‘"z“psm B+(mg-mwecosf)’ (1)

g — mw cos f




g

Let us displace the bob m from its equilibrium position by some small angle and then
release it Now locate die ball at an angular position (a + 0) from vertical as shown in
the figure.

From the Eqn :

Ng = 1B,
-mglsin{a+8)-mwcos(x - B)Isin (a+0) +mwsin (x - ) I cos (e +0) = m [0

or,— g (sin « cos O + cos a sin 8) - wcos (n - f) (sin o cos 0 + cos c sin 8) + wsin p
(cos o cos B - sin a sin B)

=10
But for small B,sind = 0 cosB w1
So, - g (sin o« + cos o 0) — wcos (7 = f) (sin a + cos o B) + wsin B (cos & - sin a @)
- 10
. f as
or, [mnu+ﬂ:l-{wcusﬂ-g]+wsmﬂ[1-Lmaﬂ]-maﬂ (2)

Solving Egns (1) and (2) simultaneously we get

-(g'-2Zwgcosp+w' )0 = Pf"gz+w2—2wgmsﬁ 8

8 _._
Thus o --LLEE]B
. , 2n I
Hence the sought time period ¥ = 2= = 2n V oy
wy lg-wl

Q.31. In the arrangement shown in Fig. 4.8 the sleeve M of mass m = 0.20 kg is
fixed between two identical springs whose combined stiffness is equal to x = 20
N/m. The sleeve can slide without friction over a horizontal bar AB. The
arrangement rotates with a constant angular velocity o = 4.4 rad/s about a vertical



axis passing through the middle of the bar. Find the period of small oscillations of
the sleeve. At what values of » will there be no oscillations of the sleeve?

Ans. Obviously the sleeve performs small oscillations in the frame of rotating rod. In
the rod’s frame let us depict the forces acting on the sleeve along the length of the rod
while the sleeve is at a small distance x towards right from its equilibrium position. The
free body diagram of block does not contain Coriolis force, because it is perpendicular
to the length of the rod.

From Fx - mwy for the sleeve in the frame of rod

—KXA MO X = mx
K 2

or, X o=-—wx (1)

Thus the sought time period
y gp—— SR dp
1f K 3
==
m

It is obvious from Eqn (1) that the sleeve will not perform small oscillations if

oz V LY 10 rods.
™m

Q.32. A plank with a bar placed on it performs horizontal harmonic oscillations
with amplitude a = 10 cm. Find the coefficient of friction between the bar and the
plank if the former starts sliding along the plank when the amplitude of oscillation
of the plank becomes less than T = 1.0 s.

Ans. When the bar is about to start sliding along the plank, it experiences the
maximum restoring force which is being provided by the limiting friction, Thus

kN = moga or, kmg-mmga

2
- S a2) L,
or,
Q.33. Find the time dependence of the angle of deviation of a mathematical
pendulum 80 cm in length if at the initial moment the pendulum
(a) was deviated through the angle 3.0° and then set free without push;
(b) was in the equilibrium position and its lower end was imparted the horizontal
velocity 0.22 m/s;
(c) was deviated through the angle 3.0° and its lower end was imparted the
velocity 0.22 m/s directed toward the equilibrium position.



Ans. The natural angular frequency of a mathematical pendulum equals
wg = ¥ g/l

(a) We have the solution of S.H.M. equation in angular form :
0 =0,cos{wyr+ a)

If at the initial moment i.e. att =0, 0 = 0y, than o = 0.
Thus the above equation takes the form

0 = @, cos oy’

- VE -3y 22
8, cos 7! 3° cos i

Thus 0=3°cos3.5t

(b) The S.H.M. equation in angular form :
0 =0,sin(myr+a)

If at the initial moment t=0, 6 = 0, then a = 0 .Then the above equation takes the form
0 = B, sin gt

Let vo be the velocity of the lower end of pendulum at 8 = 0, then from conserved of
mechanical energy of oscillaton

'Em = -Eﬂnrﬂu.: or Tm = Uaurm

or, %mvﬁzmgn’{l-msﬂm}

Thus

i) cos™'[1- v = cos™? l—& = 4.5
- 2g1) =" 2%x9-8x0-8

Thus the sought equation becomes
8 =0, sinwgt = 45%sin 351

(c) Let 60 and vo be the angular deviation and linear velocity at t = 0.
As the mechanical energy of oscillation of the mathematical pendulum is conservation



%mv%+mgf{1-cm90] =mgl{l-cos,)

2

v
o, E“-gumsan-cusﬂ_}
2 2
" % [ ps 3o o (022 | e
Thus @, = cos {mﬂu 231} cos {mﬂ T x98x0 8 5-4

sinu-%lndmucﬂ

Then from 6 = 5.4° sin (3.5 t + o), we see that because the

velocity is directed towards the centre. Thus

0= z + 1.0 .
2 radians and we get the answer.

Q.34. A body A of mass m: = 1.00 kg and a body B of mass m, =4.10 kg are
interconnected by a spring as shown in Fig. 4.9. The body A performs free vertical
harmonic oscillations with amplitude a = 1.6 cm and frequency = 25 s™*. Neglecting
the mass of the spring, find the maximum and minimum values of force that this
system exerts on the bearing surface.

Ans. While the body A is at its upper extreme position, the spring is obviously
elongated by the amount

If we indicate y-axis in vertically downward direction, Newton’s second law of motion
in projection form i.e. Fy = mwy for body A gives :

m1g+ﬁ[d—fi—g]-m1m~2u ar.rr[a—m::—g]'mﬂ*ﬂz“'f} (1)

(Because at any extreme position the magnitude of acceleration of an oscillating body
equals w?a and is restoring in nature.)

If N be the normal force exerted by the floor on the body B, while the body A is at its
upper extreme position, from Newton’s second law for body B

8 -m
" 2B

N+x[a—

o, N_ng_“{a_m_ig] - myg-my(w'a-g)(using Eqn. 1)

HencelN = {mi-i-mz}g-m,n}:a



When the body A is at its lower extreme position, the spring is compresed by the
distance

(“ ”;E].

From Newton’s second law in projection fonn i.e. Fy = mwy for body A at this state:

mlg-u[ﬁ:f %] -m (- w'a) or :[ai—m::

g]-mlig-rm:ﬂj 3

In this casc if N' be the normal force exerted by the floor on the body B, From Newton’s
second law

m
for body B we get: N' = K(ﬂ + %g]ﬁ-mig =mg+a‘a)+mg { using Eqn. 3 )
Hence N'=(m+m)g+mo’a
From Newton’s third law the magnitude of sought forces are N' and N, respectively.

Q.35. A plank with a body of mass m placed on it starts moving straight up
according to the law y = a (1 — cos ot), where y is the displacement from the
initial position, ® =11 s,

AL

=
AL

Fig. 4.9.

Find: (a) the time dependence of the force that the body exerts on the plank if a =
4.0 cm; plot this dependence;

(b) the minimum amplitude of oscillation of the plank at which the body starts
falling behind the plank;

(c) the amplitude of oscillation of the plank at which the body springs up to a
height h = 50 cm relative to the initial position (at the moment t = 0).

Ans. (a) For the block from Newton’s second law in projection form Fy= mwy
N-mg=my (1)

Butfrom y=a(l-cos wt)

y = w’acoswt )

We get



From Eqgns (1) and (2)

2
N= mg(i+%mm:]

3)

From Newtons’s third law the force by which the body m exerts on the block is
directed vertically downward and equls

2z
N = mg[li-m—gf-cusmr]

(b) When the body m starts, falling behind the plank or looking contact, N = 0, (because
the normal reaction is the contact force). Thus from Eqgn. (3)

2
mg(l-r?mml] = 0 for some r.

Hence apy = gfmz = 8 cm.

(c) We observe that the motion takes place about the mean position y = a. At the initial
instant y = 0. As shown in (b) the normal reaction vanishes at a height (g/®w?) above the
position of equilibrium and the body flies off as a free body. The speed of the body at a

V.a®-(8/0"), 50 that the condition of

distance (g/w?) from the equilibrium position is *

the problem gives

[oVa-(g/0™) ]
2g

-Lz+a-h

o

Hence solving the resulting quadratic equation and taking the positive roof,

a = _iz,tvz—hig— w 20 cm.
w L)



Mechanical Oscillations (Part -4)

Q.36. A body of mass in was suspended by a non-stretched spring, and then set
free without push. The stiffness of the spring is x. Neglecting the mass of the
spring, find:

(a) the law of motion y (t) , where y is the displacement of the body from the
equilibrium position;

(b) the maximum and minimum tensions of the spring in the process of motion.

Ans. (a) Lety (t) = displacement of the body from the end of the unstarched position of
the spring (not the equilibrium position). Then

my - -K_}H»mg

This equation has the solution of the form

y=A+Beos({wr+a)

if —mmﬂﬂcm{mlﬂ-u}--K[A+H|:us{mr+ﬂ}]-+mg
Then w =~ and A =2EK

m K
we have y=0 and y=0 at t=0.S0

—wBsing =0
A+Bcosa =10
Since B>0 and A > 0 we must have o = 1t

B=A="E
K

mg
y= (1-coswt)
And *

(b) Tension in the spring is

T=ky=mg(l=coswt)
50 T =2mg, T = 0

Q.37. A particle of mass in moves due to the force F = — amr, where a is a positive
constant, r is the radius vector of the particle relative to the origin of coordinates.
Find the trajectory of its motion if at the initial moment r = roi and the velocity v =
VoJ, Where i and j are the unit vectors of the x and y axes.

Ans. In accordance with the problem



F--ﬂ.m;‘
So, m(xT%y]) = - am(xi% y])
Thus X =-oax and y = - ay

Hence the solution of the differential equation
X = —ax becomes x = acos (wpf+8), where wy = a (1)

So, X= - awysin (wyt+a) {2)
From the initial conditions of the problem, v, = 0 and x = r; at { = 0

So from Eqn. (2) a - 0, and Eqgn takes the form

X = Fpcosangl S0, COS gl = X/F (3)

One of the solution of the other differential Eqn Y = -®¥.pecomes
y = a'sin{wgt+8'), where mﬁ = (4)

From the initial condition, y =0 att=0, so 0' = 0 and Eqn (4) becomes
y =a' sin wot(S)

Differentiating w.r.t time we get

y = a' wyocoswyt (6)

_i"“u ltl'-ﬂ,

But from the initial condition of the problem,

vop=sawy or, a =vy'my

Using it in Egn (5), we get

y—:T';sinmﬁf or sinmﬂr--u% (7)
Squaring and adding Eqns (3) and (7) we get:
Sin® wg t + cOSS wgt = g + s

1] o _;E'— ;g



Q.38. A body of mass m is suspended from a spring fixed to the ceiling of an
elevator car. The stiffness of the spring is x. At the moment t = 0 the car starts
going up with an acceleration ®. Neglecting the mass of the spring, find the law of

motion y (t) of the body rela- tive to the elevator car if y (0) = 0 and o 0)=0.
Consider the following two cases:

(a) ® = const;

(b) ® = at, where a is a constant.

Ans. (a) As the elevator car is a translating non-inertial frame, therefore the body m will
experience an inertial force m w directed downward in addition to the real forces in the

elevator’s frame. From the Newton’s second law in projection form Fy = mwy for the
body in the frame of elevator car:

-x{%&-r}r]-rmg-kmw-m;" (A)

(Because the initial elongation in the spring is m g/K)

.- [ mw]
80, MY = —KV+H W= =k p-—

Egn. (1) shows that the motion of the body m is S.H.M. and its solution becomes

y-—"’f—-asm[\/gna] @

Differentiating Eqn (2) w.r.t time

y - "E m[\/g”“J (3)

Using the initial condition y (0) = 0 in Egn (2), we get:

3 mw
asno = - —
K

And using the other initial condition ¥(2) =@ jn Eqn (3)



we get a'ﬁ'imsa-ﬂ
m

Thus u—-uﬂanda-";-—w

Hence using these values in Eqgn (2), we get
(i
(b) Proceed up to Eqn.(I). The solution of this differential Eqn be of the form
ya—m—:— = asin( V i H-‘.‘l]
or, y-;:;'-ﬂsin[\fil-l-ﬁ]

or, y-z—g-dsin{mﬂnﬁj wher wy ="/ i] (4)

From the initial condition that att= 0, y(0)= 0,500 = asind or & =0

Thus Eqn.(4) takes the from :y - =5 = asin wp! (5)
wy

Differentiating Eqn. (5) we get : j -5 = a wycos of (6)
Wy

But from the other initial condition y (0) = 0 at £ = 0,

So, from Eqn.(6) 'EE = gwy OfF g = -u!mﬂ
[

Putting the value of a in Eqn. (5), we get the sought y(¢). ie.

al L o -
y=—7=-—3sinwgt or y= —(wpr-sinwyt)
Wiy wp tg

Q.39. A body of mass m = 0.50 kg is suspended from a rubber cord with elasticity
coefficient k =50 Is17m. Find the maximum distance over which the body can be

pulled down for the body’s oscillations to remain harmonic. What is the energy of
oscillation in this case?

Ans. There is an important difference between a rubber cord or steel coire and a spring.
A spring can be pulled or compressed and in both cases, obey’s Hooke’s law. But a



rubber cord becomes loose when one tries to compress it and does not then obey
Hooke’s law. Thus if we suspend a 'body by a rubber cord it stretches by a distance m
g/k in reaching the equilibrium configuration. If we further stretch it by a distance A hit
will execute harmonic oscillations when released if A h <m g/ k because only in this
case will the cord remain taut and obey Hooke’s law.

Thus A hmaxf mg /k

The energy of oscillation in this case is

1 “1mg
SR (Al N = o

Q.40. A body of mass m fell from a height h onto the pan of a spring balance (Fig.
4.10). The masses of the pan and the spring are negligible, the stiffness of the latter
is X. Having stuck to the pan, the body starts performing harmonic oscillations in
the vertical direction. Find the amplitude and the energy of these oscillations.

- ]

Fig. 4.10. Fig. 4.11.

Ans. As the pan is of negligible mass, there is no loss of kinetic energy even though
the collision is inelastic. The mechanical energy of the body m in the field generated by
the joint action of both the gravity force and the elastic force is conserved i.e. AE = 0.
During the motion of the body m from the initial to the final (position of maximum
compression of the spring) position AT = 0, and therefore

AU = AU, +AU,, = 0

—a-a-:l‘gr||:4l:|+.:4:,‘J.+l|c.!r2 =0

Or 2

On solving the quadratic equation:

P 2
L V7 LT
K

K



As minus sign is not acceptable

2 2
g g Zmgh
I-mx +-v{m: + fr::
K

If the body m were at rest on the spring, the corresponding position of m will be its
equilibrium position and at this position the resultant force on the body m will be zero.
Therefore the equilibrium compression Ax (say) due to the body m will be given by

KAx=mg o Ax = mg/k

Therefore seperation between the equilibrium position and one of the extreme position
I.e. the sought amplitude

a=x=-Ax -\/Eziid- 42—’?(3—#
(3

The mechanical eneigy of oscillation which is con served equals E = Uextreme, because at
the extreme position kinetic eneigy becomes zero.

Although the weight of body mis a conservative force, it is not restoring in this problem
, hence U extreme is only concerned with the spring force . Therefore

2 2

Ewl _ n ™ %xaz = mgh+£2“§—

Q.41. Solve the foregoing problem for the case of the pan having a mass M. Find
the oscillation amplitude in this case.

Ans. Unlike the previous (4.40) problem the kinetic energy of body m decreases due to
the perfectly inelastic collision with the pan. Obviously the body m comes to strike the

pan with velocity ¥ = ¥ 28% _|f v be the common velocity of the “body m + pan "
system due to the collision then from the conservation of linear momentum

mvg = (M+m)v
v m vy my2gh
(M+m) (M+m)

At the moment the body m strikes the pan, the spring is com pressed due to the weight
of "he pan by the amount M g/ k . If | be the further com pression of the spring due to
the velocity acquired by the "pan - body m " system , then from the conservation of m
mechanical energy of the said system in the Geld generated by the joint action of both
the gravity and spring forces



%[H+m}vj+[H+m}g-I - lt(£‘£+f} - %h{ﬁ.fd_

2 3
1 m2gh ﬂs‘l : 1 (Mg -
M’EW+N}{H+ }+{M+m]gf -z—x( 2I-:.l' Mg!-gx rt] (Using 1)
LI __._E'_’_.F
o g f-mel-C 5 = 0

mgz‘\fm g* 2xghm” hm*

Maem

Thus [ =

As minus sign is not acceptable

I'= —E+—¢_.m2 2+2h ul

(M+m }

If the oscillating "pan + body m" system were at rest it correspond to their equilbijium
(M+m)eg

position i.e. the spring were com pressed by K therefore the am plitude of

oscillation

4o MmE_mg
K K

The mechanical energy of oscillation which is only conserved with the restoring forces

2
¢ (Because spring force is the only restoring force not the

E U
becomes creme

weight of the body)

E=T,., = %{M+m}ulm:

Alternately

III.[I2

1 1
£-doneme () -4
thus

Q.42. A particle of mass m moves in the plane xy due to the force varying with

velocity as F—a(yi— 2 , Where a Is a positive constant, i and j are the unit vectors
of the x and y axes. At the initial moment t = 0 the particle was located at the point
x =y =0 and possessed a velocity vo directed along the unit vector j. Find the law
of motion x (t) , y (t) of the particle, and also the equation of its trajectory.



Ans.
— . -
Wehave F = a (yi= x])
or, mi_’fﬂf}_‘)-a[j'r-.i:n
So, mx =ay and my = —ax (1)
From the initial condition,at t = 0, x = 0 and y = 0
So, integrating Eqnmx = ay

we get L oeay cri-%y (2)
Using Eqn (2) in the Eqn m® = -ar, we get
2 2
. i wa i
my = - "-y mr--[;]r )

one of the solution of differential Eqn (3) is y = A sin ( @ot + o) , where wo =a/ m..
Asatr=0,y» 0, s o the solution takes the form y = A sin wot

On differentiating w.r.t time ¥ =4 @0 ¢

From the initial condition of the problem, at ¢ =+ ¥ = vo
So vo=Awy or A= vyluy

Thus ¥ = (Vo) sin gt (4)

Thus from (2) X = vo sin ot g integrating

-2 5
x= P~ OS5 wpg ¢ (3)
. Yo
On using r=0atr=08=—
Wy
Yo
Hence finally x o= ;{l-msmﬂr} (6)

Hence from Eqgns (4) and (6) we get
[x=(vo/wg) | + ¥ = (vo/mg)®

Which is the equation of a circle of radius (Vo/wo) with the centre at the point
xg = vp/wg, yp = 0

Q.43. A pendulum is constructed as a light thin-walled sphere of radius R filled up
with water and suspended at the point O from a light rigid rod (Fig. 4.1.1). The
distance between the point 0 and the centre of the sphere is equal to I. How many



times will the small oscillations of such a pendulum change after the water freezes?
The viscosity of water and the change of its volume on freezing are to be neglected.

Ans. If water has frozen, the system consisting of the light rod and the frozen water in
the hollow sphere constitute a compound (physical) pendulum to a very good
approximation because we can take the whole system to be rigid. For such systems the
time period is given by

F]
T,=2n V é YV 1+ ;:—c where k% = -S%RE is the radius of gyration of the sphere.

The situation is different when water is unfrozen. When dissipative forces (viscosity)
are neglected, we are dealing with ideal fluids. Such fluids instantaneously respond to
(unbalanced) internal stresses. Suppose the sphere with liquid water actually executes
small rigid oscillations.

Then the portion of the fluid above the centre of the sphere will have a greater
acceleration than the portion below the centre because the linear acceleration of any
element is in this case, equal to angular acceleration of the element multiplied by the
distance of the element from the centre of suspension (Recall that we are considering
small oscillations).

Then, as is obvious in a frame moving with the centre of mass, there will appear an
unbalanced couple (not negated by any pseudo forces) which will cause the fluid to
move rotationally so as to destroy differences in acceleration. Thus for this case of ideal
fluids the pendulum must move in. such a way that the elements of the fluid all undergo
the same acceleration. This implies that we have a simple (mathematical) pendulum
with the time period:

Tu."zﬂy é
nenVi2(5)

Thus s

(One expects that a liquid with very small viscosity will have a time period close
To while one with high viscosity will have a time period closer to 71.)

Q.44. Find the frequency of small oscillations of a thin uniform vertical rod of
mass m and length | hinged at the point 0 (Fig. 4.12). The combined stiffness of the
springs is equal to x. The mass of the springs is negligible.

Ans. Let us locate the rod at the position when it makes an angle 0 from the vertical. In
this problem both, the gravity and spring forces are restoring conservative forces, thus



from the conservation of mechanical energy of oscillation of the oscillating system:

) P . .
ml o0+ "8 neds Ler200 -0
3 -2 z = constant

b |

Differentiating w.r.t. time, we get :

Vmi? oo mgl oo 1o
—— 0+ -k!°288 =10
5 3 200+ > sin * oK
(¢ D 1-1-—“—1I 2]
21 mg
Hence, wy = %%[l-r;—;] .

Q.45. A uniform rod of mass m = 1.5 kg suspended by two identical threads | = 90
cm in length (Fig. 4.13) was turned through a small angle about the vertical axis
passing through its middle point C. The threads deviated in the process through an
angle o = 5.0°. Then the rod was released to start performing small oscillations.
Find:

(a) the oscillation period;

(b) the rod's oscillation energy.

i
I
%“@;‘_,"Wg ""--—g =
Fig. 4.12. Fig. 4.13.

Ans. (a) Let us locate the system when the threads are deviated through an angle o' < a,
during the oscillations of the system (Fig.). From the conservation of mechanical
energy of the system:

2.
:‘; f%—{}*+ mgi(l-cosa') = constant (1)

Where L is the length of the rod, O is the angular deviation of the rod from its
equilibrium position i.e. 6 = 0.



Differentiating Eqn. (1) w.r.t. time

2 ...
%%ZBH +meglsina'a =0
L2 . ‘
So Eﬁﬂ + glo'a’ = 0 forsmalla’, sina’ = a') (2)

But from the Fig.

%’ﬁum'mu‘-iﬂ

21
S0 o = -E-Eﬂ
. da'
. o’ and —— |
Putting these values of d@ in Eqn. (2) we get
4’0 3gg
dt? !

Thus the sought time period
In i
T = o " 22\ g

(b) The sought oscillation energy

E=Usgpe=mgl(1-cosa) = mgl’Zsinzg—

2 2
- mgf‘z%- - Mit—a—(heuu&e for small angle sin 8 = 9 )

Q.46. An arrangement illustrated in Fig. 4.14 consists of a horizontal uniform disc
D of mass m and radius R and a thin rod AO whose torsional coefficient is equal to
k. Find the amplitude and the energy of small torsional oscillations if at the initial



moment the disc was deviated through an angle @o from the equilibrium position
and then imparted an angular velocity %e:

Ans.

- 2 = *
The <6 of the disc is 57" = %[%ﬁ—)mz - MR

The torsional potential energy is %i:q:uz. Thus the total energy is !

1
4

1

zhrﬁ

lmgi.i;?... ;-—.i:ltplr - mRzii:lﬁi-

4

By definition of the amplitude %=+ ¢ = 0 Wien @ = @u.

1 1

2 1. 522 2
flup_ 4mR 'Pufzhl"u

Thus total energy is

:

(%]

2
T = @y 1428
2k

&

Or,

Q.47. A uniform rod of mass m and length | performs, small oscillations about the
horizontal axis passing through its upper end. Find the mean kinetic energy of the
rod averaged over one oscillation period if at the initial moment it was deflected

from the vertical by an angle 8 and then imparted an angular velocity %,

mi?

Ans. Moment of inertia of the rod equals "3 about its one end and perpendicular to its
length

l{m_fz]éz - m_fi.éz
Thus rotational kinetic energy of the rod = 21 3 6

when the rod is displaced by an angle 6 its C.G. goes up by a distance

%[l-mﬁﬂ)- I-B':fu:nl small 8.

4
mel®
Thus the P.E. becomes: " & 4

As the mechanical energy of oscillation of the rod is conserved.

1{ml?\.2 1(mgl
E[T]Bz+§[ 2 lﬂ'zl Constant



. .- . . . 8= -isﬂfu.rmallﬂ.
on differentiating w x t time and for the simplifies we get: 21

we see that the angular frequency o is

- V3g21

we write the general solution of the angular oscillation as:

0=Acoswr+Bsinwe

But Bmiby at r=0, s0A =20
and O =8, at t=0,s0

B = 8,/w
Thus H-Enm:mua-sinm:

Thus the ICE. of the rod

2.
T = -"J'iﬁ'f—ﬂ2 =[-w08ysinwi+0ycoswi ]|

F
mi® . . Lo
- T[ﬂﬁcuszmr+miﬂﬁsm2m.tw-Eturﬂnﬁnsnnmrcmm:]

On averaging over one time period the last term vanishes and

<sin‘wi>=<cos wi>=1/2 Thus

«f=>= ]I—szzﬁ%+:!—myf20§, (where o = Jps2)

Q.48. A physical pendulum is positioned so that its centre of gravity is above the
suspension point. From that position the pendulum started moving toward the
stable equilibrium and passed it with an angular velocity ®. Neglecting the friction
find the period of small oscillations of the pendulum.

Ans. Let | = distance between the C.G. (C) of the pendulum and, its point of suspension
0 Originally the pendulum is in inverted position and its C.G. is above O. When it falls
to the normal (stable) position of equilibrium its C.G. has fallen by a distance 2I. In the
equilibrium

|
=lw
position the total energy is equal to K.E. = 2

conservation :

and we have from energy

1, 2 _ _dmgl
zfm mg2l or I -—;;5—



2
Angular frequency of oscillation for a physical pendulum is given by wo = mgl/l

Q.49. A physical pendulum performs small oscillations about the horizontal axis
with frequency o1 = 15.0 1. When a small body of mass m = 50 g is fixed to the
pendulum at a distance | = 20 cm below the axis, the oscillation frequency becomes
equal to @2 = 10.0 s, Find the moments of inertia of the pendulum relative to the
oscillation axis.

Ans. Let, moment of inertia of the pendulum, about the axis, concerned is 7, then
writing N - Ifp for the pendulum,

-mgxsinaﬂ-fé or, é--—E-f-'E-ﬂ (For small 0 )

Which is the required equation for S.H.M. So, the frequency of oscillation,

M I
wy = —fﬁ o, Xx= _ﬂ-ef_g f.l.)lE (1)

Now, when the mass m is attached to the pendulum, at a distance / below the oscillating
axis,

2 ¢
-Mgxsin® -mglsin® -[;+m;2}‘:T‘i_
I

z
or, - g Mx+ml B’-u,(ﬁlrsmallﬁ}
(F+mI%) de®

which is again the equation of S.H.M., So, the new frequency,

0 = "“‘ g(Mx+ml)
? (F+m1?) (2)

Solving Egns. (1) and (2),



V e(rgya? +mi)
ey =

(I+ml*)
or o2 Imf+mg!
' : T+mi?
or, H(w-wl) = mgl-mawii?
and hence, I=m!2{mg-gﬂ]f{m?-m§}-D*Bg-mz

Q.50. Two physical pendulums perform small oscillations about the same
horizontal axis with frequencies ®1 and m.. Their moments of inertia relative to
the given axis are equal to 11 and I respectively. In a state of stable equilibrium
the pendulums were fastened rigidly together. What will be the frequency of small
oscillations of the compound pendulum?

AnNS.

L0 = -0?l0+G
Lo =-wiho -G

where = G is the to rque of mutual in teractions. We have written the restoring forces on
. 2 .
each pendulum in the absence of the other as = %118 and ~#258 resnectively . Then

0 11“3% + fz‘“%
Il‘l*fz

1 [10? + Il
uy = -
I +f2

1

0= -mzﬂ

Hence



Mechanical Oscillations (Part -5)

Q.51. A uniform rod of length 1 performs small oscillations about the horizontal
axis 00" perpendicular to the rod and passing through one of its points. Find the
distance between the centre of inertia of the rod and the axis 00" at which the
oscillation period is the shortest. What is it equal to?

Ans. Let us locate the rod when it is at small angular position 6 relative to its
equilibrium position. If a be the sought distance, the n from the conservation of
mechanical energy of oscillation

mga(l-cos8)+ -;-f,_—,a- {é]z = constant

Differentiating w.r.t= time we get:

mgas'ml.'lé«- 1

szzéé'.n

2
12

+ ma® and for small 0, sin@ = 0, we get

é - -[—5“—]a

But IOD’ -

Fl
]
_.-+ ﬂz

12

Hence the time period of one full osscillation becomes

i 2 5 4:!1'2 12
IT=2n ]2+u or T B_S 12;:"”
ag
F T abvious] i i-ra = )
or mn @ ! 5':!'II.:;i'.:: 12a

2 +1=0 a !
- = or e —1
1242 23

\ (‘ |
Hrnee Ton=2n -_-ﬁ

g

So,

Q.52. A thin uniform plate shaped as an equilateral triangle with a height h
performs small oscillations about the horizontal axis coinciding with one of its
sides. Find the oscillation period and the reduced length of the given pendulum.

Ans. Consider the moment of inertia of the triangular plate about AB.



/ TR LY
_2p (K_KE)_ ph _mk
vili 4 6V3 6
A B
x
7
dx
A
ﬁz
) ] ﬂAEC-Flﬂm-pa.
On using the area of the triangle 3

ThusK.E. 276

Hz

h 1
-mgi [I—EDSE] - Emgh?

P.E.

Here 6 is the angle that the instantaneous plane of the plate makes with the equilibrium
position which is vertical. (The plate rotates as a rigid body)

2

1mh” .o 1 mgh

Thus E Ea“*z‘j‘fﬂz
2

1_2.5_1&15& mh

Hence [ 7 3,(——6

T-E::V;—g -n'v‘z?", and s = h72.

Q.53. A smooth horizontal disc rotates about the vertical axis 0 (Fig. 4.15) with a
constant angular velocity ®. A thin uniform rod AB of length 1 performs small
oscillations about the vertical axis A fixed to the disc at a distance a from the axis
of the disc. Find the frequency , of these oscillations.



- Fig. 4.15. Fig. 4.16.

Ans. Let us go to the rotating frame, in which the disc is stationary. In this frame die
rod is subjected to Coriolis and centrifugal forces, Few and Fep, \where

{as OA is constant)

Where r is the position of an elemental mass of the rod (Fig.) with respect to point O
(disc’s centre) and

F.., -Ide{v'x @) and Fey = [ dmadr,

v =2
ot

As r=0F = 0OA + AP
d d( AP

SD, —d-—II*r-—‘—{;i}—l-\l‘l

As the rod is vibrating transversely, so V' is directed perpendicular to the length of the
rod.

Hence =<' @)for gach elemental mass o f the rod is directed along PA. Therefore

the net torque of Coriolis about A becomes zero. The not torque of centrifugal force
about point A:



T -fAl‘x dmwir -fA]‘x {?]dsmﬁ[ﬂﬁi-ﬁl’}
Now, /

-fﬁkl’x [?dr)mﬁﬂﬁ -I%dsmﬁsasinﬁ{-k]
-
!

I
tﬂ%ﬂsinﬂi{—k}fsds - mm%a{,—sinﬂ{—k}
[

So, Tr@ = Terw k= -mmﬁﬂ%sinﬂ
According 1o the equation of rotational dynamics : T, ;7 = [, o5
_ 2 i - mIZ aa
or, mr.nnnzsiul:'l = e
2
;L dwpa
or, b - - > sin ©
o 2
Thus, for small 9, 0w - :-;.- %ﬂ
T A 3w’a
This implies that the frequency wy of oscillation is wy = 3]

Q.54. Find the frequency of small oscillations of the arrangement illustrated in Fig.
4.16. The radius of the pulley is R, its moment of inertia relative to the rotation
axis is I, the mass of the body is m, and the spring stiffness is x. The mass of the
thread and the spring is negligible, the thread does not slide over the pulley, there
is no friction in the axis of the pulley.

Ans. The physical system consists with a pulley and the block. Choosing an intertial
frame, let us direct the x-axis as shown in the figure.



Initially the system is in equilibrium position. Now from the condition of translation
equilibrium for the block

To=ms (1)
Similarly for the rotational equilibrium of the pulley
k A/R =ToR
or. To=kAl (2)
Al=TE
from Eqgns. (1) and (2) K (3)

Now let us disturb the equilibrium of the system no matter in which way to analyse its
motion. At an arbitrary position shown in the figure, from Newton's second law of
motion for the block

F.o= mw,

mg-T=mw=mx (4)

Similarly for the pulley

N,= I,

TR-x(Al+x)R= 10 (5)

But w=PBR o, ¥=R0O (6)
from (5) and (6) TR-x(Al+x)R= I{? 13 0]

Solving (4) and (7) using the initial condition of the problem



2
T z_:_:_ zﬂ'\{mﬂfﬂ
tiy K

Note: we may solve this problem by using die conservation of mechanical energy also

Hence the sought time period,

Q.55. A uniform cylindrical pulley of mass M and radius R can freely rotate about
the horizontal axis 0 (Fig. 4.17). The free end of

Fig. 4.18.

a thread tightly wound on the pulley carries a deadweight A. At a certain angle a it
counterbalances a point mass in fixed at the rim of the pulley. Find the frequency
of small oscillations of the arrangement.

Ans. At the equlibrium position, No; = 0 ( Net torque about 0)

S0, mygR-mgRsina =0 or m, = msina (1)

From the equation of rotational dynamics of a solid body about the stationary axis (say
2 -axis) of rotation i.e. from N; = If;

when the pulley is rotated by the small angular displacement 0 in clockwise sense
relative to the equilibrium position (Fig.), we get :



mygR-mgRsin(a+0)
. [MR*

2
Using Eqn. (1)
mgsina-mg(sinocos 8+ cosasin)
_ {M.ﬁ‘q- 2m{1+sinu]ﬂ}“

+ mR*+ m,le] )

> 1]

But for small 6, we may write cos =1 and sin6 =6

Thus we have

{MR+2m(1+ sinu}R}li*
2

_ 2mgecos o o
[MR+ 2m(1+ sina)R]

mgsina-mg(sina+cosaB) =

Hence, 0 =

2
Hence the sought angular frequency wy = VMR+ zzgﬁﬁrsina]

Q.56. A solid uniform cylinder of radius r rolls without sliding along the inside
surface of a cylinder of radius R, performing small oscillations. Find their period.

Ans. Let us locate solid cylinder when it is displaced from its stable equilibrium
position by the small angle 0 during its oscillations (Fig.). If V¢ be the instantaneous
speed of the C.M. (C) of the solid cylinder which is in pure rolling, then its angular
velocity about its own centre C is




® = velr (1)

Since C moves in a circle of radius (R - r), the speed of C at the same m oment can be
written as

Ve = 0(R-r)

)

Thus from Eqns (1) and (2)

- (R-r)
o= 040 3)

As the mechanical energy of oscillation of the solid cylinder is conserved, i.e. E=T +
U = constant

So, smvi+zl. 0 +mg(R-r) (1-cos0) = consant

(Where m is the mass of solid cylinder and I is the moment of inertia of the solid
cylinder about an axis passing through its C .M. (C) and perpendicular to the plane of
Fig. of solid cylinder)

2
or, %mmjr2+;—%mz+mgiﬂ—r}u—msﬂ}-mnslar-t (using Eqn (1) and

L=mr ;1)

. o2
%rz{EFM +g(R-r)(1-cosB) = constant, (using Eqn. 3)
r

Differentiating w.r.t time

%[ﬂ—r}Zéé--rgsin 06 =0

0 - . 28 :
So, 0 3{R-r}u' {because fer small 0, sinOa 0 )
-V 25
Thus ©o 3(R-r)
1._2_::_2“ 3(R-r

Hence the sought time period g



Q.57. A solid uniform cylinder of plass m performs small oscillations due to the
action of two springs whose combined stiffness is equal to x (Fig. 4.18). Find the
period of these oscillations in the absence of sliding.

Ans. Let ki and k2 be the spring constant o f left and right sides springs. As the rolling o
f th< solid cylinder is pure its lowest point becomes the instantaneous centre of rotation.
If 6 b( the small angular displacement of its upper most point relative to its equilibrium

position, the deformation o f each spring becomes (IR Q) . Since the mechanical energy
o f oscillation of the solid cylinder is conserved, E = T+ U = constant

%G{é}z"'%ﬁ{zx’lﬁlz +%I¢z(23ﬂ}2 = constant

Differentiating w.r.t time

1 L 1 7 =
EIFI.EIH +*2-'{1c1+1c2]4R 200 =0

[mﬂz

or,

5 +mﬂﬂ}é'+4ﬁzxa -0

2

(Because [p = Io+mR* = m R + mRY

2

i

. s
Hence 1] --3

3=

Thusmn-ﬁ—xmdsuughttilm-.puiod

3m
ir ‘flm 1{3:#
Tn-.-_ *2:‘[ _H_E,K = I[ _ZK

Q.58. Two cubes with masses m1 a nd m2 were interconnected by a weightless
spring of stiffness x and placed on a smooth horizontal surface. Then the cubes
were drawn closer to each other and released simultaneously. Find the natural
oscillation frequency of the system.

Ans. In the C.M. frame (which is rigidly attached with the centre of mass of the two
cubes) the cubes oscillates. We know that the kinetic energy of two body system

1 2
—I'.I-"Ir . . .
equals 2 = , Where p. is the reduced mass and is the modulus of velocity of any one

body particle relative to other. From the conservation of mechanical energy of

oscillation :



5
%‘124';2'#{%““1.1]} = constant

Here o is the natural length of the spring.

Differenting the above equation w.r.t time, we get:

1 A R dilg+x) .
-2-|c2x1+5|12:x -l][bemma @ -x]
Thust = - Sx (whcr-r. o= 122 ]

M "y +

ap = Y where = :141
Hence the natural frequency of oscillation: !

Q.59. Two balls with masses m1 = 1.0 kg and m, = 2.0 kg are slipped on a thin
smooth horizontal rod (Fig. 4.19). The balls are

P

interconnected by a light spring of stiffness x = 24 N/m. The left-hand ball is
imparted the initial velocity vi =12 cm/s. Find:

(a) the oscillation frequency of the system in the process of motion;
(b) the energy and the amplitude of oscillations.

Ans. Suppose the balls 1 & 2 are displaced by x1, x> from their initial position. Then the
eneigy is

1 - . 1 1
E = Emlx: + Hﬁz.fi + Et[xl - x;]i L] EMI‘%

Also total momentum is : myx; + mpk; = my vy

mx, + m
Define X'L—IEII-II-.I:
m o+ m

= X, =X =
my o+ my m; + my

m

Then =X+ x



Hence ..t’ -

1 mymy 1 1
So 2m1+m:xz i:.rz- m1v1—2m1+m2 2m1+m.2”‘

1,\‘3:24 2
wtmma-“r ..ﬁg,.whm“-mjl M;HB-EB-

e T R AT RTL PP

We have x = agin (wrf + o)

Initially x=0att=0s0 a=0

Then x = g gin wt. Also ¥ = v, at f = 0.

So mﬂ-vlnndhtnmn-ﬂ-E-ZIxn.
w 6

Q.60. Find the period of small torsional oscillations of a system consisting of two
discs slipped on a thin rod with torsional coefficient k. The moments of inertia of
the discs relative to the rod's axis are equal to I; and I..

Ans. Suppose the disc 1 rotates by angle 01 and the disc 2 by angle 82 in the opposite
sense. Then total torsion of the rod = ®*®2

1
) =-k(0,+0,)
and torsional P.E. ~ 2 10

) (23

[ 1)

\

The KJE. of the system (neglecting the moment of inertia of the rod) is

%ﬁﬁ*%ﬁﬁ
So total eneigy of the rod

E=Lpé:

5 Izﬂz‘l‘ K{Hlfﬂy_]

2



We can put the total angular momentum of the rod equal to zero since the frequency
associated with the rigid rotation of the whole system must be zero (and is known).

8 0, H1+'32

Thus Lo =h8 o r =~ UL+ /L
. I
S0 0, I +5 {Hl-lbﬂgzl and H'E-T"'—'[ﬂl-l-ﬁg]
1 Ll - .51
and E=3 m{ﬂ,fag] +2x(31+92)2

The angular oscillation, frequency corresponding to this is

I r I I
2 1 14{'_ N & I
w u:/ L+l /" and T =2x where [' = L+l

Q.61. A mock-up of a CO> molecule consists of three balls interconnected by
identical light springs and placed along a straight line in the state of equilibrium.
Such a system can freely perform oscillations of two types, as shown by the arrows
in Fig. 4.20. Knowing the masses of the atoms, find the ratio of frequencies of these
oscillations.

o c a . R R e RO TR
(1) svewg e = m
— e

; 5
(& erm&mng . e ]
—— — ——

e e R T e T

Fig. 4.20. Fig. 4.21.

Ans. In the first mode the carbon atom remains fixed and the oxygen atoms move in
equal & opposite steps. Then total energy is

0 ¢ 0

2 1
i—?.mnxlq- Ele

Where x is the displacement of one of the 0 atom (say left one). Thus



In this mode the oxygen atoms move in equal steps in the same direction but the carbon
atom moves in such a way as to keep the centre of mass fixed.

2my
Thus 2mgxem.y =0 ur,y--—?x
2

. 2 2 2 :
KE.= %Zmnxi+i-m[ mux}-lngx +12m1;. mﬂxz = %zmn[‘]* m“]xz

2mg\ ) 2mg |
P.E.--l.i'uc(lﬂ-----'ﬂ'-).1'2 .,,.l..;( ]xz -~2x[1+ n]xz

2 m, 2 m,
K 2my 2 my

F L
Thus m;-mn(

v 32 1,“} 11
Hence, o= ¥ 1 t mmyY 3o 161 w,

Q.62. In a cylinder filled up with ideal gas and closed from both ends there is a
piston of mass m, and cross-sectional area S (Fig. 4.21).

In equilibrium the piston divides the cylinder into two equal parts, each with
volume V. The gas pressure is Po. The piston was slighlty displaced from the
equilibrium position and released. Find its oscillation frequency, assuming the
processes in the gas to be adiabatic and the friction negligible.

mf}ﬂ“ﬂm'z'ﬂ-h 1+

c

Ans. Let, us displace the piston through small distance x, towards right, then from Fx =
MWy

!
s
1
I [P,
b
or, (P1mP)S = -mx )

But, the process is adiabatic, so from PV7 = const



P Vi Po Ve
- _ and p, = —.
(Vo-5x) (Vo+5x)

P2

As the new volumes of the left and the right parts are now (Vo + Sx) and (Vo - Sx)
respectively.

So, the Egn (1) becomes.

Vis .
Pnn{ 1 1 }--x

m | (Vy-S5x) (Ve+Sx)
P V3S i{Vu"‘SIP‘ (Vn-sn*} oy

or, m [Vﬂz_sixﬁ}y
v [(1e 152)o(1- 182
puVu.S' Vﬁ Vn “e
or, - ' siety 1 F
v |1- BB
Vo
751.1:2
. V2 . . ..
Neglecting the term  "® in the denominator, as it is very sm all, we get
ZFQEETI
=T mVu '

Which is the equation for S.H.M. and hence the oscillating frequency.

0 = Sv 2Py

mVn

Q.63. A small ball of mass m = 21 g suspended by an insulating thread at a height
h =12 cm from a large horizontal conducting plane performs small oscillations
(Fig. 4.22). After a charge g had been imparted to the ball, the oscillation period
changed n = 2.0 times. Find q.

Ans. In the absence of the charge, the oscillation period of the ball
T=2avl/pg

When we impart the charge q to the ball, it will be influenced by the induced charges on
the conducting plane. From the electric image method the electric force on the ball by

2

the plane 4= (2k)" and is directed downward . Thus in this case the effective
acceleration of the ball



2
' q
= 4 —_—
£ -8 16megmh

And the corresponding time period
rw2aV L - N S
T'm2n 2 Zx\(E E

+ 2
l6megmh

From the condition of the problem

TenI'
' 1 1
S"r T!_“‘ITZ HE_TIZ =
g_,,_‘I_z
l6meymh

Thus on solving

q=4hVaegmg(nl-1) =2pcC

Q.64. A small magnetic needle performs small oscillations about an axis
perpendicular to the magnetic induction vector. On changing the magnetic
induction the needle's oscillation period decreased n = 5.0 times. How much and in
what way was the magnetic induction changed? The oscillation damping is
assumed to be negligible.

Ans. In a magnetic field of induction B the couple on the magnet is - MB sin6 = - MB6
equating thisto 7@ we get

16 +MBO = 0
2 MB VL
or w i of T=2n ME "
Given T!-T]_.fﬂ
o ‘\f._]_. 1 1 11
' B, B B, B w
or By = ' B,

The induction of the field increased n? times.



Q.65. A loop (Fig. 4.23) is formed by two parallel conductors connected by a
solenoid with inductance L and a conducting rod of mass m which can freely
(without friction) slide over the conductors. The conductors are located in a
horizontal plane in a uniform vertical magnetic field with induction B. The
distance between the conductors is equal to 1. At the moment t = 0 the rod is
imparted an initial velocity v, directed to the right. Find the law of its motion x (t)
if the electric resistance of the loop is negligible.

Ans. We have in the circuit at a certain instant of time (t), from Faraday’s law of
electromagnetic induction :

di

La

- BI% or Ldi=Bldx

As at t=m0,x=0, so Li=§8lx mi-%x{l}
For the rod from the second law of motion Fx = mwy

—ilB = mx

flﬂ':] 2
X o= —(igk
miL

Using Eqn. (1), we get : ) -[
where ©o = 18/VmL

The solution of the above differential equation is of the form
x=asin{wygf+ a)

From the initial condition,at=0,x=0,so0a =0

Hence, * = asinwy# (3)

Differentiating w.r.t time, X = @ wy cos ap!

But from the initial condition of the problem at = ©s ¥ = Vo
Thus Yo = @ty or a = vy/uy (4)

Putting the value of a from Eqn. (4) into Eqn. (3), we obtained

= ] ginwy 1 | where wy = 1B _
iy VmL



Mechanical Oscillations (Part - 6)

Q.66. A coil of inductance L connects the upper ends of two vertical copper bars
separated by a distance I. A horizontal conducting connector of mass m starts
falling with zero initial velocity along the bars without losing contact with them.
The whole system is located in a uniform magnetic field with induction B
perpendicular to the plane of the bars. Find the law of motion x (t) of the
connector.

Ans. As the connector moves, an emf is set up in the circuit and a current flows, since
the emf is

E = - Blx, we must have : -Ei'.i'-rL%- 0

so, I=RBIlx/L
Provided x is measured from the initial position.

We then have

mx = --H—!x.B.Ing

L

KK %
K K
KR X
H AKX
2]

for by Lenz’s law the induced current will oppose downward sliding. Finally

2

On putting



mﬂ.‘u"mL

Xt oix =g

A solution of this equation is x= —%+A cos({mpr+a)
g
But x =0 and x = 0 at ¢ = . This gives

X = -35 (1-cosmgt)
gy

Q.67. A point performs damped oscillations according to the

law z = ase~# sin wt. Find: (a) the oscillation amplitude and the velocity of the
point at the moment t = 0; (b) the moments of time at which the point reaches the
extreme positions.

Ans. We are given * = %€ sinws

(a) The velocity of the point at t = 0 is obtained from
Vo= (X).o= wa

The term "oscillation amplitude at the moment t = 0" is meaningless. Probably the

-c-:%.'['hcnx - iy

i
implication is the amplitude for sin ot and amplitude is ao.

(b) X = (= ﬁﬂnsinmn-maucnsm:}e'a* = 0

when the displacement is an extremum. Then

L
lan i = <=
B
=]
or w i = lan IE+nn,n-ﬂ,l,l...

Q.68. A body performs torsional oscillations according to the
law @ = P cos o, iy

(a) the angular velocity ¢ and the angular acceleration % of the body at the
moment t = 0; (b) the moments of time at which the angular velocity becomes
maximum.

Ans.



B

Given g = qpe’ 'coswt

we have ¢ = ~Byp-wgpe "'sinwt

B

¢ =-pe+Ppage Psinwr-wlge P cosar

= pop+2poge Psinor-w’y

50
(@)= -PBgo, (§ )= (B -0 ) gy

p = _q:nﬂe'ﬂ"[ P cos w i + wsin w ¢ ) becomes maximum {or minimum}) when

B

P = qg(F-w)e Pcoswr+2pog e sinwr =0

2 v
or NN d
2w
2
and r.-l an 2B n =012 ..
iow 2fpw

Q.69. A point performs damped oscillations with frequency ® and damping
coefficient according to the law (4.1b). Find the initial amplitude a, and the initial
phase a if at the moment t = 0 the displacement of the point and its velocity
projection are equal to

(a) z (0) = 0 and v, (0) = =z,
(b)Y z(0) = x4 and v, (0) = 0,

Ans.

We write x = llnf_ﬁl cos{mr+al
J

a) x(0 -ﬂ#u-tE#x-:ae_'ﬂ'ainmt
2 o

i’{ﬂ} = {i]rnﬂ = : w dg

Since a0 is + ve, we must choose the upper sign if x(0)<0 and the lower sign if
x(0)>0. Thus
ap = 1x(09] and a = [+= if x(0)<0
(N} 2
EL I
-3 if x(0)>0

(b)



we write x = Re A e P/ 4 = g '

Then x=v, =Re (-P+im)Ae Preivs

From v (0) = Owe get Re (-f+iw)A = 0

This implies A = £ i(3+iw)B where B is real and positive. Also
X,=Red =% w8

E

Thus B = o with + signinA if xp<0
— signinA if x>0
So A-:imlxﬂ-[rli- :I—E]h:ui
w i
Finally 2 = 1+[P—] 1%
w
mna ==L, o un'l(:-ﬁ)
w w

@ is in the 4% quadrant(-%{u:ﬂ] if x>0 and a is in the 2* quadrant

(gﬂﬂ.'ﬂ :lc) il p<0.

Q.70. A point performs damped oscillations with frequency o == 25 s, Find the
damping coefficient | if at the initial moment the velocity of the point is equal to

zero and its displacement from the equilibrium position is 1 = 1.020 times less than
the amplitude at that moment.

Ans.
x=ape Pleos(mr+a)
Then (x).o==Pagcosa-wagsine = 0
or tlnﬂ:--E.
LLE]
a
Also {x},_nsaumaa.;"

secq = n, tana = -V 112—-1
Thus ﬁ-m\iﬂz—]

(We have taken the amplitude at ¢ = 0 to be a; ).

Q.71. A point performs damped oscillations with frequency ® and damping

coefficient B. Find the velocity amplitude of the point as a function of time t if at
the momentt=0



(a) its displacement amplitude is equal to ao; _
(b) the displacement of the point x (0) = 0 and its velocity pro- jection 2= (0).= .

Ans.

We write x = age” P’ cos (wi+a)
- REAE_F“-““,A - aue[n

x=Re A (-ﬂ+im}e“ﬂ'“““
Velocity amplitude as a function of time is defined in the following manner.

put f= fo*%

then
x = Re Ae Plh) givlyew)

w Re Ae Ph gihtio  Red e Plhgle’

T < o+

For B This means that the displacement amplitude around the

. is gy e~ P . .
time ' ® %€ "7 and we can say that the displacement amplitude at
. i -Br . . . .

time * ® %€ " Similarly for the velocity amplitude.

Clearly
(a) Velocity amplitude at time ¢ = @V B’ +o e

Since A(-B+im) = age'*(-f+im)

= au-‘f ﬂl_l_mi ei'r

Where y is another constant

(b) x(0)=0=ReA=0 or A=zxiaq

where ao is real and positive.

Also



v(0) =x5=Re £ iag(-P+im)

=¥ way

1%l
Thus ® " © and we take - (+) sign if Xo is negative (positive). Finally the velocity
amplitude is obtained as

ol i oo

Q.72. There are two damped oscillations with the following periods T and damping
coefficients p: T1 = 0.10 ms, f1 = 100s™ and T> =10ms, p. = 10s*. Which of them
decays faster?

Ans. The first oscillation decays faster in time. But if one takes the natural time scale,
the period T for each oscillation, the second oscillation attenuates faster during that
period.

Q.73. A mathematical pendulum oscillates in a medium for which the logarithmic
damping decrement is equal to 20 = 1.50. What will be the logarithmic damping
decrement if the resistance of the medium increases n = 2.00 times? How many
times has the resistance of the medium to be increased for the oscillations to
become impossible?

2n

(o)
Ans. By definition of the logarithmic decrement N we get for the original
decrement
Ao

b = B—2E and finally » = —enl
Now -—L—' = -}-:.L or E - b2

n g

2n

G Vol



MWin 2
50 \/ z -v z
M
te(37) V(g
% nhg/2n
Hence —=
2n '\/ ho 2
1_{n1-1}{-—]
2n
For critical damping g = n. B

me g ("""'__H[i):

Q.74. A deadweight suspended from a weightless spring extends it by Ax = 9.8 cm.
What will be the oscillation period of the dead Weight when it is pushed slightly in
the vertical direction? The logarithmic damping decrement is equal to A = 3.1.

Ans. The Eqgn of the dead weight is

mi+2fmi+mas x = mg

S0 .ﬁx-% or mﬁ-i.
Wy Ax
N L .2mB _ _2xp ay Vv, ( A ]2
oW or - | =
w 1;’0}%*#! 1;’0}%_'31 2n
Thus T= 2: 5 -—?: 1+[2—};t-]
wy -~ B 0

sV Ax '\/u{—"b]z =\/é~’£[4:€+;~3} = 0.70 sec.
g 2= 8

Q.75. Find the quality factor of the oscillator whose displacement amplitude
decreases n = 2.0 times every n = 110 oscillations.

Ans. The displacement amplitude decrease 1 times every n oscillations. Thus



b in
So Q=35 = o ™ 4%

Q.76. A particle was displaced from the equilibrium position by a distance | = 1.0
cm and then left alone. What is the distance that the particle covers in the process
of oscillations till the complete stop, if the logarithmic damping decrement is equal

to A =0.020?

Ans.

From x =age P cos (wt+a), we get using
(x)eo=!=aycos0

0=(x),.0==-Pagcosa-wasina

w

Then l::rn::---E Of COSOL =
Li1] 1”‘ m2+ﬁ2
1}' 2 2
I—-m—.‘.ﬂ e P ms(mt-hn_i ‘E)
w

and x =

\ .

It

2

x=0 at = l(‘M:rl:+5+ T,a[l._]'E
L] oy
Total distancé travelled in the first lap = [

To get the maximum displacement in the second lap we note that

e e ]
| o+ p?

x——ePog
w0



wif=mx,6 2x,3x,.. ec.

Thus Xpas = —Gge " cosa = - 1e”™P® for 1 = /0

so, distance traversed in the 2°* lap = 2/ *P®
Continuing total distance traversed = [+ 21e "F® 4 2]~ 270® o ..

- 2l *Pe ! 21
Ploepwe =Y Ty
- IEF"’“+1 -l 1+&2
ef™™_1 e -1
}L = gﬂ - - - - - -
Where “@ is the logarithmic decrement Substitution gives 2 metres.
Q.77. Find the quality factor of a mathematical pendulum | = =50 cm long if
during the time interval 6 = 5.2 min its total mechanical energy decreases n =
4.0.10* times.

E = lmiz-rlmmﬁ.r: .
2 2 is

Ans. For an undamped oscillator the mechanical energy
conserved. For a damped oscillator.

x=agpe Peos(wrra), o=V op-p*

and E[:}—%mi}-hi—mmﬁxj
-%maﬁe'“‘[ﬁzmi{mnu]-l-zﬂmm[mna}x sin{mr+n]+misinz{m:+u}]
+%ma§m§e‘”'mz[mr+u}

2

- %maﬁoﬁe'“’+lma§ﬂ-ze'u’m{2mt+2a] +lmaﬁﬁ-me“ Prsin(2mr+2a)

2 2

If B<<® then the average of the last two terms over many oscillations about the time t
will vanish and

<E(r)>» w %mugmﬁe'zm

And this is the relevant mechanical energy.

1
In time 6 this decreases by a factor M S0



By
=N
B 2T
2xp 2n 2n \ 2 B
and A = = since wy =
Vol g? F] P [
- \/(ﬂ]‘l Vige
B IIn"n
1 2
and Q-f-_\’iﬂl-lulsu.
A2 M

Q.78. A uniform disc of radius R = 13 cm can rotate about a horizontal axis
perpendicular to its plane and passing through the edge of the disc. Find the
period of small oscillations of that disc if the logarithmic damping decrement is
equal to A = 1.00.

Ans. The restoring couple is

'=-mgRsing @« -mgRyg

The moment of inertia is

_3mR’

I'==

Thus for undamped oscillations




Hence %--i or _._L_V“(ZL)*

Hence finally the period. T of small oscillation comes to

o2z 2z, h\!u
@0 muﬂ

wWEL 2
- 28{41:2 A°) = 0.90 sec.

Q.79. A thin uniform disc of mass m and radius R suspended by an elastic thread
in the horizontal plane performs torsional oscillations in a liquid. The moment of
elastic forces emerging in the thread is equal to N = a@, where a is a constant and
IT is the angle of rotation from the equilibrium position. The resistance force
acting on a unit area of the disc is equal to F1 = nv, where is a constant and 1 is the
velocity of the given element of the disc relative to the liquid. Find the frequency of
small oscillation.

Ans. Let us calculate the moment G: of all the resistive forces on the disc. When the

disc rotates an element (rdrd®) with coordinates (r,0) has a velocity r% , where ¢ is the
instantaneous angle of rotation from the equilibrium position and r is measured from the
centre. Then

Ix R

Gy=[do [drr(Fxr)
1] 1]

R

: R*.
-fqu:prid'rxlrr - EKT"'IF
[

) mR*
Also moment of inertia= 2

mR* . ank’

Thus > P+ 5 p+og =0
JIT!

o g +2 > ql Rzlp 0

2 2o nnR?

Hence wy = R and B = —;3;-

and angular frequency



oy
Note:- normally by frequency we mean 2n
Q.80. A disc A of radius R suspended by an elastic thread between two stationary
planes (Fig. 4.24) performs torsional oscillations about its axis 00'. The moment of
inertia of the disc relative to that axis is equal to I, the clearance between the disc
and each of the planes is equal to h, with h << R. Find the viscosity of the gas
surrounding the disc A if the oscillation period of the disc equals T and the
logarithmic damping decrement, A.

ot oh ot o ]

Fig. 4.24. Fig. 4.25.

dv
Ans. From the law of viscosity, force per unit area = " e

So when the disc executes torsional oscillations the resistive couple on it is

R R‘
S L2 - 12K

(factor 2 for the two sides of the disc; see the figure in the book) where ¢ is torsion.
The equation of motion is

4
Ii,‘.,_Il__’;‘R ti}+|:q:- =
Comparing with ¢ +2Bp+wpp = 0 we get

p=naxR*2kI

Now the logarithmic decrement * is given by » = BT, T = time period
Thus M = 2MhI/xR*T



Mechanical Oscillations (Part - 7)

Q.81. A conductor in the shape of a square frame with side a suspended by an
elastic thread is located in a uniform horizontal magnetic field with induction B. In
equilibrium the plane of the frame is parallel to the vector B (Fig. 4.25). Having
been displaced from the equilibrium position, the frame performs small
oscillations about a vertical axis passing through its centre. The moment of inertia
of the frame relative to that axis is equal to I, its electric resistance is R. Neglecting
the inductance of the frame, find the time interval after which the amplitude of the
frame’s deviation angle decreases e-fold.

Ans. If ¢ = angle of deviation of the frame from its normal position, then an e.m.f.
e =Bayp

E _ Ea:gg'

Is induced in the frame in the displaced position and a current R R flows init. A
couple

4
.ld

zr
B%.B.E.E-B ¢.

Then acts on the frame in addition to any elastic restoring couple ¢ . We write the
equation of the frame as

Bd

R

Ig + grce =0

Bat

Thus b= 21z where B is defined in the book.

Amplitude of oscillation die out according to e 5o time required for the oscillations
1

to decrease to € of its value is

1 _ 2IR
B B4

Q.82. A bar of mass m = 0.50 kg lying on a horizontal plane with a friction
coefficient k = 0.10 is attached to the wall by means of a horizontal non-deformed
spring. The stiffness of the spring is equal to x = 2.45 N/cm, its mass is negligible.
The bar was displaced so that the spring was stretched by xo = 3.0 cm, and then
released. Find:



(a) the period of oscillation of the bar;
(b) the total number of oscillations that the bar performs until it stops completely.

Ans. We shall denote the stiffness constant by k . Suppose the spring is stretched by

Xo . The bar in then subject to two horizontal forces (1) restoring force - k x and (2)
friction kmg opposing motion. If

The bar will come back.
(If Xo < A, the bar will stay put) The equation of the bar when it is moving to the left is

X

mx = —xx+kmg

This equation has the solution

X=A+(x5=-A) cos 'y‘ %r

Where we have used * = %% = 0 3t £ = 0 This solytion is only valid till the bar comes to
rest. This happens at

f -ﬂ/ﬁ

And at that time * = %1 = 28-x%. ifx>2A4 the tendency of the rod will now be to move
to the right . (if 2<% <24 the rod will stay put now) Now the equation for rightward
motion becomes'*

mx = =xx=-kmg
(The friction force has reversed ).

We notice that the rod will move to the right only if



K(xg-24A)>kmg ie x>3A

In this case the solution is

A/ k
x=-A+({x5-3A) cos el
Since x-Z&—xgandi-ﬂat{-Il-nfvi

The rod will next come to rest at

r=:2-2n./’v;i'

and at that instant * = *» = X -44. How ever the rod will stay put unless Xo > 5A. Thus

-Zn.{ﬁ.

(a) time period of one full oscillation
(b) There is no oscillation if 0 < xo <A
One half oscillation if A <xg < 3A

2 half oscillation if 3A < xo< 5A etc.
We can say that the number of full oscillations is one half of the integer

- A
. "ﬂ—]

where 24

Where [ x ] = smallest non-negative integer greater than x.

Q.83. A ball of mass m can perform undamped harmonic oscillations about the
point x = 0 with natural frequency ®o. At the moment t = 0, when the ball was in
equilibrium, a force Fx = Fo cos ot coinciding with the x axis was applied to it.
Find the law of forced oscillation x (t) for that ball.

Ans. The equation of motion of the ball is

m(x +wix) = Fycos wt .

This equation has the solution



r=Acos({wgr+a)+Bcooswrt
Where A and a are arbitrary and B is obtained by substitution in the above equation

Fo'm

3-1—1
wy - W

The conditions x = 0, x = 0 at ¢ = 0 give

Fo/m .
Acosa+—— =0 and —wpAsina = 0
g — @
F, F
This gives @ = 0, As=- 2“”"1. f’"z
Wy = o W’ — @y
F
Finally, x-%[cnﬁmnt—msm:}
LU UL

Q.84. A particle of mass m can perform undamped harmonic oscillations due to an
electric force with coefficient k. When the particle was in equilibrium, a
permanent force F was applied to it for 6 seconds. Find the oscillation amplitude
that the particle acquired after the action of the force ceased. Draw the
approximate plot x (t) of oscillations. Investigate possible cases.

Ans. We have to look for solutions of the equation

miskx = F,0<y<x,

my +kx=0,1>1
subject to x (0) = x(0) = O where F is constant.

The solution of this equation will be sought in the form

X = {*+Am{mut+a}, E F I 4

x=Beos(wy(r=-1)+f), r>7
A and o will be determined from the boundary condition at t = 0.

0= £+Acu&u

0=-wyAsina



u-l)amia-—% and I-%fl“ﬂ'nﬁwulj O0sret

Thus

B and f will be determined by the continuity of x and x at r = ©. Thus
F F .
E{I—CDSMDT] = Beosf and }ﬁﬂ Ismmn-rx-y‘:n B sin p

2
Thus ﬁ-[%] (Z-2cosmyT)
or B-ZE sin%[

k
X(t)

ANVAN
T\

Q.85. A ball of mass m, when suspended by a spring stretches the latter by Al. Due
to external vertical force varying according to a harmonic law with amplitude

Fo the ball performs forced oscillations. The logarithmic damping decrement is
equal to A. neglecting the mass of the spring, find the angular frequency of the
external force at which the displacement amplitude of the ball is maximum. What
is the magnitude of that amplitude?

Ans. For the spring m& = x Al

Where K is its stuffiness coefficient. Thus

The equation of motion of the ball is

e . 2 Fn
X +2Pfx+wpx = —coswm !
L
Here om—2%B B M2m
Yai-p2 9 Yis(w2a)

To find the solution of the above equation we look for the solution of the auxiliary
equation



. . Fy |
;+2ﬁ;+mﬁa--};—-e””

Clearly we can take ®¢# = * - Now we look for a particular integral for z of the form

fwr

I=Ae

Thus, substitution gives A and we get

{Fiy;m:lel-ﬁt

mﬁ—mz+2£ﬁm

So taking the real part

{F“x"m][[m;";-mz]m.aml-l-?.ﬂmsinmr]

X =
{mﬁ—[|:1212+41E||2t.uQ
F, -
.,;9 cos (wi -@) ,n:p-tan'l Zﬁmz
Viwh-u? P rapo? o

The amplitude of this oscillation is maximum when the denominator is minimum. Tthis
happens when

m‘-lmﬁmz-wlﬂzmz-iuﬁ-(mn-uﬁ-l-iﬂz}i--tﬂimﬁ--lﬁ‘ is= minimum. ie for

@? = wl-2p?
] 2
Thus wl, = wi 1u-'“’-Ez~
\ W
A V2 Y
2| — 1-]—
g 2n 3 2x
Al 2 Ml 3
1+(n) +(2!)
— Fo/m
and . = m Fo/'m Fo/m 3

C U Vipdoap 2pVa-p 2F 27

2

1+L
Fo  |2= _F,].AIJ.[1+4,F]

Imuwe A2n dnmg 32

Q.86. The forced harmonic oscillations have equal displacement amplitudes at
frequencies m1 = 400 s and », = 600s™ . Find the resonance frequency at which
the displacement amplitude is maximum.



Ans.

. Fo'm
Since a = 22 2.2 2, 2 o2
Viw?-o}+2p*) +4p7 (wl- )
we must have wi-wy+2p° = - (w3-wy+2p)
2 2
or mﬁ-ZﬁE-mlzmz. g

Q.87. The velocity amplitude of a particle is equal to half the maximum value at
the frequencies ®w: and o, of external harmonic force. Find:

(a) the frequency corresponding to the velocity resonance;

(b) the damping coefficient p and the damped oscillation frequency co of the
particle.

Ans.
_ﬂ(mﬁ-mz}mmt+2ﬁmsinmt
i f{mz-mﬁlz-l-:lﬂimz
. Fyw 2 t+(0° -w))sinwt
Then - pw ZPwecoswr+ (0 -w)sinw

m {mﬁ—mz]ii-dﬁzmz
Thus the velocity amplitude is

Fni.ﬂ
m'\f"{mg-mt]z-lrllﬁzm!

= = f_(mg 2+4ﬂ1

L)

m — =
i

m—

o = o = o,

This is maximum when

Fy
Vﬂ-m = T m ﬂ' '
And then
" 2
Now at half maximum (-u':f—w] = 12 I'ﬂi1
or w’ e lﬁﬁmum‘z,nﬂ

m -+_|H{'3H+¥mﬁ+3ﬁ2

Where we have rejected a solution with - ve sign before there decal. Writing



wy = Va3 +pV3 , w = Vai+3p® -pV3

we gel () Wy, = wy = ¥ wywy { Velocity resonance frequency)

[y =, |
i LRl

p
2V3  ang damped oscillation frequency

by = 0y )
Voi-p .‘Jm,mz- !:_{EE“F__

Q.88. A certain resonance curve describes a mechanical oscillating system with
logarithmic damping decrement A = 1.60. For this curve find the ratio of the
maximum displacement amplitude to the displacement amplitude at a very low

frequency.
Ans. In general for displacement amplitude

.Fu 1

g =—
mﬁmﬁ—m2}2+4ﬂlmz
Fn 1

my (w-wg+2p° ) +4p (w5-p)

. ey wg w?
us n=—= = —
“oe Vap (wg-p) 2BV ui-g
But B M o _ B
wo Vi+(2rp 2% Vel-g?
3 z
'l —_—
_mﬁ_isl*zn 2,90
n 2B 2m 2 A ==
2n

Hence

Q.89. Due to the external vertical force Fx = Fo cos ot a body suspended by a
spring performs forced steady-state oscillations according to the law x = a cos (ot
— ¢@). Find the work performed by the force F during one oscillation period.

Ans. The work done in one cycle is



T T
A=[Fdx=[Fvdt = [Fycoswt(-wasin(wri-g))dt
a 1]

T
-IF[,[I:aI[-uusm:sinmrmsq:wmszma'sintp]dr
[

= %anngsinq: = naFysing

Q.90. A ball of mass m =50 g is suspended by a weightless spring with stiffness x =
20.0 N/m. Due to external vertical harmonic force with frequency o = 25.0 s the
ball performs steady-state oscillations with amplitude a = 1.3 cm. In this case the
displace- ment of the ball lags in phase behind the external force by

3
g —ETL

Find: (a) the quality factor of the given oscillator; (b) the work performed by the
external force during one oscillation period.

Ans. In the formula x = acos(we-g)

we have

Fo ¥
m \"r{mﬁ—w:‘jz+4ﬁ2mz
2w

tang =
mg-mz

a

6 = (wf - ) tan @
Thus 2w

Hence wy = VE/m = 20s7%

And (a) the quality factor

o Ya-p 17/ 40}

BT 2p 2 (mg_mz}zmnzm

-1 = 2.1%

(b) work done is

A =nafFysing

- nmazf{tlméu::]2}2+4ﬁztuz sing = tma’=x2pw

= nma (w)-w )tang = 6ml.



Q.91. A ball of mass m suspended by a weightless spring can perform vertical
oscillations with damping coefficient . The natural oscillation frequency is equal
to wo. Due to the external vertical force varying as Fx = Fo , cos ot the ball
performs steady-state harmonic oscillations. Find:

(a) the mean power (P), developed by the force F, averaged over one oscillation
period;

(b) the frequency o of the force F at which (P) is maximum; what is (P)max equal
to?

2w
i
“0~%" Wwhere ¢ is the phase lag of the displacement
F
I=ﬂ'cm{mf—q:l:],d-—n !
m \'r{ﬂmg—[t}1}1+4ﬂ:m2

tang =
Ans. Here as usual

(a) Mean power developed by the force over one oscillation period

aFyasing 1

T =2Fuau35mq:|
B B’ _ FoB 1
m {mﬁ—mz}g+4ﬁ2(z}: m 2

(ﬂ—m] +4p

o

(b) Mean power < P > is maximum when ® = wo (for the denominator is then minimuir
Also

.

=E Amp

Q.92. An external harmonic force F whose frequency can be varied, with
amplitude maintained constant, acts in a vertical direction on a ball suspended by
a weightless spring. The damping coefficient is times less than the natural
oscillation frequency m, of the ball. How much, in per cent, does the mean power
(P) developed by the force F at the frequency of displacement resonance differ
from the maximum mean power (P)max? Averaging is performed over one
oscillation period.

Ans. Given P = @/ Then from the previous problem

<P > =
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Q.93. A uniform horizontal disc fixed at its centre to an elastic vertical rod
performs forced torsional oscillations due to the moment of

forces N. = N, cos ot. The oscillations obey the law ¢ = #m tos (0l — ). Find: (a)
the work performed by friction forces acting on the disc during one oscillation
period; (b) the quality factor of the given oscillator if the moment of inertia of the

disc relative to the axis is equal to I.

Ans. The equation of the disc is
. s . 2 N, cosmi
¢ +2Pprony = ——F—

Then as before

P o= Pucos({wi-oa)

where
P = Hﬂ tan o = Eﬂw
S T T T e e wg - 6

(a) Work performed by frictional forces

T

= —Ia"-",dr_c- where N, = -2/fq = -f 2p/qg°dt = ~2aPwlgl
0

- - algi[(wi-0’ P +4p’w’ Y sina = -nN, g, sina

(b) The quality factor
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