
Mechanical Oscillations (Part -1) 

 

Q. 1. A point oscillates along the x axis according to the law x = a cos (ωt — n/4). 

Draw the approximate plots 

 

(a) of displacement x, velocity projection vx, and acceleration projection wx  as 

functions of time t; 

 

(b) velocity projection vx  and acceleration projection wx  as functions of the 

coordinate x.  

Ans. 1. (a) Given, x =   

So  

On-the basis of obtained expressions plots x(t) , vx(t) and wx(t) can be drawn as shown 

in the answersheet, (of the problem book ).  

(b) From Eqn (1) 

   (2) 

But from the law x = a cos (ωt - π/4), so, x 2 = a2 cos2 (ωt - π/4) 

or, cos (ωt - π/4) - X2/ = 2 or sin2 (ωt - 3t/4) =    (3) 

Using (3) in (2),     (4) 

Again from Eqn (4), wx = -aω2cos (ωt - π/4) = -ω2x 

 Q. 2. A point moves along the x axis according to the law x = a sin2(ωt — π/4). 

Find: (a) the amplitude and period of oscillations; draw the plot x (t); (b) the 

velocity projection vx  as a function of the coordinate x; draw the plot vx  (x). 

Ans. 2. (a) From the motion law of the particle 



  

                                                                               (1) 

Now compairing this equation with the general equation of harmonic oscillations: X - A 

sin(ωot + a) Amplitude, A = a/2 and angular frequency, ω0 - 2ω. 

Thus the period of one full oscillation,  

(b) Differentiating Eqn (1) w.r.t. time 

 

 
 

Plot of vx (x) is as shown in the answersheet. 

  

Q. 3.A particle performs harmonic oscillations along the x axis about the 

equilibrium position x = 0. The oscillation frequency is  ω = 4.00 s-1 . At a certain 

moment of time the particle has a coor- dinate xo  = 25.0 cm and its velocity is 

equal to vx0  = 100 cm/s. Find the coordinate x and the velocity vx of the particle t = 

2.40s after that moment. 

 

Ans. 3 Let the general equation of S.H.M. be 

h = a cos (ωt + α) 

So, vx = - a ω sin (ωt + α) 

Let us assume that at t = 0 , x = h0 and  

Thus from Eqns (1) and (2) for t = 0, h0 = a cos  α, and  = - a ωsin α 

 

 
 

Putting all the given numerical values, we get : 



x = - 29 cm and vx = - 81 cm/s  

  

Q. 4.Find the angular frequency and the amplitude of harmonic oscillations of a 

particle if at distances x1  and x2  from the equilibrium position its velocity equals 

v1 a nd v2 respectively.  

 Ans.  From the Eqn 

 
Solving these Eqns simultaneously, we get 

 

 
  

Q. 5. A point performs harmonic oscillations along a straight line with a period T 

= 0.60 s and an amplitude a = 10.0 cm. Find the mean velocity of the point 

averaged over the time interval during which it travels a distance a/2, starting  

from 

(a) the extreme position; 

(b) the equilibrium position.  

 

Ans.  (a) When a particle starts from an extreme position, it is useful to write the 

motion law as x = a cos ωt       (1) 

(However x is the displacement from the equlibrium position) 

It tx be the time to cover the distence a/2 then from (1) 

 

 
 

 
 

Hence sought mean velocity 

 

 
 

(b) In this case, it is easier to write the motion law in the form: 

x = a sin ωt         (2) 

If t2 be the time to cover the distance a/2, then from Eqn (2) 



 
 

Differentiating Eqn (2) w.r.t time, we get 

 

 
 

Hence the sought mean velocity 

 

 
  

Q. 6. At the moment t = 0 a point starts oscillating along the x axis according to the 

law x = a sin ωt. Find: 

(a) the mean value of its velocity vector projection (vs); 

(b) the modulus of the mean velocity vector |(v)| ; 

(c) the mean value of the velocity modulus (v) averaged over 3/8 of the period after 

the start.  

 

Ans. (a) As x = a sin ωt                  so,   vx = aω cos ωt 

 

 
 

(b) In accordance with the problem 

 

 
 

(c) We have got, vx = a ω cos ωt 

 

 



 
 

Using ω = 2 ω/T, and on evaluating the integral we get 

 

 
  

Q. 7. A particle moves along the x axis according to the law x = a cos ωt. Find the 

distance that the particle covers during the time interval from t = 0 to t. 

 

Ans. From the motion law, x = a cos ωt„ it is obvious that the time taken to cover the 

distance equal to the amplitude (a), starting from extreme position equals T/4. 

Now one can write 

 

  

 

As the particle moves according to the law, x .= a cos ωt, so at n = 1,3,5 ... or for odd n 

values it passes through the mean positon and for even numbers of n it comes to an 

extreme position (if t0 = 0). 

 

Case (1) when n is an odd number: In this case, from the equation 

x = x a sin ωt, if the t is counted from nT/4 and the distance covered in the time interval 

to be comes   

 

 
 

Thus the sought distance covered for odd n is 

 

 
Case (2), when n is even, In this case from the equation x = a cos ωt, the distance 

covered ( s2 ) in the interval t0, is given by 

 

 
 

or   



Hence the sought distance for n is even 

 

 
 

In general 

 

  

  

Q. 8. At the moment t = 0 a particle starts moving along the x axis so that its 

velocity projection varies as vx  = 35 cos πt cm/s, where t is expressed in seconds. 

Find the distance that this particle covers during t = 2.80 s after the start.  

 

Ans. Obviously the motion law is of the from, x = a shoot, and vx = ω a cos ωt. 

Comparing vx - ω a cos ωt with vx - 35 cos πt , we get 

 

 
 

Now we can write 

 

 
 

As n = 5 is odd, like (4 = 7), we have to basically find the distance covered by the 

particle starting from the extreme position in the time interval 0 = 3 s. 

Thus from the Eqn. 

 

 
 

Hence the sought distance 

 

 
  



Q. 9. A particle performs harmonic oscillations along the x axis according to the 

law x = a cos ωt. Assuming the probability P of the particle to fall within an 

interval from —a to +a to be equal to unity, find how the probability density dP/dx 

depends on x. Here dP denotes the probability of the particle falling within an 

interval from x to x dx. Plot dP/dx as a function of x.  
 

Ans.  As the motion is periodic the particle repeatedly passes through any given region 

in the range - a ≤ x ≤ a. 

 

The probability that it lies in the range (x, x + dx) is defined as the fraction 

 

 where Δt is the time that the particle lies in the range (x, x + dx) out of the 

total time t. Because of periodicity this is 

 

 
 

where the factor 2 is needed to take account of the fact that the particle is in the range ( 

x , x + d x ) during both up and down phases of its motion. Now in a harmonic 

oscillator. 

 

 
 

Thus since ωT = 2 π ( T is the time period) 

 

We get  

 

Note that  

 

so  

  

Q. 10. Using graphical means, find an amplitude a of oscillations resulting from 

the superposition of the following oscillations of the same direction: 

(a) x1  =3 .0 cos (ωt -1- π/3), x2  =8 .0 sin (ωt + π/6); 

(b) x1 =  3.0 cos ωt, x2  = 5.0 cos (ωt+ π/4), x3  =6 .0 sin ωt.  
 

Ans.  (a) We take a graph paper and choose an axis (X - axis) and an origin. Draw a 



vector of magnitude 3 inclined at an angle π/3 with the X -axis. Draw another vector of 

magnitude 8 inclined at an angle - π/3 (Since sin (ωt+ π/ 6 ) » cos (ωt- π/ 3 )) with the 

X - axis. The magnitude of the resultant of both these vectors (drawn from the origin) 

obtained using parallelogram law is the resultant, amplitude. 

 

 
 

 
  

Thus            R = R7 units 

(b) One can follow the same graphical method here but the result can be obtained more 

quickly by breaking into sines and cosines and adding:  

Resultant 

 

 
 

Then 

 

 
 

So,   A = 6-985  = 7 units 

 

Note- In using graphical method convert all oscillations to either sines or cosines but do 

not use both. 
 



Mechanical Oscillations (Part -2) 

 

Q. 11. A point participates simultaneously in two harmonic oscillations of the same 

direction: x1 = a cos ωt and 

 x2  = a cos 2ωt. 

 Find the maximum velocity of the point.  

 

Ans.  Given , x1 = a cos ωt and x 2 = a cos 2 ωt  

 

so, the net displacement, 

 

 
 

 
 

Solving for acceptable value 

 

cos ωt = 0.644  

 

thus sin ωt = 0.765 

 

And  

  

Q. 12. The superposition of two harmonic oscillations of the same direction results 

in the oscillation of a point according to the law x = a cos 2.1t cos 50.0t, where t is 

expressed in seconds. Find the angular frequencies of the constituent oscillations 

and the period with which they beat.  

 

Ans. We write:  

 
 

Thus the angular frequencies of constituent oscillations are  

52.1 s-1 and 47.9 s-1  

 

To get the beat period note that the variable amplitude a cos 2.1t becomes maximum 

(positive or negative), when 



 

2.1t = nπ Thus the interval between two maxima is 

 
  

Q. 13. A point A oscillates according to a certain harmonic law in the reference 

frame K' which in its turn performs harmonic oscillations relative to the reference 

frame K. Both oscillations occur along the same direction. When the K' frame 

oscillates at the frequency 20 or 24 Hz, the beat frequency of the point A in the K 

frame turns 167 out to be equal to v. At what frequency of oscillation of the frame 

K' will the beat frequency of the point A become equal to 2v?  

 

Ans.  If the frequency of A with respect to K' is v0 and K ' oscillates with frequency

with respect to K, the beat frequency of the point A in the .K-frame will be v when 

 
 

In the present case  = 20 or 24. 

 

This means v0 - 22. & v - 2 

 

Thus beats of 2v = 4 will be heard when  = 26 or 18 . 

  

Q. 14. A point moves in the plane xy according to the law x = a sin ωt, y = b cos ωt, 

where a, b, and ω are positive constants. Find:  

(a) the trajectory equation y (x) of the point and the direction of its motion along 

this trajectory;  

(b) the acceleration ω of the point as a function of its radius vector r relative to the 

origin of coordinates.  

 

Ans.  (a) From the Eqn : x = a sin ωt 

    (1) 

And from the equation : 

          (2) 

 

From Eqns (1) and (2), we get : 

 
 

which is the standard equation of the ellipse shown in the figure, we observe that, 



 

at               t = 0 , x = 0 and y = b 

and at 

 

 
Thus we observe that at t = 0, the point is at point 1 (Fig.) and at the following 

moments, the co-ordinate y diminishes and x becomes positive. Consequently the 

motion is clockwise. 

 

(b) As x = d sin ωt and y=b cos ωt 

 

 
  

Q. 15. Find the trajectory equation y (x) of a point if it moves according to the 

following laws:  

(a) x = a sin ωt, y = a sin 2ωt;  

(b) x = a sin cot, y = a cos 2ωt.  

Plot these trajectories.  

 

Ans.  (a) From the Eqn. : x = a sin ωt , we have 

 
and from the Eqn. :y = a sin 2 ωt 

 
(b) From the Eqn. : x = a sin ωt 

 

sin2 ωt = x 2/a 2 

 

Fromy = a cos 2 ωt 

 

 
For tiie plots see the plots of answer sheet of tlve problem book. 

  

Q. 16. A particle of mass m is located in a unidimensional potential field where the 

potential energy of the particle depends on the coordinate x as U (x) = U0  (1 — cos 

ax); U0  and a are constants. Find the period of small oscillations that the particle 

performs about the equilibrium position.  

 

Ans. As U (x) = U0 (1 - cos ax) 



So, (1) 

or,   Fx = - U0 a a x (because for small angle of oscillations sin a x = a x ) 

or,            (1) 

But we know  , for small oscillation 

 

Thus  

 

Hence the sought time period 

 

 
  

Q. 17. Solve the foregoing problem if the potential energy has the form U (x) = 

alx2  — blx, where a and b are positive constants.  

 

Ans.  

 

then the equilibrium position is x = x0 when U" (x0) = 0 

 

or,   

 

Now write:        x = x0+ y 

 

 

So finally:  

 

We neglect remaining terms for small oscillations and compare with the P.E. for a 

harmonic, oscillator: 

 



Thus  

 

Note: Equilibrium position is generally a minimum of the potential energy. Then U' ( 

xo ) - 0 , U" ( x0 ) > 0 . The equilibrium position can in principle be a maxim um but 

then U" (xo) < 0 and the frequency of oscillations about this equilibrium position will be 

imaginary. 

The answer given in the book is incorrect both numerically and dimensionally. 

  

Q. 18. Find the period of small oscillations in a vertical plane performed by a ball 

of mass m = 40 g fixed at the middle of a horizontally stretched string l = 1.0 m in 

length. The tension of the string is assumed to be constant and equal to F = 10 N.  

 

Ans. Let us locate and depict the forces acting on the ball at the position when it is at a 

distance x down from the unreformed position of the string. 

At this position, the unbalanced downward force on the ball 

= mg - 2.F sinθ 

 

  

 

 
  

Q. 19. Determine the period of small oscillations of a mathematical pendulum, that 

is a ball suspended by a thread l = 20 cm in length, if it is located in a liquid whose 

density is η = 3.0 times less than that of the ball. The resistance of the liquid is to 

be neglected.  



Ans. Let us depict the forces acting on the oscillating ball at an arbitrary angular 

position 0. (Fig.), relative to equilibrium position where FB is the force of buoyancy. 

For the ball from the equation: 

 

 
Nz - Iβz (where we have taken the positive sense of Z axis in the direction of angular 

velocity i.e.  of the ball and passes through the point of suspension of the pendulum 

O ), we get : 

 

       (1) 

 

Using and sin θ = θ for small θ, in Eqn (1), we get: 

 
 

Thus the sought time period 

 

 
 

Hence  

  

Q. 20. A ball is suspended by a thread of length l at the point 0 on the wall, 

forming a small angle α with the vertical (Fig. 4.1). Then  



 
 

the thread with the ball was deviated through a small angle β(β > α) and set free. 

Assuming the collision of the ball against the wall to be perfectly elastic, find the 

oscillation period of such a pendulum.  

 

Ans. Obviously for small p the ball execute part of S.H.M. Due to the perfectly elastic 

collision the velocity of ball simply reversed. As the ball is in S.H.M. (|θ| < α on the 

left) its motion law in differential from can be written as 

      (1) 

 

 If we assume that the ball is released from the extreme position, θ = β at t = 0, the 

solution of differential equation would be taken in the form 

 

          (2) 

 

If t ' be the time taken by the ball to go from the extreme position θ = β to the wall i.e. θ 

= - α, then Eqn. (2) can be rewritten as 

 

  

 

 
 



Mechanical Oscillations (Part -3) 

 

Q.21. A pendulum clock is mounted in an elevator car which starts going up with a 

constant acceleration w, with w < g. At a height h the acceleration of the car 

reverses, its magnitude remaining constant. How soon after the start of the motion 

will the clock show the right time again?  

 

Ans. Let the downward acceleration of the elevator car has continued for time t then the 

sought time 

 

 is the time of upward acceleration of the elevator. 

 

One should i/ote that if the point of suspension of a mathematical pendulum moves with 

an acceleration  then the time period of the pendulum becomes 

 

 (see 4.30) 

 

In this problem the time period of the pendulum while it is moving upward with 

acceleration w becomes 

 

and its time period while the elevator moves downward with the 

same magnitude of acceleration becomes 

 

 

As the time of upward acceleration equals , the total number of oscillations 

during this time equals 

 

 

Thus the indicated time  

 

Similarly the indicated time for the time interval t ' 



 
we demand that 

 

 
 

Hence the sought time 

 

 
  

Q.22. Calculate the period of small oscillations of a hydrometer (Fig. 4.2) which 

was slightly pushed down in the vertical direction. The mass of the hydrometer is 

m = 50 g, the radius of its tube is r = 3.2 mm, the density of the liquid is ρ = 1.00 

g/cm3. The resistance of the liquid is assumed to be negligible.  

 

Ans. If the hydrometer were in equlibrium or floating, its weight will be balanced by 

the buoyancy force acting on it by the fluid. During its small oscillation, let us locate 

the hydrometer when it is at a vertically downward distance x from its equilibrium 

position. Obviously the net unbalanced force on the hydrometer is the excess buoyancy 

force directed upward and equals π r2 x ρ g. Hence for the hydrometer. 

 

 
 

Or    

 

Hence the sought time period 

 

 
  

Q.23. A non-deformed spring whose ends are fixed has a stiffness x = 13 N/m. A 

small body of mass m = 25 g is attached at the point removed from one of the ends 

by η = 1/3 of the spring's length. Neglecting the mass of the spring, find the period 

of small longitudinal oscillations of the body. The force of gravity is assumed to be 

absent.  



 
 

Ans. At first let us calculate the stiffness k1 and k2 of both the parts of the spring. If we 

subject the original spring of stiffness k having the natural length l0 (say), under the 

deforming forces F - F (say) to elongate the spring by the amount x y then 

F = k x (1) 

 

Therefore the elongation per unit length of the spring is x / l0 . Now let us subject one o 

f the parts of the spring of natural length η\ l0 under the same deforming forces F - F. 

Then the elongation of the spring will be 

 

 
 

Thus       (2) 

 

Hence from Eqns (1) and (2) 

 

 
 

 
 

 
 

Hence the sought time period 

 

 
  

Q.24. Determine the period of small longitudinal oscillations of a body with mass 

m in the system shown in Fig. 4.3. The stiffness values of the springs are x1 and x2. 

The friction and the masses of the springs are negligible.  

 

Ans. Similar to the Soln of 4.23, the net unbalanced force on the block m when it is at a 

small horizontal distance x from the equilibrium position becomes (k1 + k2)x. 



 
 

Alternate : Let us set the block m in motion to perform small oscillation. Let us locate 

the block when it is at a distance x from its equilibrium position. 

 

As the spring force is restoring conservative force and deformation of both the springs 

are same, so from the conservation of mechanical energy of oscillation of the spring-

block system : 

 

 
 

Differentiating with respect to time 

 

 
  

Q.25. Find the period of small vertical oscillations of a body with mass m in the 

system illustrated in Fig. 4.4. The stiffness values of the springs are x1 and x2, their 

masses are negligible.  

 

Ans. During the vertical oscillation let us locate the block at a vertical down distance x 

from its equilibrium position. At this moment if x1 and x2 are the additional or further 

elongation of the upper & lower springs relative to the equilibrium position, then the net 

unbalanced force on the block will be k2x2 directed in upward direction. Hence 

      (1) 

 

We also have              x = x1 + x2         (2) 

 

As the springs are massless and initially the net force on the spring is also zero so for 

the spring 

 

k1x1 = k2x2         (3) 

 



Solving the Eqns (1), (2) and (3) simultaneously, we get 

 

 
 

Thus      

 

Hence the sought time period  

  

Q.26. A small body of mass in is fixed to the middle of a stretched string of length 

2/. In the equilibrium position the string tension is equal to To. Find the angular 

frequency of small oscillations of the body in the transverse direction. The mass of 

the string is negligible, the gravitational field is absent.  

 

 
 

Ans. The force F, acting on the weight deflected from the position of equilibrium is 2 

T0 sin θ. 

Since the angle θ is small, the net restoring force,  

 

 
  

4.27. Determine the period of oscillations of mercury of mass m = 200 g poured 

into a bent tube (Fig. 4.5) whose right arm forms an angle θ = 30° with the vertical. 

The cross-sectional area of the tube is S = 0.50 cm2. The viscosity of mercury is to 

be neglected. 

 

Ans. If the mercury rises m the left arm by x it m ust fall by a slanting length equal to x 

in the other arm. 

 



Total pressure difference in the two arms will then be ρg x + pgx cosθ = ρgx (1 + cosθ) 

This will give rise to a restoring force - ρgSx (1+ cosθ) 

 

This must equal mass times acceleration which can be obtained from work energy 

principle. 

 

 

 
  

Q. 28. A uniform rod is placed on two spinning wheels as shown in Fig. 4.6. The 

axes of the wheels are separated by a distance l = 20 cm, the coefficient of friction 

between the rod and the wheels is k = 0.18. Demonstrate that in this case the rod 

performs harmonic oscillations. Find the period of these oscillations.  

 

 
Ans. In the equilibrium position the C.M. of the rod lies nid way between the two 

rotating wheels. Let us displace the rod horizontally by some small distance and then 

release it Let us depict the forces acting on the rod when its C.M. is at distance x from 

its equilibrium position (Fig.). Since there is no net vertical force acting on the rod, 

Newton’s second law gives: 

 

 



For the translational motion of the rod from the Eqn. : Fx = m wcx 

         (2) 

 

As the rod experiences no net torque about an axis perpendicular to the plane of 

the Fig. through the C.M. of the rod. 

 

        (3) 

 

Solving Eqns. (1), (2) and (3) simultaneously we get 

 

 
 

Hence the sought time period  

 

  

  

Q.29. Imagine a shaft going all the way through the Earth from pole to pole along 

its rotation axis. Assuming the Earth to be a homogeneous ball and neglecting the 

air drag, find: 

 (a) the equation of motion of a body falling down into the shaft; 

 (b) how long does it take the body to reach the other end of the shaft; 

 (c) the velocity of the body at the Earth's centre.  

 

Ans. (a) The only force acting on the ball is the gravitational force  of  

magnitude  where y is the gravitational constant ρ, the density of the Earth 

and r is the distance of the body from the centre of the Earth. 

 

But, so the expression for  can be written as, 

 

  here R is the radius of the Earth and the equation of motion in projection  

 

form has the form, or,  

 

(b) The equation, obtained above has the form of an equation of S.H.M. hawing the 

time period, 



 
 

Hence the body will reach the other end of the shaft in the time, 

 

 
 

(c) From the conditions of the speed of the body at the centre of the Earth will be 

maximum, having the magnitude, 

 

 
  

Q.30. Find the period of small oscillations of a mathematical pendulum of length 1 

if its point of suspension 0 moves relative to the Earth's surface in an arbitrary 

direction with a constant acceleration w (Fig. 4.7). Calculate that period if l = 21 

cm, ω = g/2, and the angle between the vectors w and g equals β = 120°.  

 

 
 

Ans. In the frame of point of suspension the mathematical pendulum of mass m (say) 

will oscillate. In this frame, the body m will experience the inertial force  in 

addition to the real forces during its oscillations. Therefore in equilibrium position m is 

deviated by some angle say a. In equilibrium position 

 

 
 

So, from these two Eqns 

 

  



 
 

Let us displace the bob m from its equilibrium position by some small angle and then 

release it Now locate die ball at an angular position (α + θ) from vertical as shown in 

the figure. 

 

From the Eqn : 

 

 

 
 

 
 

Solving Eqns (1) and (2) simultaneously we get 

 

 
  

Q.31. In the arrangement shown in Fig. 4.8 the sleeve M of mass m = 0.20 kg is 

fixed between two identical springs whose combined stiffness is equal to x = 20 

N/m. The sleeve can slide without friction over a horizontal bar AB. The 

arrangement rotates with a constant angular velocity ω = 4.4 rad/s about a vertical 



axis passing through the middle of the bar. Find the period of small oscillations of 

the sleeve. At what values of ω will there be no oscillations of the sleeve?  

 

Ans. Obviously the sleeve performs small oscillations in the frame of rotating rod. In 

the rod’s frame let us depict the forces acting on the sleeve along the length of the rod 

while the sleeve is at a small distance x towards right from its equilibrium position. The 

free body diagram of block does not contain Coriolis force, because it is perpendicular 

to the length of the rod. 

From Fx - mwx for the sleeve in the frame of rod 

 

 
 It is obvious from Eqn (1) that the sleeve will not perform small oscillations if 

 
  

Q.32. A plank with a bar placed on it performs horizontal harmonic oscillations 

with amplitude a = 10 cm. Find the coefficient of friction between the bar and the 

plank if the former starts sliding along the plank when the amplitude of oscillation 

of the plank becomes less than T = 1.0 s. 

 

Ans.  When the bar is about to start sliding along the plank, it experiences the 

maximum restoring force which is being provided by the limiting friction, Thus 

 

 
 

or,   

  

Q.33. Find the time dependence of the angle of deviation of a mathematical 

pendulum 80 cm in length if at the initial moment the pendulum 

 (a) was deviated through the angle 3.0° and then set free without push; 

 (b) was in the equilibrium position and its lower end was imparted the horizontal 

velocity 0.22 m/s; 

 (c) was deviated through the angle 3.0° and its lower end was imparted the 

velocity 0.22 m/s directed toward the equilibrium position.  



 

Ans.  The natural angular frequency of a mathematical pendulum equals 

 
 

 (a) We have the solution of S.H.M. equation in angular form : 

 
 

If at the initial moment i.e. at t = 0 , θ = θm than α = 0. 

Thus the above equation takes the form 

 

 
Thus          0 = 3° cos 3.5 t 

 

(b) The S.H.M. equation in angular form : 

 
 

If at the initial moment t = 0 , θ = 0 , then α = 0 .Then the above equation takes the form 

 
 

Let v0 be the velocity of the lower end of pendulum at θ = 0, then from conserved of 

mechanical energy of oscillaton 

 

 
 

Thus the sought equation becomes 

 

 
 

(c) Let θO and v0 be the angular deviation and linear velocity at t = 0. 

As the mechanical energy of oscillation of the mathematical pendulum is conservation  



 
 

Then from θ = 5.4° sin (3.5 t + α), we see that  because the 

velocity is directed towards the centre. Thus 

 

 radians and we get the answer. 

  

Q.34. A body A of mass m1 = 1.00 kg and a body B of mass m2  = 4.10 kg are 

interconnected by a spring as shown in Fig. 4.9. The body A performs free vertical 

harmonic oscillations with amplitude a = 1.6 cm and frequency = 25 s-1. Neglecting 

the mass of the spring, find the maximum and minimum values of force that this 

system exerts on the bearing surface.  

 

Ans. While the body A is at its upper extreme position, the spring is obviously 

elongated by the amount 

 

  

 

If we indicate y-axis in vertically downward direction, Newton’s second law of motion 

in projection form i.e. Fy = mwy for body A gives : 

 

 
 

(Because at any extreme position the magnitude of acceleration of an oscillating body 

equals ω2a and is restoring in nature.) 

If N be the normal force exerted by the floor on the body B, while the body A is at its 

upper extreme position, from Newton’s second law for body B 

 

 



When the body A is at its lower extreme position, the spring is compresed by the 

distance 

 

 
 

 From Newton’s second law in projection fonn i.e. Fy = mwy for body A at this state: 

 

 
 

 
  

Q.35. A plank with a body of mass m placed on it starts moving straight up 

according to the law y = a (1 — cos ωt), where y is the displacement from the 

initial position, ω = 11 s -1 . 

 

 
Find: (a) the time dependence of the force that the body exerts on the plank if a = 

4.0 cm; plot this dependence; 

(b) the minimum amplitude of oscillation of the plank at which the body starts 

falling behind the plank; 

(c) the amplitude of oscillation of the plank at which the body springs up to a 

height h = 50 cm relative to the initial position (at the moment t = 0).  

 

Ans. (a) For the block from Newton’s second law in projection form Fy = mwy 

       (1) 

 

But from     y = a (1 - cos ωt) 

 

We get                   (2) 

 



From Eqns (1) and (2) 

 

              (3) 

 

 From Newtons’s third law the force by which the body m exerts on the block is 

directed vertically downward and equls 

 

 
 

(b) When the body m starts, falling behind the plank or looking contact, N = 0, (because 

the normal reaction is the contact force). Thus from Eqn. (3) 

 

 
 

(c) We observe that the motion takes place about the mean position y = a. A t the initial 

instant y = 0. As shown in (b) the normal reaction vanishes at a height (g/ω2) above the 

position of equilibrium and the body flies off as a free body. The speed of the body at a 

distance (g/ω2) from the equilibrium position is  so that the condition of 

the problem gives 

 

 
 

 Hence solving the resulting quadratic equation and taking the positive roof, 

 

 
 



Mechanical Oscillations (Part -4) 

 

Q.36. A body of mass in was suspended by a non-stretched spring, and then set 

free without push. The stiffness of the spring is x. Neglecting the mass of the 

spring, find: 

(a) the law of motion y (t) , where y is the displacement of the body from the 

equilibrium position; 

(b) the maximum and minimum tensions of the spring in the process of motion.  

 

Ans. (a) Let y (t) = displacement of the body from the end of the unstarched position of 

the spring (not the equilibrium position). Then 

 

   

This equation has the solution of the form 

 

 

 

And  

 

(b) Tension in the spring is 

 

 
  

Q.37. A particle of mass in moves due to the force F = — αmr, where α is a positive 

constant, r is the radius vector of the particle relative to the origin of coordinates. 

Find the trajectory of its motion if at the initial moment r = roi and the velocity v = 

voj, where i and j are the unit vectors of the x and y axes. 

 

Ans. In accordance with the problem 



 
 

Hence the solution of the differential equation 

 

 
 

So from Eqn. (2) a - 0, and Eqn takes the form 

 

      (3) 

One of the solution of the other differential Eqn becomes 

(4) 

 

From the initial condition, y = 0 at t = 0, so δ' = 0 and Eqn (4) becomes 

 

y = a' sin ω0t(S) 

 

Differentiating w.r.t time we get 

 

       (6) 

 

But from the initial condition of the problem,  

 
 

Using it in Eqn (5), we get 

 

          (7) 

Squaring and adding Eqns (3) and (7) we get: 

 
 

Or,   

 

  



 Q.38. A body of mass m is suspended from a spring fixed to the ceiling of an 

elevator car. The stiffness of the spring is x. At the moment t = 0 the car starts 

going up with an acceleration ω. Neglecting the mass of the spring, find the law of 

motion y (t) of the body rela- tive to the elevator car if y (0) = 0 and (0) = 0. 

Consider the following two cases:  

(a) ω = const; 

(b) ω = αt, where α is a constant. 

 

Ans. (a) As the elevator car is a translating non-inertial frame, therefore the body m will 

experience an inertial force m w directed downward in addition to the real forces in the 

elevator’s frame. From the Newton’s second law in projection form Fy = mwy for the 

body in the frame of elevator car: 

 

 
 

(Because the initial elongation in the spring is m g/K) 

 

  (1) 

 

Eqn. (1) shows that the motion of the body m is S.H.M. and its solution becomes 

 

       (2) 

 

Differentiating Eqn (2) w.r.t time 

 

   (3) 

 

Using the initial condition y (0) = 0 in Eqn (2), we get: 

 

 

And using the other initial condition   in Eqn (3) 



 
 

Hence using these values in Eqn (2), we get 

 

 
 

(b) Proceed up to Eqn.(l). The solution of this differential Eqn be of the form 

 

 
 

 
 

 
 

 
  

Q.39. A body of mass m = 0.50 kg is suspended from a rubber cord with elasticity 

coefficient k = 50 Is17m. Find the maximum distance over which the body can be 

pulled down for the body's oscillations to remain harmonic. What is the energy of 

oscillation in this case? 

 

Ans. There is an important difference between a rubber cord or steel coire and a spring. 

A spring can be pulled or compressed and in both cases, obey’s Hooke’s law. But a 



rubber cord becomes loose when one tries to compress it and does not then obey 

Hooke’s law. Thus if we suspend a 'body by a rubber cord it stretches by a distance m 

g/k in reaching the equilibrium configuration. If we further stretch it by a distance A hit 

will execute harmonic oscillations when released if A h ≤ m g / k because only in this 

case will the cord remain taut and obey Hooke’s law. 

Thus A hmax ≤ m g / k 

The energy of oscillation in this case is 

 

 
  

Q.40. A body of mass m fell from a height h onto the pan of a spring balance (Fig. 

4.10). The masses of the pan and the spring are negligible, the stiffness of the latter 

is x. Having stuck to the pan, the body starts performing harmonic oscillations in 

the vertical direction. Find the amplitude and the energy of these oscillations.  

 

 
 

Ans.  As the pan is of negligible mass, there is no loss of kinetic energy even though 

the collision is inelastic. The mechanical energy of the body m in the field generated by 

the joint action of both the gravity force and the elastic force is conserved i.e. ΔE = 0. 

During the motion of the body m from the initial to the final (position of maximum 

compression of the spring) position ΔT = 0, and therefore  

 

 
 

Or  

 

On solving the quadratic equation: 

 

 
 



As minus sign is not acceptable 

 

 
 

If the body m were at rest on the spring, the corresponding position of m will be its 

equilibrium position and at this position the resultant force on the body m will be zero. 

Therefore the equilibrium compression Δx (say) due to the body m will be given by 

 

 
 

Therefore seperation between the equilibrium position and one of the extreme position 

i.e. the sought amplitude 

 

 
The mechanical eneigy of oscillation which is con served equals E = Uextreme, because at 

the extreme position kinetic eneigy becomes zero. 

Although the weight of body mis a conservative force, it is not restoring in this problem 

, hence U extreme is only concerned with the spring force . Therefore 

 
  

Q.41. Solve the foregoing problem for the case of the pan having a mass M. Find 

the oscillation amplitude in this case. 

 

Ans. Unlike the previous (4.40) problem the kinetic energy of body m decreases due to 

the perfectly inelastic collision with the pan. Obviously the body m comes to strike the 

pan with velocity . If v be the common velocity of the “body m + pan " 

system due to the collision then from the conservation of linear momentum 

 

 

 

 
 

At the moment the body m strikes the pan, the spring is com pressed due to the weight 

of "he pan by the amount M g/ k . If l be the further com pression of the spring due to 

the velocity acquired by the "pan - body m " system , then from the conservation of m 

mechanical energy of the said system in the Geld generated by the joint action of both 

the gravity and spring forces 



 
 

 
 

As minus sign is not acceptable 

 

 
 

If the oscillating "pan + body m" system were at rest it correspond to their equilbijium 

position i.e. the spring were com pressed by   therefore the am plitude of 

oscillation 

 

 
 

The mechanical energy of oscillation which is only conserved with the restoring forces  

 

becomes (Because spring force is the only restoring force not the  

 

weight of the body) 

 

Alternately  

 

thus  

  

Q.42. A particle of mass m moves in the plane xy due to the force varying with 

velocity as , where a is a positive constant, i and j are the unit vectors 

of the x and y axes. At the initial moment t = 0 the particle was located at the point 

x = y = 0 and possessed a velocity v0  directed along the unit vector j. Find the law 

of motion x (t) , y (t) of the particle, and also the equation of its trajectory. 



Ans.   

 
 

 
 

one of the solution of differential Eqn (3) is y = A sin ( ω0t + α ) , where ω0 = a/ m . 

As at r = 0 ,y » 0 , s o the solution takes the form y = A sin ω0t 

On differentiating w.r.t time   

 

From the initial condition of the problem, at  

 

So  

 

Thus   (4)  

 

Thus from (2)   so integrating 

 

 
 

Hence from Eqns (4) and (6) we get 

 

 
 

Which is the equation of a circle of radius (Vo/ω0) with the centre at the point  

 
  

Q.43. A pendulum is constructed as a light thin-walled sphere of radius R filled up 

with water and suspended at the point 0 from a light rigid rod (Fig. 4.1.1). The 

distance between the point 0 and the centre of the sphere is equal to l. How many 



times will the small oscillations of such a pendulum change after the water freezes? 

The viscosity of water and the change of its volume on freezing are to be neglected.  

 

Ans. If water has frozen, the system consisting of the light rod and the frozen water in 

the hollow sphere constitute a compound (physical) pendulum to a very good 

approximation because we can take the whole system to be rigid. For such systems the 

time period is given by 

 

   

 

The situation is different when water is unfrozen. When dissipative forces (viscosity) 

are neglected, we are dealing with ideal fluids. Such fluids instantaneously respond to 

(unbalanced) internal stresses. Suppose the sphere with liquid water actually executes 

small rigid oscillations. 

 

Then the portion of the fluid above the centre of the sphere will have a greater 

acceleration than the portion below the centre because the linear acceleration of any 

element is in this case, equal to angular acceleration of the element multiplied by the 

distance of the element from the centre of suspension (Recall that we are considering 

small oscillations). 

 

Then, as is obvious in a frame moving with the centre of mass, there will appear an 

unbalanced couple (not negated by any pseudo forces) which will cause the fluid to 

move rotationally so as to destroy differences in acceleration. Thus for this case of ideal 

fluids the pendulum must move in. such a way that the elements of the fluid all undergo 

the same acceleration. This implies that we have a simple (mathematical) pendulum 

with the time period: 

 

 

Thus  

 

(One expects that a liquid with very small viscosity will have a time period close 

T0 while one with high viscosity will have a time period closer to 7l.) 

  

Q.44. Find the frequency of small oscillations of a thin uniform vertical rod of 

mass m and length l hinged at the point 0 (Fig. 4.12). The combined stiffness of the 

springs is equal to x. The mass of the springs is negligible. 

Ans.  Let us locate the rod at the position when it makes an angle 0 from the vertical. In 

this problem both, the gravity and spring forces are restoring conservative forces, thus 



from the conservation of mechanical energy of oscillation of the oscillating system:  

 

 = constant 

 

Differentiating w.r.t. time, we get : 

 

 
 

 
  

Q.45. A uniform rod of mass m = 1.5 kg suspended by two identical threads l = 90 

cm in length (Fig. 4.13) was turned through a small angle about the vertical axis 

passing through its middle point C. The threads deviated in the process through an 

angle α = 5.0°. Then the rod was released to start performing small oscillations. 

Find: 

(a) the oscillation period; 

(b) the rod's oscillation energy.  

 

 
 

Ans. (a) Let us locate the system when the threads are deviated through an angle α' < α , 

during the oscillations of the system (Fig.). From the conservation of mechanical 

energy of the system:  

 

 
 

Where L is the length of the rod, 0 is the angular deviation of the rod from its 

equilibrium position i.e. θ = 0. 



 
Differentiating Eqn. (1) w.r.t. time 

 

 
 

So,  

 

But from the Fig. 

 

 

So,     

 

Putting these values of in Eqn. (2) we get 

 

 
 

Thus the sought time period 

 

 
 

(b) The sought oscillation energy 

 

 
  

Q.46. An arrangement illustrated in Fig. 4.14 consists of a horizontal uniform disc 

D of mass m and radius R and a thin rod AO whose torsional coefficient is equal to 

k. Find the amplitude and the energy of small torsional oscillations if at the initial 



moment the disc was deviated through an angle φ0 from the equilibrium position 

and then imparted an angular velocity  

 

Ans.  

 
 

By definition of the amplitude  Thus total energy is 

 
 

Or,   

  

Q.47. A uniform rod of mass m and length l performs, small oscillations about the 

horizontal axis passing through its upper end. Find the mean kinetic energy of the 

rod averaged over one oscillation period if at the initial moment it was deflected 

from the vertical by an angle θ0  and then imparted an angular velocity . 

 

Ans.  Moment of inertia of the rod equals  about its one end and perpendicular to its 

length 

Thus rotational kinetic energy of the rod =  

 

when the rod is displaced by an angle 6 its C.G. goes up by a distance 

 

 

Thus the P.E. becomes:  

 

As the mechanical energy of oscillation of the rod is conserved. 

 

 



on differentiating w x t time and for the simplifies we get:  

we see that the angular frequency ω is 

 

 
 

 we write the general solution of the angular oscillation as: 

 

 
 

Thus the ICE. of the rod  

 

 
 

 On averaging over one time period the last term vanishes and 

 

 
  

Q.48. A physical pendulum is positioned so that its centre of gravity is above the 

suspension point. From that position the pendulum started moving toward the 

stable equilibrium and passed it with an angular velocity ω. Neglecting the friction 

find the period of small oscillations of the pendulum.  

 

Ans. Let l = distance between the C.G. (C) of the pendulum and, its point of suspension 

0 Originally the pendulum is in inverted position and its C.G. is above O. When it falls 

to the normal (stable) position of equilibrium its C.G. has fallen by a distance 2l. In the 

equilibrium 

 position the total energy is equal to K.E. =   and we have from energy 

conservation : 

 

 



Angular frequency of oscillation for a physical pendulum is given by  

 

 
  

Q.49. A physical pendulum performs small oscillations about the horizontal axis 

with frequency ω1 = 15.0 s- 1 . When a small body of mass m = 50 g is fixed to the 

pendulum at a distance l = 20 cm below the axis, the oscillation frequency becomes 

equal to ω2 = 10.0 s-1. Find the moment• of inertia of the pendulum relative to the 

oscillation axis. 

 

Ans. Let, moment of inertia of the pendulum, about the axis, concerned is 7, then 

writing Nz - IβD for the pendulum, 

 

 
 

Which is the required equation for S.H.M. So, the frequency of oscillation, 

 

 
 

Now, when the mass m is attached to the pendulum, at a distance / below the oscillating 

axis, 

 

 
 

which is again the equation of S.H.M., So, the new frequency, 

 

          ( 2) 

 

Solving Eqns. (1) and (2), 



 
  

Q.50. Two physical pendulums perform small oscillations about the same 

horizontal axis with frequencies ω1 and ω2. Their moments of inertia relative to 

the given axis are equal to I1 and I2 respectively. In a state of stable equilibrium 

the pendulums were fastened rigidly together. What will be the frequency of small 

oscillations of the compound pendulum? 

 

Ans.  

 

 
 

where ± G is the to rque of mutual in teractions. We have written the restoring forces on 

each pendulum in the absence of the other as  respectively . Then 

 

  

 

Hence    
 



Mechanical Oscillations (Part -5) 

 

Q.51. A uniform rod of length 1 performs small oscillations about the horizontal 

axis 00' perpendicular to the rod and passing through one of its points. Find the 

distance between the centre of inertia of the rod and the axis 00' at which the 

oscillation period is the shortest. What is it equal to? 

 

Ans. Let us locate the rod when it is at small angular position 6 relative to its 

equilibrium position. If a be the sought distance, the n from the conservation of 

mechanical energy of oscillation 

 

 
 

Differentiating w.r.t= time we get: 

 
 

Hence the time period of one full osscillation becomes 

 

 
 

Q.52. A thin uniform plate shaped as an equilateral triangle with a height h 

performs small oscillations about the horizontal axis coinciding with one of its 

sides. Find the oscillation period and the reduced length of the given pendulum.  

 

Ans. Consider the moment of inertia of the triangular plate about AB.  



 
 

 

On using the area of the triangle  

 

Thus K.E.  

 

P.E.  

 

Here 6 is the angle that the instantaneous plane of the plate makes with the equilibrium 

position which is vertical. (The plate rotates as a rigid body) 

 

 
 

 
  

Q.53. A smooth horizontal disc rotates about the vertical axis 0 (Fig. 4.15) with a 

constant angular velocity ω. A thin uniform rod AB of length 1 performs small 

oscillations about the vertical axis A fixed to the disc at a distance a from the axis 

of the disc. Find the frequency ωo of these oscillations.  



 
 

Ans. Let us go to the rotating frame, in which the disc is stationary. In this frame die 

rod is subjected to Coriolis and centrifugal forces,  where 

 

 
 

 Where r is the position of an elemental mass of the rod (Fig.) with respect to point O 

(disc’s centre) and 

 

 
 

 
 

As the rod is vibrating transversely, so v' is directed perpendicular to the length of the 

rod. 

 

Hence for each elemental mass o f the rod is directed along PA. Therefore  

 

the net torque of Coriolis about A becomes zero. The not torque of centrifugal force  

about point A: 



 Now,  

 

 
 

 
 

 

 
  

Q.54. Find the frequency of small oscillations of the arrangement illustrated in Fig. 

4.16. The radius of the pulley is R, its moment of inertia relative to the rotation 

axis is I, the mass of the body is m, and the spring stiffness is x. The mass of the 

thread and the spring is negligible, the thread does not slide over the pulley, there 

is no friction in the axis of the pulley. 

 

Ans. The physical system consists with a pulley and the block. Choosing an intertial 

frame, let us direct the x-axis as shown in the figure. 



 
 

Initially the system is in equilibrium position. Now from the condition of translation 

equilibrium for the block 

 

To = ms (1) 

Similarly for the rotational equilibrium of the pulley 

 

k Δ/R = T0R 

or. T0 = k Δ l             (2) 

 

from Eqns. (1) and (2)         (3) 

 

Now let us disturb the equilibrium of the system no matter in which way to analyse its 

motion. At an arbitrary position shown in the figure, from Newton's second law of 

motion for the block 

 

        (4) 

 

Similarly for the pulley 

 

 
 

Solving (4) and (7) using the initial condition of the problem 



  

 

or,     

 

Hence the sought time period,    

 

Note: we may solve this problem by using die conservation of mechanical energy also 

  

Q.55. A uniform cylindrical pulley of mass M and radius R can freely rotate about 

the horizontal axis 0 (Fig. 4.17). The free end of  

 

 
 

a thread tightly wound on the pulley carries a deadweight A. At a certain angle α it 

counterbalances a point mass in fixed at the rim of the pulley. Find the frequency 

of small oscillations of the arrangement. 

 

Ans. At the equlibrium position, Noz = 0 ( Net torque about 0) 

 

So,       (1) 

 

From the equation of rotational dynamics of a solid body about the stationary axis (say 

2 -axis) of rotation i.e. from Nz = Iβz 

 

when the pulley is rotated by the small angular displacement 0 in clockwise sense 

relative to the equilibrium position (Fig.), we get : 



 
 

 
 

But for small θ, we may write cos θ = 1 and sin θ = θ 

 

Thus we have 

 

 
  

Q.56. A solid uniform cylinder of radius r rolls without sliding along the inside 

surface of a cylinder of radius R, performing small oscillations. Find their period.  

 

Ans. Let us locate solid cylinder when it is displaced from its stable equilibrium 

position by the small angle θ during its oscillations (Fig.). If Vc be the instantaneous 

speed of the C.M. (C) of the solid cylinder which is in pure rolling, then its angular 

velocity about its own centre C is 

 

 



ω = vc/r           (1) 

 

Since C moves in a circle of radius (R - r), the speed of C at the same m oment can be 

written as 

 

         (2) 

 

Thus from Eqns (1) and (2) 

 

          (3) 

 

As the mechanical energy of oscillation of the solid cylinder is conserved, i.e. E = T + 

U = constant 

 

 
 

(Where m is the mass of solid cylinder and Ic is the moment of inertia of the solid 

cylinder about an axis passing through its C .M. (C) and perpendicular to the plane of 

Fig. of solid cylinder) 

 

 
 

Differentiating w.r.t time 

 

 
 

Hence the sought time period  

  



Q.57. A solid uniform cylinder of plass m performs small oscillations due to the 

action of two springs whose combined stiffness is equal to x (Fig. 4.18). Find the 

period of these oscillations in the absence of sliding. 

 

Ans. Let k1 and k2 be the spring constant o f left and right sides springs. As the rolling o 

f th< solid cylinder is pure its lowest point becomes the instantaneous centre of rotation. 

If θ b( the small angular displacement of its upper most point relative to its equilibrium 

position, the deformation o f each spring becomes (IR Q) . Since the mechanical energy 

o f oscillation of the solid cylinder is conserved, E = T+ U = constant  

 

i.e.  

 

Differentiating w.r.t time 

 

 
 

 
  

Q.58. Two cubes with masses m1 a nd m2 were interconnected by a weightless 

spring of stiffness x and placed on a smooth horizontal surface. Then the cubes 

were drawn closer to each other and released simultaneously. Find the natural 

oscillation frequency of the system. 

 

Ans. In the C.M. frame (which is rigidly attached with the centre of mass of the two 

cubes) the cubes oscillates. We know that the kinetic energy of two body system 

 

equals , where p. is the reduced mass and is the modulus of velocity of any one  

 

body particle relative to other. From the conservation of mechanical energy of  

 

oscillation : 



 
 

Here l0 is the natural length of the spring. 

 

Differenting the above equation w.r.t time, we get:  

 

 

Hence the natural frequency of oscillation:  

  

Q.59. Two balls with masses m1 = 1.0 kg and m2 = 2.0 kg are slipped on a thin 

smooth horizontal rod (Fig. 4.19). The balls are  

 

 
 

interconnected by a light spring of stiffness x = 24 N/m. The left-hand ball is 

imparted the initial velocity v1  = 12 cm/s. Find: 

 

(a) the oscillation frequency of the system in the process of motion; 

(b) the energy and the amplitude of oscillations. 

 

Ans. Suppose the balls 1 & 2 are displaced by x1, x2 from their initial position. Then the 

eneigy is  

 

 
 

 



 
 

 
 

 
 

 
  

Q.60. Find the period of small torsional oscillations of a system consisting of two 

discs slipped on a thin rod with torsional coefficient k. The moments of inertia of 

the discs relative to the rod's axis are equal to I1 and l2. 

 

Ans. Suppose the disc 1 rotates by angle θ1 and the disc 2 by angle θ2 in the opposite 

sense. Then total torsion of the rod =  

  

and torsional P.E.  

 

 
 The KJE. of the system (neglecting the moment of inertia of the rod) is 

 

 
 

So total eneigy of the rod 

 

 



We can put the total angular momentum of the rod equal to zero since the frequency 

associated with the rigid rotation of the whole system must be zero (and is known). 

 

 
 

The angular oscillation, frequency corresponding to this is 

 

 
  

Q.61. A mock-up of a CO2  molecule consists of three balls interconnected by 

identical light springs and placed along a straight line in the state of equilibrium. 

Such a system can freely perform oscillations of two types, as shown by the arrows 

in Fig. 4.20. Knowing the masses of the atoms, find the ratio of frequencies of these 

oscillations.  

 

 
 

Ans. In the first mode the carbon atom remains fixed and the oxygen atoms move in 

equal & opposite steps. Then total energy is 

 

 
 

Where x is the displacement of one of the 0 atom (say left one). Thus 



 
 

In this mode the oxygen atoms move in equal steps in the same direction but the carbon 

atom moves in such a way as to keep the centre of mass fixed. 

 

 
 

 
  

Q.62. In a cylinder filled up with ideal gas and closed from both ends there is a 

piston of mass m, and cross-sectional area S (Fig. 4.21).  

In equilibrium the piston divides the cylinder into two equal parts, each with 

volume Vo. The gas pressure is Po. The piston was slighlty displaced from the 

equilibrium position and released. Find its oscillation frequency, assuming the 

processes in the gas to be adiabatic and the friction negligible. 

 

Ans. Let, us displace the piston through small distance x, towards right, then from  Fx = 

mwx 

 

 

or,    (1) 

 

But, the process is adiabatic, so from  



 
 

As the new volumes of the left and the right parts are now (Vo + Sx) and (Vo - Sx) 

respectively. 

 

So, the Eqn (1) becomes. 

 

 
 

Neglecting the term   in the denominator, as it is very sm all, we get 

 

 
 

Which is the equation for S.H.M. and hence the oscillating frequency. 

 

 
 

Q.63. A small ball of mass m = 21 g suspended by an insulating thread at a height 

h = 12 cm from a large horizontal conducting plane performs small oscillations 

(Fig. 4.22). After a charge q had been imparted to the ball, the oscillation period 

changed η = 2.0 times. Find q.  

 

Ans.  In the absence of the charge, the oscillation period of the ball 

 
 

When we impart the charge q to the ball, it will be influenced by the induced charges on 

the conducting plane. From the electric image method the electric force on the ball by  

 

the plane   and is directed downward . Thus in this case the effective 

acceleration of the ball 



 
 

 And the corresponding time period 

 

 
 

From the condition of the problem 

 

 
 

Thus on solving 

 

 
   

Q.64. A small magnetic needle performs small oscillations about an axis 

perpendicular to the magnetic induction vector. On changing the magnetic 

induction the needle's oscillation period decreased η = 5.0 times. How much and in 

what way was the magnetic induction changed? The oscillation damping is 

assumed to be negligible. 

 

Ans. In a magnetic field of induction B the couple on the magnet is - MB sinθ = - MBθ 

equating this to  we get 

 

 
 

 The induction of the field increased η2 times. 

  



Q.65. A loop (Fig. 4.23) is formed by two parallel conductors connected by a 

solenoid with inductance L and a conducting rod of mass m which can freely 

(without friction) slide over the conductors. The conductors are located in a 

horizontal plane in a uniform vertical magnetic field with induction B. The 

distance between the conductors is equal to 1. At the moment t = 0 the rod is 

imparted an initial velocity vo directed to the right. Find the law of its motion x (t) 

if the electric resistance of the loop is negligible.  

 

Ans. We have in the circuit at a certain instant of time (t), from Faraday’s law of 

electromagnetic induction : 

 

  

 

For the rod from the second law of motion   Fx = mwx 

 

 
 

Using Eqn. (I), we get :   (2) 

 

where  

 

The solution of the above differential equation is of the form 

 
 

From the initial condition, at = 0, x = 0 , so α = 0 

 

Hence,                (3) 

 

Differentiating w.r.t time,  

 

But from the initial condition of the problem at    

 

Thus           (4) 

 

 Putting the value of a from Eqn. (4) into Eqn. (3), we obtained 

 

 



 

 

Mechanical Oscillations (Part - 6) 

 

Q.66. A coil of inductance L connects the upper ends of two vertical copper bars 

separated by a distance l. A horizontal conducting connector of mass m starts 

falling with zero initial velocity along the bars without losing contact with them. 

The whole system is located in a uniform magnetic field with induction B 

perpendicular to the plane of the bars. Find the law of motion x (t) of the 

connector. 

 

Ans. As the connector moves, an emf is set up in the circuit and a current flows, since 

the emf is 

 

 
 

Provided x is measured from the initial position. 

 

We then have 

 

 
 

 
for by Lenz’s law the induced current will oppose downward sliding. Finally 

 

 
 

On putting 



 
 

 
  

Q.67. A point performs damped oscillations according to the 

law  Find: (a) the oscillation amplitude and the velocity of the 

point at the moment t = 0; (b) the moments of time at which the point reaches the 

extreme positions.  

 

Ans. We are given  

 

(a) The velocity of the point at t = 0 is obtained from 

 
 

The term "oscillation amplitude at the moment t = 0" is meaningless. Probably the  

 

implication is the amplitude for  sin ωt and amplitude is ao. 

 

(b)  

when the displacement is an extremum. Then 

 
  

Q.68. A body performs torsional oscillations according to the 

law  Find:  

(a) the angular velocity  and the angular acceleration of the body at the 

moment t = 0; (b) the moments of time at which the angular velocity becomes 

maximum.  

 

Ans.  



 
 

 
 

 
 

 
  

Q.69. A point performs damped oscillations with frequency ω and damping 

coefficient  according to the law (4.1b). Find the initial amplitude a, and the initial 

phase a if at the moment t = 0 the displacement of the point and its velocity 

projection are equal to 

 
 

Ans.  

 

 
 

Since a0 is + ve, we must choose the upper sign if  and the lower sign if 

 

 
(b)  



 
 

 
 

 
 

 Q.70. A point performs damped oscillations with frequency ω = = 25 s-1. Find the 

damping coefficient l if at the initial moment the velocity of the point is equal to 

zero and its displacement from the equilibrium position is η = 1.020 times less than 

the amplitude at that moment.  

 

Ans. 

 
 

 
  

Q.71. A point performs damped oscillations with frequency ω and damping 

coefficient β. Find the velocity amplitude of the point as a function of time t if at 

the moment t = 0 



(a) its displacement amplitude is equal to a0; 

(b) the displacement of the point x (0) = 0 and its velocity pro- jection  

 

Ans.  

 

 
 

Velocity amplitude as a function of time is defined in the following manner.  

 

Put  

 

then 

 
 

For  This means that the displacement amplitude around the  

 

time  and we can say that the displacement amplitude at  

 

time  Similarly for the velocity amplitude. 

 

Clearly 

(a) Velocity amplitude at time   

 

Since   

 

 
 

Where y is another constant 

 

 

(b)   

 

where a0 is real and positive. 

 

Also 



 
 

 

Thus   and we take - (+) sign if x0 is negative (positive). Finally the velocity  

amplitude is obtained as 

 

 
  

Q.72. There are two damped oscillations with the following periods T and damping 

coefficients β: T1 =  0.10 ms, β1  = 100s-1  and T2  = 10ms, β2  = 10s-1. Which of them 

decays faster? 

 

Ans. The first oscillation decays faster in time. But if one takes the natural time scale, 

the period T for each oscillation, the second oscillation attenuates faster during that 

period.  

  

Q.73. A mathematical pendulum oscillates in a medium for which the logarithmic 

damping decrement is equal to 20 = 1.50. What will be the logarithmic damping 

decrement if the resistance of the medium increases n = 2.00 times? How many 

times has the resistance of the medium to be increased for the oscillations to 

become impossible?  

Ans. By definition of the logarithmic decrement we get for the original  

 

decrement 

 

 

 



 
 

 
  

Q.74. A deadweight suspended from a weightless spring extends it by Δx = 9.8 cm. 

What will be the oscillation period of the dead Weight when it is pushed slightly in 

the vertical direction? The logarithmic damping decrement is equal to λ = 3.1.   

 

Ans.  The Eqn of the dead weight is  

 

 
 

 
  

Q.75. Find the quality factor of the oscillator whose displacement amplitude 

decreases η = 2.0 times every n = 110 oscillations. 

 

Ans. The displacement amplitude decrease η times every n oscillations. Thus 



 
  

Q.76. A particle was displaced from the equilibrium position by a distance l = 1.0 

cm and then left alone. What is the distance that the particle covers in the process 

of oscillations till the complete stop, if the logarithmic damping decrement is equal 

to λ = 0.020? 

 

Ans. 

 
 

 
 

 
 

 
 

To get the maximum displacement in the second lap we note that 

 

 



 
 

 
 

 
 

Where , is the logarithmic decrement Substitution gives 2 metres. 

 

  

Q.77. Find the quality factor of a mathematical pendulum l = = 50 cm long if 

during the time interval δ = 5.2 min its total mechanical energy decreases η = 

4.0.104  times. 

Ans. For an undamped oscillator the mechanical energy is 

conserved. For a damped oscillator. 

 

 
 

 
 

If  then the average of the last two terms over many oscillations about the time t 

will vanish and 

 

 
 

And this is the relevant mechanical energy. 

 

In time δ this decreases by a factor so 



 
 

 
  

Q.78. A uniform disc of radius R = 13 cm can rotate about a horizontal axis 

perpendicular to its plane and passing through the edge of the disc. Find the 

period of small oscillations of that disc if the logarithmic damping decrement is 

equal to λ = 1.00.  

 

Ans. The restoring couple is 

 

 
 

The moment of inertia is 

 

 
 

Thus for undamped oscillations 

 

 
 

 



 
  

Q.79. A thin uniform disc of mass m and radius R suspended by an elastic thread 

in the horizontal plane performs torsional oscillations in a liquid. The moment of 

elastic forces emerging in the thread is equal to N = αφ, where a is a constant and 

IT is the angle of rotation from the equilibrium position. The resistance force 

acting on a unit area of the disc is equal to F1 = ηv, where is a constant and η is the 

velocity of the given element of the disc relative to the liquid. Find the frequency of 

small oscillation.  

 

Ans. Let us calculate the moment G1 of all the resistive forces on the disc. When the 

disc rotates an element (rdrdθ) with coordinates (r,θ) has a velocity r , where φ is the 

instantaneous angle of rotation from the equilibrium position and r is measured from the 

centre. Then 

 

 
 

Also moment of inertia =  

 

 
 

and angular frequency  

 



Note:- normally by frequency we mean  

  

Q.80. A disc A of radius R suspended by an elastic thread between two stationary 

planes (Fig. 4.24) performs torsional oscillations about its axis 00'. The moment of 

inertia of the disc relative to that axis is equal to I, the clearance between the disc 

and each of the planes is equal to h, with h << R. Find the viscosity of the gas 

surrounding the disc A if the oscillation period of the disc equals T and the 

logarithmic damping decrement, λ.  

 

 

Ans. From the law of viscosity, force per unit area =  

 

So when the disc executes torsional oscillations the resistive couple on it is 

 

 
 

(factor 2 for the two sides of the disc; see the figure  in the book) where φ is torsion. 

The equation of motion is 

 

 
 

Now the logarithmic decrement  

Thus  
 



Mechanical Oscillations (Part - 7) 

 

Q.81. A conductor in the shape of a square frame with side a suspended by an 

elastic thread is located in a uniform horizontal magnetic field with induction B. In 

equilibrium the plane of the frame is parallel to the vector B (Fig. 4.25). Having 

been displaced from the equilibrium position, the frame performs small 

oscillations about a vertical axis passing through its centre. The moment of inertia 

of the frame relative to that axis is equal to I, its electric resistance is R. Neglecting 

the inductance of the frame, find the time interval after which the amplitude of the 

frame's deviation angle decreases e-fold. 

 

Ans. If φ = angle of deviation of the frame from its normal position, then an e.m.f. 

 

Is induced in the frame in the displaced position and a current  flows in it. A 

couple 

 

 
 

Then acts on the frame in addition to any elastic restoring couple c φ. We write the 

equation of the frame as 

 

 
 

 Thus  where β is defined in the book. 

 

Amplitude of oscillation die out according to  so time required for the oscillations 

to decrease to  of its value is  

 
  

Q.82. A bar of mass m = 0.50 kg lying on a horizontal plane with a friction 

coefficient k = 0.10 is attached to the wall by means of a horizontal non-deformed 

spring. The stiffness of the spring is equal to x = 2.45 N/cm, its mass is negligible. 

The bar was displaced so that the spring was stretched by x0 = 3.0 cm, and then 

released. Find: 



(a) the period of oscillation of the bar; 

(b) the total number of oscillations that the bar performs until it stops completely. 

 

Ans. We shall denote the stiffness constant by k . Suppose the spring is stretched by 

x0 . The bar in then subject to two horizontal forces (1) restoring force - k x and (2) 

friction kmg opposing motion. If   

 

 
 

The bar will come back. 

(If x0 ≤ Δ , the bar will stay put) The equation of the bar when it is moving to the left is 

 

 
 

 
 

This equation has the solution 

 

 
 

Where we have used  This solution is only valid till the bar comes to 

rest. This happens at 

 

 
 

And at that time    the tendency of the rod will now be to move 

to the right . (if  the rod will stay put now) Now the equation for rightward 

motion becomes'* 

 

 
 

(The friction force has reversed ). 

 

We notice that the rod will move to the right only if 



 
 

In this case the solution is 

 

 
 

The rod will next come to rest at 

 

 
 

and at that instant . How ever the rod will stay put unless x0 > 5Δ. Thus 

(a) time period of one full oscillation    

 

(b) There is no oscillation if 0 < x0 < Δ      

 

One half oscillation if Δ < x0 < 3Δ 

 

2 half oscillation if 3Δ < x0< 5Δ etc. 

 

We can say that the number of full oscillations is one half of the integer 

 

where  

 

Where [ x ] = smallest non-negative integer greater than x. 

  

Q.83. A ball of mass m can perform undamped harmonic oscillations about the 

point x = 0 with natural frequency ωo. At the moment t = 0, when the ball was in 

equilibrium, a force Fx = F0  cos ωt coinciding with the x axis was applied to it. 

Find the law of forced oscillation x (t) for that ball.  

 

Ans. The equation of motion of the ball is 

 

. 

 

This equation has the solution 



 

 
 

Where A and a are arbitrary and B is obtained by substitution in the above equation 

 

 
 

 
 

 
  

Q.84. A particle of mass m can perform undamped harmonic oscillations due to an 

electric force with coefficient k. When the particle was in equilibrium, a 

permanent force F was applied to it for δ seconds. Find the oscillation amplitude 

that the particle acquired after the action of the force ceased. Draw the 

approximate plot x (t) of oscillations. Investigate possible cases. 

 

Ans. We have to look for solutions of the equation 

 

  

 

The solution of this equation will be sought in the form 

 

 
 

 A and α will be determined from the boundary condition at t = 0. 

 

 
 



Thus  

 

 
 

 
  

Q.85. A ball of mass m, when suspended by a spring stretches the latter by Δl. Due 

to external vertical force varying according to a harmonic law with amplitude 

F0  the ball performs forced oscillations. The logarithmic damping decrement is 

equal to λ. neglecting the mass of the spring, find the angular frequency of the 

external force at which the displacement amplitude of the ball is maximum. What 

is the magnitude of that amplitude?  

 

Ans. For the spring  

 

 Where k is its stuffiness coefficient. Thus 

 

 
 

The equation of motion of the ball is 

 

 
 

To find the solution of the above equation we look for the solution of the auxiliary 

equation 



 
 

Clearly we can take  Now we look for a particular integral for z of the form 

 
 

Thus, substitution gives A and we get 

 

 
 

So taking the real part 

 

 
 

The amplitude of this oscillation is maximum when the denominator is minimum. Tthis 

happens when 

 

 
 

 
  

Q.86. The forced harmonic oscillations have equal displacement amplitudes at 

frequencies ω1 = 400 s-1 and ω2 = 600s-1 . Find the resonance frequency at which 

the displacement amplitude is maximum.  



Ans. 

  

 

Q.87. The velocity amplitude of a particle is equal to half the maximum value at 

the frequencies ω1  and ω2 of external harmonic force. Find: 

(a) the frequency corresponding to the velocity resonance; 

(b) the damping coefficient β and the damped oscillation frequency co of the 

particle.  

 

Ans. 

 
 

Thus the velocity amplitude is 

 

 
 

This is maximum when  

 

And then  

 
 

 Where we have rejected a solution with - ve sign before there decal. Writing 



 
 

and damped oscillation frequency 

 

 
  

Q.88. A certain resonance curve describes a mechanical oscillating system with 

logarithmic damping decrement λ = 1.60. For this curve find the ratio of the 

maximum displacement amplitude to the displacement amplitude at a very low 

frequency.  

 

Ans. In general for displacement amplitude 

 

 
 

 
 

Hence  

  

Q.89. Due to the external vertical force Fx  = F0  cos ωt a body suspended by a 

spring performs forced steady-state oscillations according to the law x = a cos (ωt 

— φ). Find the work performed by the force F during one oscillation period.  

 

Ans. The work done in one cycle is 



 
  

Q.90. A ball of mass m = 50 g is suspended by a weightless spring with stiffness x = 

20.0 N/m. Due to external vertical harmonic force with frequency ω = 25.0 s-1  the 

ball performs steady-state oscillations with amplitude a = 1.3 cm. In this case the 

displace- ment of the ball lags in phase behind the external force by 

   

Find: (a) the quality factor of the given oscillator; (b) the work performed by the 

external force during one oscillation period.  

 

Ans. In the formula  

 

we have 

 

 
 

Thus   

 

Hence  

 

And (a) the quality factor 

 

 
 

 (b) work done is  

 

 
  



Q.91. A ball of mass m suspended by a weightless spring can perform vertical 

oscillations with damping coefficient β. The natural oscillation frequency is equal 

to ω0. Due to the external vertical force varying as Fx = Fo , cos ωt the ball 

performs steady-state harmonic oscillations. Find: 

(a) the mean power (P), developed by the force F, averaged over one oscillation 

period; 

(b) the frequency ω of the force F at which (P) is maximum; what is (P)max equal 

to?  

 

Ans. Here as usual   where φ is the phase lag of the displacement 

 
 

(a) Mean power developed by the force over one oscillation period 

 

 
 

(b) Mean power < P > is maximum when ω = ω0 (for the denominator is then minimuir 

Also 

 
  

Q.92. An external harmonic force F whose frequency can be varied, with 

amplitude maintained constant, acts in a vertical direction on a ball suspended by 

a weightless spring. The damping coefficient is times less than the natural 

oscillation frequency ωo of the ball. How much, in per cent, does the mean power 

(P) developed by the force F at the frequency of displacement resonance differ 

from the maximum mean power (P)max?  Averaging is performed over one 

oscillation period.  

 

Ans. Given Then from the previous problem 

 

 
 



At displacement resonance  

  

 
 

 
   

Q.93. A uniform horizontal disc fixed at its centre to an elastic vertical rod 

performs forced torsional oscillations due to the moment of 

forces  The oscillations obey the law φ  Find: (a) 

the work performed by friction forces acting on the disc during one oscillation 

period; (b) the quality factor of the given oscillator if the moment of inertia of the 

disc relative to the axis is equal to I.  

 

Ans. The equation of the disc is 

 
 

Then as before 

 

 
 

where 

 
 

 (a) Work performed by frictional forces 

 

 
 

(b) The quality factor 
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