Time allowed: 45 minutes

Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

1. If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, then A^2 is

(b) 2 A

(c) 3 A

(d) I

2. If area of a triangle is 35 square units with vertices (2, -6), (5, 4) and (k, 4) then k is

(c) - 12, -2

(d) 12, -2

3. If $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, then A^n equals

(a) $\begin{bmatrix} 3n & -4n \\ n & -n \end{bmatrix}$ (b) $\begin{bmatrix} 3^n & 4^n(-1)^n \\ 1^n & (-1)^n \end{bmatrix}$ (c) $\begin{bmatrix} 3+n & -(4+n) \\ n & -n \end{bmatrix}$

(d) None of these

4. If $f(x) = \log \cos x$ then $f''\left(\frac{\pi}{4}\right)$ equal to

(c) - 2

(d) - 1

5. At $x = \frac{5\pi}{6}$, $f(x) = 2\sin 3x + 3\cos 3x$ is

(c) maximum

(d) none of these

6. Read the following statements.

Statement I : Integral of $\int_{1}^{\sqrt{3}} \frac{dx}{1+x^2} dx$ is $\frac{\pi}{12}$.

Statement II : $\int_{0}^{2a} f(x)dx = \int_{0}^{a} f(x)dx + \int_{0}^{a} f(2a - x)dx$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these

7.	If $f(a+b-x) = f(x)$, then $\int_a^b x f(x) dx$ is equal to				
	$(a) \ \frac{a+b}{2} \int_a^b f(b-x) dx$	$(b) \ \frac{a+b}{2} \int_a^b f(b+x) dx$	$(c) \frac{b-a}{2} \int_a^b dx$	$f(x) dx$ (d) $\frac{a}{}$	$\frac{+b}{2}\int_a^b f(x) dx$
8.	The value of $\int \frac{\cos^2 x - \cos 2x}{1 - \cos x} dx$ equals				
	(a) $x + \sin x + C$	(b) $x - 2 \sin x + C$	(c) $-x + 2$ o	$\cos x + C$ (d) x	$-2\cos x + C$
9.	$\int \frac{e^x (1+x) dx}{\cos^2 (xe^x)}$ is equal	to			
	$(a) - \cot(e^x) + C$				
10.	The area bounded by the curve $y = \sin^{-1} x$ and the line $x = 0$ and $ y = \frac{\pi}{2}$ is (in square units)				e units)
	(a) 1	(b) 2	(c) π	(d) 2s	τ
11.	11. The differential equation representing the family of curves $y^2 = 2C(x + \sqrt{C})$; where C is positive parameters.				is positive parameter,
	is of (a) Order 1 and degree	. 3	(b) Order 2,	dooroo?	
	(c) Degree 3, order 3	. 3		-	
12.	12. The equation of the curve whose slope at any point different from origin is $y + \frac{y}{x}$, is (a) $y = Cx e^x$, $C \neq 0$ (b) $y = xe^x$ (c) $xy = e^x$ (d) $y + xe^x = C$				
	(a) $y = Cx e^{x}, C \neq 0$	(b) $y = xe^{-x}$	(c) $xy = e^x$	(a) y	+ xe' = C
13. By the graphical method, the solution of LPP					
	$Maximize Z = 3x_1 + 5x_2$				
	subject to $3x_1 + 2x_2 \le 18$				
	$x_1 \le 4$				
	$x_2 \le 6$				
	$x_1, x_2 \ge 0$ is				
		(a) $x_1 = 2, x_2 = 0, Z = 6$ (b) $x_1 = 2, x_2 = 6, Z = 36$			
	(c) $x_1 = 4$, $x_2 = 3$, $Z = 27$ (d) $x_1 = 4$, $x_2 = 6$, $Z = 42$				
14.	 The sum and product of mean and variance of a Binomial distribution are 24 and 128 respectively then the value of n is 				
	(a) 16	(b) 32	(c) 24	(d) no	one of these
15.	The probability distri	bution of a random v	ariable X is given bel	ow	
	X	0	1	2	3
	P(X)	1/8	3 8	3 8	1/8
	then the mean is				
	(a) $\frac{1}{2}$	(b) 1	(c) $\frac{3}{2}$	(d) 5	5
	⁽¹⁾ 2	(0)	2	(4)	2
	Section-B(B1)				
16.	A relation R in the se	t of non-zero complex	numbers is defined b	by $z_1 R z_2 \Leftrightarrow \frac{z_1 - z_2}{z_1 + z_2}$ is	s real, then R is
	(a) Reflexive	(b) Symmetric	(c) Transiti	ve (d) E	quivalence

17.	Number of onto (surjecti	ve) functions from A to B if	n(A) = 6 and $n(B) = 3$ are			
	(a) $2^6 - 2$	(b) 3 ⁶ - 3	(c) 340	(d) None of these		
18.	Let $A = \{7, 8, 9, 10\}$ and R	Let $A = \{7, 8, 9, 10\}$ and $R\{(8, 8), (9, 9), (10, 10), (7, 8)\}$ be a relation on A , then R is				
	(a) Transitive	(b) Reflexive	(c) Symmetric	(d) None of these		
19.	If $f(x) = \frac{3x+2}{5x-3}$ then					
	(a) $f^{-1}(x) = -f(x)$	$(b) f^{-1}(x) = f(x)$	(c) (fof) (x) = x	(d) $f^{-1}(x) = -\frac{1}{19}f(x)$		
20.	Let * be a binary operation	on on Q = $\{0\}$ such that $a * b$	$=\frac{a}{b}$ then (2 * 3) * 5 is equal	to		
	(a) $\frac{2}{\pi}$	(b) $\frac{3}{5}$	(c) $\frac{3}{15}$	(d) $\frac{2}{15}$		
	3	3	15	15		
21.	The domain of the function	-				
	(a) [0, 1]	(b) (0, 1)	(c) [-1, 1]	(d) None of these		
22.	2 tan-1{cosec(tan-1x) - tan		.1			
	. ,	, ,	(c) $\cot^{-1}\frac{1}{x}$	(d) none of these		
23.	If $ax + b\{\sec(\tan^{-1}x)\} = c$ and $ay + b\{\sec(\tan^{-1}y)\} = c$, then $\frac{x+y}{1-xy} = c$					
		u + c	a c-	$(d) \ \frac{a+c}{1-ac}$		
24.	The positive integral solu	ation of the equation tan-12	$x + \cos^{-1} \frac{y}{\sqrt{1+y^2}} = \sin^{-1} \frac{3}{\sqrt{10}}$	is		
	(a) $x = -2$, $y = -1$	(b) $x = 2, y = 2$	(c) $x = 2, y = -2$	(d) $x = 1, y = 2$		
25.	A matrix $A = [a_{ij}]_{n \times n}$ is sa	id to be skew symmetric if				
	(a) $a_{ij} = 0$	(b) $a_{ij} = -a_{ji}$	(c) $a_{ij} = a_{ji}$	(d) $a_{ij} = 1$		
26.	If A and B are two matric	es such that $AB = B$ and BA	$= A$, then $A^2 + B^2 =$			
	(a) 2BA	(b) 2AB	(c) $A + B$	(d) AB		
27.	If $\Delta_1 = \begin{vmatrix} Ax & x^2 & 1 \\ By & y^2 & 1 \\ Cz & z^2 & 1 \end{vmatrix}$ and Δ_2	$= \begin{vmatrix} A & B & C \\ x & y & z \\ zy & zx & xy \end{vmatrix} $ then $\Delta_1 - \Delta_2$	is equal to			
	(a) 1	(b) 0	(c) 2Δ ₁	(d) none of these		
28.	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 3 & -1 & 9 \end{bmatrix}$, then the	value of det (adj (adj A)) ec	quals			
	(a) 11	(b) 121	(c) 1331	(d) 14641		
29.	If $f(x) = x^n$, then the v	alue of $f(1) + \frac{f(1)}{11} + \frac{f^{2}(1)}{21}$	$+\frac{f^3(1)}{3!}++\frac{f^n}{n!}$	$\frac{r(1)}{r(1)}$, where $f^r(1)$ is the r^{th}		
	derivative of $f(x)$ w.r.t. x i		31 1	ni -		
	(a) 1	(b) n	(c) 2 ⁿ	(d) none of these		
30.	. ,	, where p is constant, then	1.7			
	(a) p	(b) 0	(c) $p + p^3$	(d) $p + p^2$		

31.	The function $f(x) = x +$	x - 1 is			
	(a) $f(x)$ is continuous at $x = 0$ as well as at $x = 1$.				
	(b) $f(x)$ is continuous at x				
	(c) $f(x)$ is discontinuous a	t x = 0 as well as at $x = 1$.			
	(d) none of these				
32.	(0.0 - 0)	If $y = f\left(\frac{3x+4}{5x+6}\right)$ and $f'(x) = \tan x^2$ then $\frac{dy}{dx}$ is equal to			
	(a) $-2 \tan \left(\frac{3x+4}{5x+6}\right)^2 \times \frac{1}{(5x+6)^2}$	1 +6) ²	(b) tan x ²		
	(c) $f\left(\frac{3\tan x^2 + 4}{5\tan x^2 + 6}\right)$		(d) none of these		
33.	The slope of tangent to the	he curves $x = t^2 + 3t - 8$, $y =$	$2t^2 - 2t - 5$ at the point (2,	-1) is	
	(a) $\frac{22}{7}$	(b) 6/7	(c) $\frac{7}{6}$	(d) = 6/7	
34.	Read the following states	nents.			
	Statement I : The integral of $\int \frac{dx}{\sqrt{9x-4x^2}}$ is equal to $\frac{1}{2}\sin^{-1}\left(\frac{8x+9}{9}\right)+C$.				
	Statement II : The integral of $\int e^x \left(\frac{1-x}{(1+x^2)}\right)^2 dx$ is equal to $\frac{e^x}{1+x^2}$.				
	Choose the correct option: (a) Statement I is correct but statement II is not correct. (b) Statement II is correct but statement I is not correct. (c) Both statements I and II are correct. (d) None of these				
35.	The value of $\int_0^1 \tan^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$ is				
	(a) 1	(b) 0	(c) -1	(d) $\frac{\pi}{4}$	
36.	If $f(x) = \frac{e^x}{1 + e^x}$, $I_1 = \int_{f(-a)}^{f(a)} xg\{x(1 - x)\} dx$ and $I_2 = \int_{f(-a)}^{f(a)} g\{x(1 - x)\} dx$, then the value of $\frac{I_2}{I_1}$ is				
	(a) 1	(b) 2	(c) -1	(d) 0	
37.	If the area enclosed by $y^2 = 4ax$ and line $y = ax$ is $\frac{1}{3}$ sq. unit, then the area enclosed by $y = 4x$ with same parabola is				
	(a) 8 sq. units.	(b) 4 sq. units.	(c) $\frac{4}{3}$ sq. units.	(d) $\frac{8}{3}$ sq. units.	
38.	If $y + \frac{d}{dx}(xy) = x(\sin x + 1)$	$\log x$), then			
	(a) $y = \cos x + \frac{2}{x} \sin x + \frac{2}{x^2}$	$\frac{1}{2}\cos x + \frac{x}{3}\log x - \frac{x}{9} + \frac{C}{x^2}$			
	$(b) \ y = -\cos x - \frac{2}{x}\sin x + \frac{1}{x}\sin x +$	$\frac{2}{x^2}\cos x + \frac{x}{3}\log x - \frac{x}{9} + \frac{C}{x^2}$			
	$(c) y = -\cos x + \frac{2}{x}\sin x + \cdots$	$\frac{2}{x^2}\cos x - \frac{x}{3}\log x - \frac{x}{9} + \frac{C}{x^2}$			
	(d) None of these				

its	
	M
	A
ne	T
	Н
	Ε
	M
	A
	T
	1
	C
	S
ity	

39.	The general solution of the differential equation $(1 + \tan y) (dx - dy) + 2xdy = 0$ is				
	(a) $x (\sin y + \cos y) = \sin y$		(b) $x (\sin y + \cos y) = \sin y + Ce^{-y}$		
	(c) $y (\sin x + \cos x) = \sin x$			one of these	
40		, then the range of $ \lambda \vec{a} $ is	. ,		
40.	(a) [0, 8]	(b) [-12, 8]	, (c) [0,	12]	(d) [8, 12]
41	() () (unit length perpendicular			. , ,
41.		(b) two	(c) the		
40	(a) one	$\vec{r} \cdot \vec{c} = 0$ for some non-zero	. ,		(d) infinite
42.		and the second		r, then the value of	
	(a) 1 → ••••••••••••••••••••••••••••••••••	(b) 2	(c) 0		(d) -1
43.	The vectors $a = 3i - 2j + 2i$ diagonal is	2k and $b = -i - 2k$ are the i	adjacen		gram. The angle between its
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) -4	$\frac{\pi}{4}$	$(d) \frac{2\pi}{3}$
			11+2	- 4	
44.		2, 1, -2) in the line $\frac{x-3}{2}$ =		-	
	(a) $\left(\frac{108}{17}, \frac{-127}{17}, \frac{40}{17}\right)$	(b) $\left(\frac{-108}{17}, \frac{127}{17}, \frac{40}{17}\right)$	(c) $\left(\frac{1}{1}\right)$	$\frac{108}{17}$, $\frac{127}{17}$, $\frac{-40}{17}$)	(d) $\left(\frac{108}{17}, \frac{-127}{17}, \frac{-40}{17}\right)$
45.		oint where the line contains $P(2, 3, 1)$, $Q(2, 1, 2)$ and $R(3, 1)$			i (-3, 1, 2) crosses the plane
	(a) (-2, 7, -1)	(b) (2, 7, 1)	(c) (-	2,7,1)	(d) (2, 7, -1)
46.	The distance of the point	(4, 5, 3) from plane x + y +	z = 2 m	easured parallel to th	e line $x = y = 2z$ is
	(a) 6 units	(b) 5 units	(c) 7 u	units	(d) None of these
47.	The equation of line pass	sing through the point (2, 1,	, – 4) an	nd perpendicular to th	e lines
	$\frac{x+9}{-16} = \frac{y-8}{8} = \frac{z-10}{7}$ and $\frac{x-29}{8} = \frac{y-15}{3} = \frac{z-5}{-5}$ is				
	(a) $\frac{x-2}{61} = \frac{y-15}{3} = \frac{z-5}{-5}$		(b) $\frac{x}{6}$	$\frac{-2}{61} = \frac{y-1}{24} = \frac{z+4}{112}$	
	(c) $\frac{x-2}{61} = \frac{y-1}{24} = \frac{z-4}{112}$		$(d) \frac{x}{6}$	$\frac{-2}{61} = \frac{y+1}{24} = \frac{z+4}{112}$	
48.	A coin is tossed $(2n + 1)$ times, the probability that head appear odd number of times is				
	(-) n	n+1	. 1		(A)(th
	(a) $\frac{n}{2n+1}$	$(b) \frac{n+1}{2n+1}$	(c) $\frac{1}{2}$	•	(d) none of these
49.	For a binomial distributi	on mean is 9 and SD is $\frac{3}{2}$	then th	ne value of n equals	
	(a) 12	(b) 36	(c) 9		(d) none of these
50.	2.0		of set	S where $S = \{1, 2, 3,$, m} to itself, if probability
	that it is one to one is $\frac{24}{62}$	5, then <i>m</i> equals			
	(a) 6	(b) 5	(c) 4		(d) none of these