CBSE Test Paper 02

CH-10 Straight Lines

- 1. If (x, y) are the coordinates of point in the plane, then $\begin{vmatrix} 3 & 4 & 2 \\ 5 & 8 & 2 \\ x & y & 2 \end{vmatrix} = 0$ represents
 - a. a straight line parallel to x axis
 - b. a straight line
 - c. a circle
 - d. none of these
- 2. A line L passes through the points (1,1) and (2,0) and another line M which is perpendicular to L passes through the point (1/2,0). The area of the triangle formed by these lines with y axis is:
 - a. 25/8
 - b. 25/16
 - c. none of these
 - d. 25/4
- 3. The line which passes through the point (0,1) and perpendicular to the line x-2y+11=0 is
 - a. none of these
 - b. 2x + y 1 = 0
 - c. 2x y + 1 = 0
 - d. 2x y + 3 = 0
- 4. The equation $y-y_1=m\left(x-x_1
 ight), m\in R,$ represents all lines through the point

	(x_1,y_1) except the line
	a. parallel to Y axis
	b. parallel to the line $x - y = 0$
	c. none of these
	d. parallel to X axis
5.	Two opposite vertices of a rectangle are (1,3),(5,1). If the equation of a diagonal of this rectangle is $y = 2x + c$, then the value of c is
	a. 2
	b4
	c9
	d. 1
6.	Fill in the blanks:
	If a line is parallel to y-axis at a distance 'b' from y-axis then its equation is
7.	Fill in the blanks:
	If a line is at a distance 'a' and parallel to x-axis, then the equation of the line is
	·
8.	Find the slope of line, whose inclination is 30° .
9.	Find the new coordinates of point (3, -5), if the origin is shifted to the point (-3, - 2).
10.	If two poles standing at the points $A(1, -2)$ and $B(-3, 5)$, then find the distance between the poles.
11.	Find the equations of the line which have slope $\frac{1}{2}$ and cuts off an intercept
	i5 on Y-axis andii. 4 on X-axis.

- 12. Find the equation of the line joining the point (3,5) to the point of intersection of the lines 4x + y 1 = 0 and 7x 3y 35 = 0.
- 13. Find the direction in which a straight line must be drawn through the point (-1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.
- 14. Find the area of the triangle formed by the lines y x = 0, x + y = 0 and x k = 0.
- 15. In the \triangle ABC with vertices A(2, 3), B(4, -1) and C(1, 2), find the equation and length of altitude from the vertex A.

CBSE Test Paper 02 CH-10 Straight Lines

Solution

1. (b) a straight line

Explanation:

The given determinant can be written as
$$2\begin{vmatrix} 3 & 4 & 1 \\ 5 & 8 & 1 \\ x & y & 1 \end{vmatrix} = 0$$

On expansion we get

$$2[3(8-y) - 4(5-x) + 1(5y - 8x)]$$

On simplifying the equation 2(-4x+2y+4) = 0 represents a striaght line.

2. (b) 25/16

Explanation:

The equation of the line joining the two points (x_1,y_1) and (x_2,y_2) is

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

The given points are (1,1,) and (2,0)

On substituting the values we get

$$\frac{y-1}{0-1} = \frac{x-1}{2-1}$$

On simplifying we get,

$$x+y-2=0$$

The line which is perpendicular to this line is x-y+k=0

Since it passes through (1/2,0)

This implies k = -1/2

Hence the equation of this line is x-y-1/2 = 0

On solving these twolines we get the point of intersection as (5/4,3/4)

The point which line x+y-2=0 cuts the Y axis is (0,2) and the point which the line x-y-1/2=0 cuts the Y axis is (0,-1/2)

Hend e the area of the triangle = [1/2]x[5/4]x[5/4] = 25/16 squnits

3. (b) 2x + y - 1 = 0

Explanation: The line which is perpendicular to the given line is 2x + y + k = 0

Since it passes through (0,1)

$$2(0) + 1 + k = 0$$

This implies k = -1

Hence the equation of the required line is 2x + y - 1 = 0

4. (a) parallel to Y axis

Explanation:

The vertical lines which are parallel to Y axis has undefined slopes. Hence the slope of the line 'm' will be undefined.

Therefore the above equation of the line will represent all lines through (x_1,y_1) except the line parallel to Y- axis

5. (b) - 4

Explanation: Slope of the line joining the given points (1,3) and (5,1) is $\frac{1-3}{5-1}$ = -1/2

Hence the line having slope -1/2 is y = [-1/2]x+c

If the diagonal is y = 2x+c, then c = -4

6. $x = \pm b$

7.
$$y = \pm a$$

8. Let θ be the inclination of a line with X-axis, then its slope = $\tan \theta$

$$\theta = 30^{\circ}$$
 \Rightarrow Slope = tan 30°

$$=\frac{1}{\sqrt{3}}$$

9. The coordinates of the new origin are h = -3 and k = -2 and the original coordinates are given to be x = 3, y = -5.

Let new coordinates of the point be (X, Y). Then,

$$X = (x - h) = 3 - (-3)$$

= 6 and

$$Y = y - k = -5 - (-2) = -3$$

Hence, the coordinates of the point (3, -5) in the new system are (6, -3).

10. Given points are A(1, - 2) and B (-3, 5).

Now, distance between two poles

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-3 - 1)^2 + (5 + 2)^2} = \sqrt{(-4)^2 + (7)^2}$$

$$= \sqrt{16 + 49} = \sqrt{65}$$

11. Given, m = slope of the line = $\frac{1}{2}$

and c = intercept of the line on Y-axis = -5

Hence, required equation of the line is

$$y=rac{1}{2}x-5\Rightarrow$$
 x - 2y - 10=0

Also, d = intercept of the line on X-axis = 4.

Hence, required equation of the line is,

$$y=rac{1}{2}(x-4)\Rightarrow$$
 x - 2y - 4=0

12. Let P(x,y) be the point of intersection of the lines 4x + y - 1 = 0 and 7x - 3y - 35 = 0.

Now,
$$y = 1 - 4x$$

Thus, 7x - 3(1 - 4x) - 35 = 0 [putting the value of y]

$$7x - 3 + 12x - 35 = 0$$

$$19x - 38$$

$$x = 2$$

$$\Rightarrow$$
 y = 1 - 4 x - 1 - 8 = -7

The equation of the line PQ is

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

$$y - (-7) = \frac{5 - (-7)}{3 - 2} (x - 2)$$

$$y + 7 = 12(x - 2)$$

$$y - 12x = -31$$

$$12x - y - 31 = 0$$

13. Let the required line makes an angle θ with the positive direction of x-axis. Then equation of line is

$$\frac{x-(-1)}{\cos\theta} = \frac{y-2}{\sin\theta} = r \Rightarrow \frac{x+1}{\cos\theta} = \frac{y-2}{\sin\theta} = r$$

It is given that r = 3

$$\therefore \frac{x+1}{\cos \theta} = \frac{y-2}{\sin \theta} = 3$$

$$\therefore$$
 x + 1 = 3 cos $\theta \Rightarrow$ x = 3 cos θ - 1

and y - 2 =
$$3 \sin \theta \Rightarrow y = 3 \sin \theta + 2$$

Since this point on the line x + y = 4

$$\therefore 3\cos\theta - 1 + 3\sin\theta + 2 = 4$$

$$\therefore 3\cos\theta + 3\sin\theta = 3 \Rightarrow \cos\theta + \sin\theta = 1$$

Squaring both sides, we have

$$\cos^2\theta + \sin^2\theta + 2\sin\theta\cos\theta = 1$$

$$\Rightarrow$$
 1 + sin 2 θ = 1 \Rightarrow sin 2 θ = 0 \Rightarrow 2 θ = 0 \Rightarrow θ = 0

Which shows that required line is parallel to x-axis.

14. The equation of lines are

$$y - x = 0(i)$$

$$x + y = 0....(ii)$$

$$x - k = 0(iii)$$

By solving (i) and (ii), we get the coordinates of point C.

... Coordinate of C are (0, 0).

By solving (ii) and (iii), we get the coordinates of point A.

.: Coordinate of A are (k, -k).

By solving (i) and (iii), we get the coordinates of point B.

∴ coordinates of B are (k, k)

∴ coordinates of B are (k, k)

∴ Area of
$$\triangle ABC = \frac{1}{2} \begin{vmatrix} k & -k & 1 \\ k & k & 1 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[(k^2 + k^2 + (0 - 0) + (0 - 0)) \right]$$

$$= \frac{1}{2} \times 2k^2$$
= k^2 sq. unit

15. Given, vertices of a \triangle ABC are A(2, 3), B(4, -1) and C(1, 2)

We know that altitude from a vertex of a triangle is perpendicular to the opposite side.

 \therefore Line AD \perp line BC.

Then, the slope of AD \times Slope of BC = -1

$$\Rightarrow m \times \frac{y_2 - y_1}{x_2 - x_1} = -1$$

$$\Rightarrow m \times \frac{2+1}{1-4} = -1 \ [\because x_1 = 4, y_1 = -1, x_2 = 1, y_2 = 2]$$

$$\Rightarrow m \times \frac{3}{-3} = -1 \Rightarrow m = 1$$

Hence, equation of AD, by using $y - y_1 = m(x - x_1)$ is

$$y-3 = 1(x-2)$$

$$\Rightarrow x-y-2+3=0$$

$$\Rightarrow x-y+1=0$$

Now, equation of BC by using
$$y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)$$
 is $y+1=\frac{2+1}{1-4}(x-4)$ [:: x_1 = 4, y_1 = -1, x_2 = 1, y_2 = 2]
$$\Rightarrow y+1=\frac{3}{-3}(x-4)$$

$$\Rightarrow y+1$$
 = -x + 4
$$\Rightarrow x+y-3$$
 = 0

Now, length of AD = Perpendicular distance from (2, 3) to the line BC

$$=\left|rac{2+3-3}{\sqrt{1^2+1^2}}
ight|=rac{2}{\sqrt{2}}=\sqrt{2}$$
 unit