Activity 25 Algebraic identity

Objective

To verify the identity $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$, for simple cases using a set of unit cubes.

Pre-requisite knowledge

- 1. Express the volume of an object as the number of unit cubes in it.
- 2. Knowledge of the identity $a^3 a^2b a^2b a^2b + ab^2 + ab^2 + ab^2 b^3 = (a b)^3$.

Material Required

64 unit cubes made of wood (dimension is 1 unit × 1 unit × 1 unit).

Procedure

For representing a³

- 1. Take a = 4 and b = 1. Make a cube of dimensions 4 × 4 × 4 using 64 unit cubes as shown in Fig 25 (a).
- 2. Remove a cuboid of dimensions a²b i.e. 4 × 4 × 1 [Fig 25 (b)] three times from Fig 25 (a) as shown in Fig 25 (c).
- Add a cuboid of dimensions ab² i.e. 4 × 1 × 1 [Fig 25 (d)] three times to Fig 25 (c) as shown in Fig 25 (e).
- 4. Remove a cube b³ of dimensions 1 × 1 × 1 [Fig 25 (f)] from Fig 25 (e) as shown in Fig 25 (g).
- 5. The total number of remaining cubes will be $27 = 3^3$ i.e. a^3 as shown in Fig 25 (g).

Observations

- 1. Number of unit cubes in $a^3 = 4^3 = 64$
- 2. Number of unit cubes in cuboid $a^{2}b = 4 \times 4 \times 1 = 16$ is removed Number of cubes left = 64 - 16 = 48
- 3. Number of unit cubes in cuboid $ab^2 = 4 \times 1 \times 1$ is added

Number of cubes left = 48 + 4 = 52

- 4. Number of unit cubes in cuboid $a^{2}b = 4 \times 4 \times 1 = 16$ is removed Number of cubes left = 52 - 16 = 36
- 5. Number of unit cubes in cuboid $ab^2 = 4 \times 1 \times 1 = 4$ is added Number of cubes left = 36 + 4 = 40
- 6. Number of unit cubes in cuboid $a^{2}b = 4 \times 4 \times 1 = 16$ is removed Number of cubes left = 40 - 16 = 24

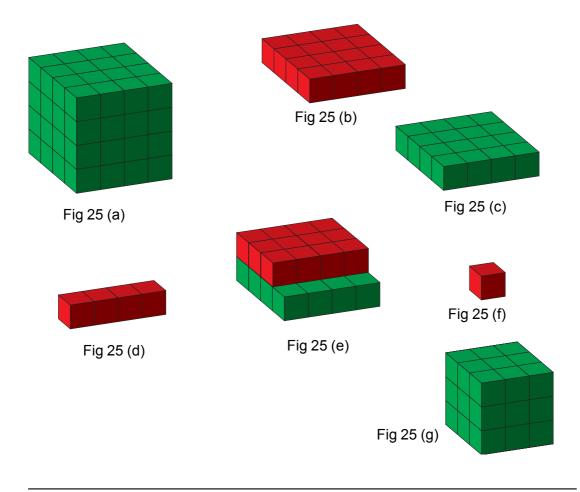
- 7. Number of unit cubes in cuboid $ab^2 = 4 \times 1 \times 1$ is added Number of cubes left = 24 + 4 = 28
- 8. Number of unit cube $b^3 = 1 \times 1 \times 1$ is removed

Number of cubes left = 28 - 1 = 27

9. 27 = 3^3

10. It is verified that

 $a^3 - a^2b + ab^2 - a^2b + ab^2 - a^2b + ab^2 - b^3 = (a - b)^3$


 $a^3 - 3a^2b + 3ab^2 - b^3 = (a - b)^3$

Learning Outcomes

- 1. The students obtain the skill of making cuboids using unit cubes.
- 2. The students obtain the skill of adding and subtracting the volume of cuboids.
- 3. Showing the volume of a cube as the sum of cuboids helps them to get a geometric feeling of volume.

Remark

Teachers can take any value of a and b and verify the result.

