

	Contents									
4.1	Introduction									
4.2	Velocity and Acceleration									
4.3	Resultant and components of velocities									
4.4	Relative velocity									
4.5	Rectilinear motion with uniform acceleration									
4.6	Motion under gravity									
4.7	Laws of Motion									
4.8	Motion of a body released from a balloon or a lift									
4.9	Apparent weight of a body resting on a moving horizontal plane or a lift									
4.10	Motion of two particles connected by a string									
4.11	Impact of elastic bodies									
4.12	Projectile Motion									
4.13	Work, Power and Energy									
	Assignment (Basic and Advance Level)									

Dynamics is, in general, the science of motion. If we consider the motion of a particle, the subject is called dynamics of a particle.

The study of dynamics is essential for those interested in defence the motion of projectiles and rockets can be discussed with its help. Dynamics is indispensable for those interested in space flights for calculating the paths of satellites and of all other space vehicles which may be sent to the moon or to outer space. The study of dynamics has been useful to mathematics in another way – the discovery of calculus was, to a large extent, facilitated by the attempts of Fermat, Newton and others to understand continuous motion.

4.1 Introduction

Dynamics is that branch of mechanics which deals with the study of laws governing motions of material system under the action of given forces.

(1) **Displacement**: The displacement of a moving point is its change of position. To know the displacement of a moving point, we must know both the length and the direction of the line joining the two positions of the moving point. Hence the displacement of a point involves both magnitude and direction *i.e.*, it is a vector quantity.

(2) **Speed**: The speed of a moving point is the rate at which it describes its path. The speed of a moving particle or a body does not give us any idea of its direction of motion; so it is a scalar quantity. In M.K.S. or S.I. system, the unit of speed is *metre per second* (m/s).

Average speed : The average speed of moving particle in a time-interval is defined as the distance travelled by the particle divided by the time interval.

If a particle travels a distance s in time-interval t, then Average speed = $\frac{s}{t}$

Note : **D** The average speed of a particle gives the overall "rapidity" with which the particle moves in the given interval of time.

Instantaneous speed : The instantaneous speed or simply speed of a moving particle is defined as the rate of change of distance along its path, straight or curved.

If *s* is the distance travelled by a particle along its path, straight or curved, in time *t*, then

Instantaneous speed =
$$\frac{ds}{dt}$$
 or speed at time $t = \frac{ds}{dt}$

Note:
The average speed is defined for a time interval and the instantaneous speed is defined at a particular instant.

4.2 Velocity and Acceleration

(1) **Velocity** : The velocity of a moving point is the rate of its displacement. It is a vector quantity.

Let a particle starting from the fixed point *O* and moving along the straight line *OX* describes the distance OP = x in time *t*. If the particle describes a further distance $PQ = \delta x$ in time δt , then $\frac{\delta x}{\delta t}$ is $O \xleftarrow{\delta x}{\langle x \to x \to P \rangle} Q$ called the average velocity of the particle in time δt .

And $\lim_{\delta \to 0} \frac{\delta x}{\delta t} = \frac{dx}{dt} = v$ is called the instantaneous velocity (or simply velocity) of the particle at time *t*.

Wole : \Box Average velocity in time *t* is the mean of the initial and final velocity.

(2) **Acceleration :** The rate of change of velocity of a moving particle is called its acceleration. It is a vector quantity.

The acceleration of a moving point at time *t* at distance *x* is given by, $f = \frac{v_2 - v_1}{t} \Longrightarrow f = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v \cdot \frac{dv}{dx}$

In M.K.S. or S.I. system, the unit of acceleration is m/sec^2 .

It should be noted that a > 0 if v increases with time and a < 0 if v decreases with time. A negative acceleration is called retardation.

Clearly, retardation means decrease in the velocity.

- The average speed of a bicycle over a journey of 20 km; if it travels the first 10 km. at 15 km/hr and Example: 1 the second 10 km. at 10 km/hr, is (c) 15 *km/hr* (a) 12 *km/hr* (b) 10 km/hr (d) None of these Time taken by the bicycle to travel the first 10 $km = \frac{10}{15}$ hour $= \frac{2}{3}$ hour **Solution:** (a) Time taken by the bicycle to travel the second 10 $km = \frac{10}{10}$ hour = 1 hour Total distance travelled = $10 + 10 = 20 \ km$ Total time taken = $\frac{2}{3} + 1 = \frac{5}{3}$ hour. \therefore Average speed of bicycle = $\frac{\text{Distance}}{\text{Time}} = \frac{20}{5/3} = \frac{60}{5} = 12 \text{ km/hr}.$ If a particle moves in a straight line according to the formula, $x = t^3 - 6t^2 - 15t$, then the time interval Example: 2 during which the velocity is negative and acceleration is positive, is (a) [0, 5] (b) $(2,\infty)$ (c) (2, 5) (d) None of these We have $x = t^3 - 6t^2 - 15t$ **Solution:** (c) :. $v = \frac{dx}{dt} = 3t^2 - 12t - 15$ and $a = \frac{d^2x}{dt^2} = 6t - 12$ Now v < 0 and $a > 0 \Rightarrow 3(t^2 - 4t - 5) < 0$ and $6(t - 2) > 0 \Rightarrow -1 < t < 5$ and $t > 2 \Rightarrow t \in (2,5)$. A particle moves in a fixed straight path so that $S = \sqrt{1+t}$. If v is the velocity at any time t, then its Example: 3 acceleration is (a) $-2v^3$ (b) $-v^3$ (c) $-v^2$ (d) $2v^3$ **Solution:** (a) We have $s = \sqrt{1+t}$ $\Rightarrow \quad \frac{ds}{dt} = \frac{1}{2\sqrt{1+t}} \Rightarrow \frac{d^2s}{dt^2} = \frac{-1}{4(1+t)^{3/2}} = \frac{-1}{4} \left(\frac{1}{\sqrt{1+t}}\right)^3 \quad \Rightarrow \quad \frac{d^2s}{dt^2} = \frac{-1}{4} \left(2\frac{ds}{dt}\right)^3 \Rightarrow \frac{d^2s}{dt^2} = -2v^3.$ Two particles are moving with uniform velocities u and v respectively along X and Y axes, each Example: 4 directed towards the origin. If the particles are at distances a and b from the origin, the time at which they will be nearest to each other will be equal to (b) $\frac{bu}{u^2 + v^2}$ (c) $\frac{au + bv}{u^2 + v^2}$ (d) $\frac{au}{bv}$ (a) $\frac{au}{u^2 + v^2}$
- **Solution:** (c) Let the two particles be at *A* and *B* respectively at t=0 and at time *t* their positions be *P* and *Q* respectively.

Then, AP = ut and BQ = vt

 $\therefore OP = a - ut \text{ and } OQ = b - vt$ Now, $PQ^2 = OP^2 + OQ^2 \Rightarrow PQ^2 = (a - ut)^2 + (b - vt)^2$ $\Rightarrow \frac{d}{dt}(PQ^2) = -2u(a - ut) - 2v(b - vt) \text{ and } \frac{d^2}{dt^2}(PQ^2) = 2(u^2 + v^2)$ For maximum or minimum value of PQ^2 , we must have $\frac{d}{dt}(PQ^2) = 0 \Rightarrow -2u(a - ut) - 2v(b - vt) = 0 \Rightarrow t = \frac{au + bv}{u^2 + v^2}$ Clearly, $\frac{d^2}{dt^2}(PQ^2) > 0$ for all t. Hence, PQ is least at $t = \frac{au + bv}{u^2 + v^2}$.

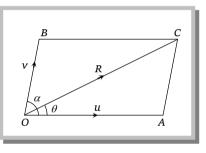
4.3 Resultant and Components of Velocities

(1) **Resultant of velocities :** The resultant of two velocities possessed by a particle is given by the law of parallelogram of velocities.

Parallelogram law of velocities : If a moving particle has two simultaneous velocities

represented in magnitude and direction by the two sides of a parallelogram drawn from an angular point, then their resultant is represented in magnitude and direction by the diagonal of the parallelogram passing through that point.

Let a particle at O has simultaneously two velocities u and v represented in magnitude and direction by OA and OB respectively of the parallelogram OACB. The diagonal OC represents the resultant velocity.



Let *R* be the resultant velocity.

If $\angle AOB = \alpha$ and $\angle AOC = \theta$, then the magnitude of their resultant velocity is $\boxed{R = \sqrt{u^2 + v^2 + 2uv \cos \alpha}}$ and, the direction of this resultant velocity makes an angle θ with the direction of u such that $\boxed{\tan \theta = \frac{v \sin \alpha}{u + v \cos \alpha}}$

Case I : When $\alpha = 0$, then $R_{\text{max}} = u + v$

Case II : When $\alpha = \pi$, then $R_{\min} = |u - v|$

Case III : When $\alpha = \pi / 2$, *i.e.*, *u* and *v* are at right angle to each other, then

$$R = \sqrt{u^2 + v^2}$$
 and $\theta = \tan^{-1}\left(\frac{v}{u}\right)$

Case IV : When u = v, then $R = 2u \cos \frac{\alpha}{2}$ and $\theta = \frac{\alpha}{2}$.

Note : \Box The angle made by the direction of the resultant velocity with the direction of v is

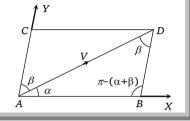
given by
$$\tan^{-1}\left(\frac{u\sin\alpha}{v+u\cos\alpha}\right)$$
.

□ If the direction of resultant velocity *R* makes an angle θ with the direction of \vec{u} , then

$$\sin \theta = \frac{v \sin \alpha}{R}$$
 and $\cos \theta = \frac{u + v \cos \alpha}{R}$

(2) **Components of a velocity in two given directions :** If components of a velocity *V* in two given directions making angles α and β with it, then by the law of parallelogram of velocities the required components of *V* are represented by *AB* and *AC* = *BD* ald \int^{Y}

$$\frac{AB}{\sin ADB} = \frac{BD}{\sin BAD} = \frac{AD}{\sin ABD} \text{ i.e., } \frac{AB}{\sin \beta} = \frac{BD}{\sin \alpha} = \frac{AD}{\sin(\alpha + \beta)}$$
$$\therefore \quad AB = AD \cdot \frac{\sin \beta}{\sin(\alpha + \beta)} \text{ and } BD = AD \cdot \frac{\sin \alpha}{\sin(\alpha + \beta)}$$



Hence, the components of velocity *V* in the directions making angle α and β are $\frac{V \sin \beta}{\sin(\alpha + \beta)}$ and

 $\frac{V\sin\alpha}{\sin(\alpha+\beta)}$ respectively.

Important Tips

	ents of velocity V are $\sin \alpha$ along AY.	mutually perpendicula	r, then $\beta = 90^{\circ} - \alpha$. Thus c	components of V are $V \cos \alpha$ along
Example: 5	from an angle mak decimeter/sec. Ass	ting $\tan^{-1}\frac{1}{2}$ from the he	orizontal. It is known that f air negligible, what will	window of the train to be falling their velocities are 24 be the velocity of the train <i>sec.</i> (d) 44 <i>decimeter/sec</i> .
Solution: (b)	Let the real velocity of train in opposite OD = BC = v Completing paralle velocity of drops. If the drops are se	e direction is represent elogram <i>OBCD</i> , <i>OC</i> will en in a direction makin	the and direction may be re- red by <i>OD</i> , then $OB = 24$, represent the relative	epresented by <i>OB</i> and the velocity D D D D D D D D D D
Example: 6	$v = 24 \cot \theta = 24 \times 2 =$	48 <i>decimeter/second</i> . omponents of the result	$\frac{C}{(r-\theta)} \text{ or } \frac{24}{\sin\theta} = \frac{v}{\cos\theta} \text{ or}$ tant velocity <i>w</i> of a partic (c) 120°	le such that $u = v = w$, then the (d) 30°

Solution: (a) Let α be the angle between the components of the resultant velocity *w*.

Then
$$w^2 = u^2 + v^2 + 2uv \cos \alpha \implies u^2 = 2u^2(1 + \cos \alpha) \implies 4\cos^2\frac{\alpha}{2} = 1 \implies \cos\frac{\alpha}{2} = \frac{1}{2} \implies \alpha = 60^\circ$$
.

Example: 7 A man swims at a speed of 5 *km/hr*. He wants to cross a canal 120 *metres* wide, in a direction perpendicular to the direction of flow. If the canal flows at 4 *km/hr*, the direction and the time taken by the man to cross the canal are

(a)
$$\tan^{-1}\left(\frac{3}{4}\right)$$
, 2.4 min. (b) $\pi - \tan^{-1}\left(\frac{3}{4}\right)$, 144 sec. (c) $\tan^{-1}\left(\frac{1}{2}\right)$, 100 sec. (d) None of these

Solution: (b) Suppose the man swims in a direction making an angle α with the direction of current. Since the man wants to cross the canal in a direction perpendicular to the direction of flow.

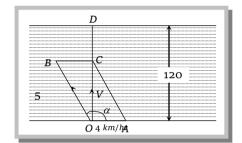
Therefore,
$$\tan \frac{\pi}{2} = \frac{5 \sin \alpha}{4 + 5 \cos \alpha} \implies 4 + 5 \cos \alpha = 0 \implies \cos \alpha = \frac{-4}{5}$$

$$\implies \alpha = \cos^{-1} \left(\frac{-4}{5}\right) \implies \alpha = \pi - \cos^{-1} \frac{4}{5} \implies \alpha = \pi - \tan^{-1} \frac{3}{4}$$

Let *V* be the resultant velocity, then

$$V^2 = 4^2 + 5^2 + 2 \times 4 \times 5 \cos \alpha$$

$$V^2 = 16 + 25 + 40 \times \frac{-4}{5} = 9 \implies V = 3km / hr.$$



Time taken by the man to cross the canal $= \frac{120}{3 \times 1000} hr = \frac{1}{25} hr = \frac{60}{25} min = 2.4 min = 144 sec$.

4.4 Relative Velocity

Let *A* and *B* are two bodies in motion. The velocity of *A* relative to *B* is the velocity with which *A* appears to move as viewed by *B i.e.*, velocity of *A* relative to B = Resultant of velocity of *A* and reversed velocity of *B*.

Apparent velocity of *A* as seen from *B* means velocity of *A* relative to *B*.

The relative velocity of *A* with respect to *B* is also called the velocity of *A* relative to *B* and is denoted by \vec{V}_{AB} and $\vec{V}_{AB} = \vec{V}_A - \vec{V}_B$.

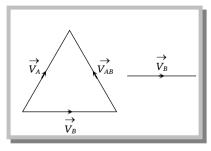
If two bodies *A* and *B* are moving with velocities of magnitudes V_A and V_B respectively inclined at an angle α with each other, then

$$\vec{V}_{AB} = \sqrt{V_A^2 + V_B^2 - 2V_A V_B \cos \alpha}$$

If the direction of the relative velocity of *A* with respect to *B* makes an angle θ with the direction of velocity of *B*, then $\tan \theta = \frac{V_A \sin \alpha}{V_B - V_A \cos \alpha}$

Case I: When the particles *A* and *B* move parallel to each other in the same direction with velocities *u* and *v* respectively. Here $\alpha = 0$, then $V_{AB} = (u - v)$ in the d

$$V_{BA} = (v - u)$$
 in the direction of B



В

 $V_B = v$

Case II : When the particles A and B move parallel to each other in opposite directions with velocities *u* and *v* respectively. Here $\alpha = \pi$, then $V_{AB} = (u + v)$ in the c Α $V_{\rm A} = u$ $V_{BA} = (v + u)$ in the direction of *B*. R $V_{\rm B} = V$ *Note* : \Box True velocity of A = Resultant of the relative velocity of A with respect to B and the true velocity of B [Since $\vec{V}_{AB} = \vec{V}_A - \vec{V}_B$] *i.e.* $\vec{V}_A = \vec{V}_{AB} + \vec{V}_B$ Example: 8 A train of length 200 m travelling at 30 m/sec. overtakes another of length 300 m travelling at 20 m/sec. The time taken by the first train to pass the second is (a) 30 sec. (b) 50 sec. (c) 10 sec. (d) 40 sec. Solution: (b) Distance covered by the first train to pass the second = (200 + 300)m = 500 metres. Since both the trains are travelling in the same direction. ∴ Velocity of first train relative to second = (30 - 20) = 10 m/sec. Time taken by the first train to pass the second = $\frac{500}{10} = 50$ second. To a man running at a speed of 20 km/hr, the rain drops appear to be falling at an angle of 30° from Example: 9 the vertical. If the rain drops are actually falling vertically downwards, their velocity in *km/hr*. is (a) $10\sqrt{3}$ (c) $20\sqrt{3}$ (b) 10 (d) 40 Velocity of rain relative to man = Actual velocity of rain - Velocity c Solution: (c) 20(Rev 20(Act Resolving horizontally and vertically, $V\cos 30^{\circ} = u$ and $V\sin 30^{\circ} = 20$ i.e., $\frac{V}{2} = 20$, $\therefore V = 40$ ้วก $\therefore 40 \frac{\sqrt{3}}{2} = u \implies u = 20\sqrt{3} \, km/hr$. Actua V(Rel.) Example: 10 A man is walking at the rate of 3 km/hr and the rain appears to him of $3\sqrt{3} km/hr$. If the actual direction of the rain makes an angle θ with vertical, then θ = (a) 15° (b) 30° (c) 45° (d) 60° **Solution:** (d) Let \vec{V}_M denotes the velocity of man. Then, $V_M = |\vec{V}_M| = 3km/hr$. It appears to the man that rain is falling vertically at the rate of $3\sqrt{3}km/hr$. This means that the relative $V_m = 3km/hr.$ velocity of rain with respect to man is $3\sqrt{3}km/hr$, in a direction perpendicular to the velocity of the man. Let $ec{V}_{RM}$ denote the relative velocity of rain with respect to man and \vec{V}_R be the $V_{Rm}=3\sqrt{3Km}/$ velocity of rain. Let $\overrightarrow{OA} = \overrightarrow{V}_R$, $\overrightarrow{OB} = \overrightarrow{V}_{RM}$. Complete the parallelogram *OACB*. R C Then, the diagonal \overrightarrow{OC} represents true velocity V_R of the rain. :. $V_R^2 = V_M^2 + V_{RM}^2 + 2V_M V_{RM} \cos 90^{\circ}$ [Using $w^2 = v^2 + u^2 + 2uv \cos \theta$] $\Rightarrow V_R = \sqrt{3^2 + (3\sqrt{3})^2 + 2 \times 3 \times 3\sqrt{3} \times 0} = 6km/hr.$ Let θ be the angle between the direction of velocity of man and velocity of rain. Then, $\tan \theta = \frac{V_{RM} \sin 90^{\circ}}{V_{M} + V_{RM} \cos 90^{\circ}} \implies \tan \theta = \frac{3\sqrt{3}}{3} = \sqrt{3}$

Thus, the actual velocity of the rain is 6 km/hr in a direction making an angle of 60[°] with the direction of motion of the man.

(c) $u \sin \alpha$

Example: 11 The particles start simultaneously from the same point and move along two straight lines, one with uniform velocity \vec{u} and the other from rest with uniform acceleration \vec{f} . Let α be the angle between their directions of motion. The relative velocity of the second particle *w.r.t.* the first is least after a time [AIEEE 2003]

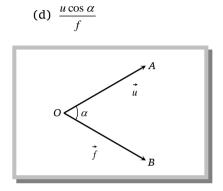
(a)
$$\frac{u \sin \alpha}{f}$$
 (b) $\frac{f \cos \alpha}{u}$

Solution: (d) After *t*, velocity = $f \times t$

$$V_{BA} = \vec{f}t + (-\vec{u})$$

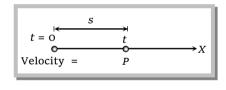
$$V_{BA} = \sqrt{f^2 t^2 + u^2 - 2fut \cos \alpha}$$
For max. and min., $\frac{d}{dt}(V_{BA}^2) = 2f^2 t - 2fu \cos \alpha = 0$

$$t = \frac{u \cos \alpha}{f}$$



4.5 Rectilinear motion with uniform Acceleration

A point or a particle moves in a straight line, starting with initial velocity u, and moving with constant acceleration f in its direction of motion. If v be its final velocity at the end of time t and s be its distance at the instant, from its starting point, then the equations describing the motion of the particle are,



(i)
$$v = u + ft$$
 (ii) $s = ut + \frac{1}{2}ft^2$ (iii) $v^2 = u^2 + 2fs$

(iv) If s_n is the distance travelled by the particle in n^{th} second, then $s_n = u + \frac{1}{2}f(2n-1)$

Important Tips

Example: 12 A body is moving in a straight line with uniform acceleration. It covers distances of 10 *m* and 12 *m* in third and fourth seconds respectively. Then the initial velocity in *m/sec*. is
(a) 2 (b) 3 (c) 4 (d) 5
Solution: (d) Let initial velocity is *u m/sec*. and acceleration is
$$fm / \sec^2$$
.
So, $u + \frac{1}{2}f(2 \times 3 - 1) = 10$ or $u + \frac{5}{2}f = 10$ (i) and $u + \frac{1}{2}f(2 \times 4 - 1) = 12$ or $u + \frac{7}{2}f = 12$ (ii)
Subtracting (i) from (ii), we get $0 + \frac{2}{2}f = 2$ or $f = 2m / \sec^2$
Substituting value of *f* in equation (i) , $u + \frac{5}{2} \times 2 = 10$ or $u + 5 = 10$ or $u = 5m / \sec$.

Example: 13	Two trains <i>A</i> and <i>B</i> , 100 <i>kms</i> apart, are travelling to each other with starting speed of 50 <i>km/hr</i> fo both. The train <i>A</i> is accelerating at 18 <i>km/hr</i> ² and <i>B</i> is decelerating at 18 m/h^2 . The distance where the engines cross each other from the initial position of <i>A</i> is
	(a) 50 kms (b) 68 kms (c) 32 kms (d) 59 kms
Solution: (d)	Let engine of train A travel x km and cross engine of train B in t hours. u = 50 km / hr,
	Acceleration $f = 18 km / hr^2$, so $s = 50t + \frac{1}{2} \times 18t^2$, $s = 50t + 9t^2$ (i)
	So distance travelled by engine of train <i>B</i> will be $(100 - s)$ in <i>t</i> hour.
	u = 50 km / hr., Acceleration = -18 km/hr
	$\therefore 100 - s = 50t - \frac{1}{2} \times 18t^2 \implies 100 - s = 50t - 9t^2 \qquad \dots (ii)$
	Adding (i) and (ii), we get $100 = 100t$, $\therefore t = 1$ hour. From (i), $s = 50 \times 1 + 9 \times 1^2 = 50 + 9 = 59$ kms.
Example: 14	A particle is moving with a uniform acceleration. If during its motion, it moves x , y and z distance is p^{th} , q^{th} and r^{th} seconds respectively, then
	(a) $(q-r)x + (r-p)y + (p-q)z = 1$ (b) $(q-r)x + (r-p)y + (p-q)z = -1$
	(c) $(q-r)x + (r-p)y + (p-q)z = 0$ (d) $(q+r)x + (r+p)y + (p+q)z = 0$
olution: (c)	Let <i>u</i> be the initial velocity and <i>f</i> be the acceleration of the particle.
	Then $s_{pth} = u + \frac{1}{2}f(2p-1) = x$, $s_{qth} = u + \frac{1}{2}f(2q-1) = y$, $s_{rth} = u + \frac{1}{2}f(2r-1) = z$
	Now, multiplying (i) by $(q-r)$, (ii) by $(r-p)$, (iii) by $(p-q)$ and adding, we get
x(q-r) + y(r-p)	
Example: 15	A body travels a distance s in t seconds. It starts from rest and ends at rest. In the first part of th journey, it moves with constant acceleration f and in the second part with constant retardation r . Th value of t is given by [AIEEE 2003]
	(a) $2s\left(\frac{1}{f} + \frac{1}{r}\right)$ (b) $\frac{2s}{\frac{1}{f} + \frac{1}{r}}$ (c) $\sqrt{2s(f+r)}$ (d) $\sqrt{2s\left(\frac{1}{f} + \frac{1}{r}\right)}$
olution: (d)	Portion <i>OA</i> , <i>OB</i> corresponds to motion with acceleration 'f' and retardation 'r' respectively. Area of $\triangle OAB = s$ and $OB = t$. Let $OL = t_1, LB = t_2$ and $AL = v$
	$s = \frac{1}{2}OB.AL = \frac{1}{2}t.v$ and $v = \frac{2s}{t}$
	Also $f = \frac{v}{v} + \frac{v}{v} = \frac{2s}{s}$ and $r = \frac{v}{v} + \frac{v}{v} = \frac{2s}{s}$
	Also, $f = \frac{v}{t_1}, t_1 = \frac{v}{f} = \frac{2s}{tf}$ and $r = \frac{v}{t_2}, t_2 = \frac{v}{r} = \frac{2s}{tr}$
	$\begin{array}{c} \text{Hiso}, \ f = t_1, t_1 = f = t_1 \text{ did} \ f = t_2, t_2 = r = t_r \\ t = t_1 + t_2 = \frac{2s}{tf} + \frac{2s}{tr} \ ; t = \left(\frac{1}{f} + \frac{1}{r}\right)\frac{2s}{t} \Rightarrow t = \sqrt{2s\left(\frac{1}{f} + \frac{1}{r}\right)} \ . \end{array}$
4.6 Motion	
	$t = t_1 + t_2 = \frac{2s}{tf} + \frac{2s}{tr}; \qquad t = \left(\frac{1}{f} + \frac{1}{r}\right)\frac{2s}{t} \implies t = \sqrt{2s\left(\frac{1}{f} + \frac{1}{r}\right)}.$

an acceleration which is always the same at the same place on the earth but which varies slightly from place to place. This acceleration is called acceleration due to gravity. Its value in M.K.S. system is $9.8 m/\sec^2$, in C.G.S. system $981 cm/\sec^2$ and in F.P.S. system $32 ft/\sec^2$. It is always denoted by *g*.

(1) **Downward motion:** If a body is projected vertically downward from a point at a height h above the earth's surface with velocity u, and after t second its velocity becomes v, the equation of its motion are v = u + gt,

 $h = ut + \frac{1}{2}gt^2$, $v^2 = u^2 + 2gh$, $s_t = u + \frac{1}{2}g(2t-1)$. In particular, if the body starts from rest or is

simply let fall or dropped, then, v = gt, $h = \frac{1}{2}gt^2$, $v^2 = 2gh$. (: u = 0)

(2) **Upward motion**: When a body be projected vertically upward from a point on the earth's surface with an initial velocity u and if the direction of the upward motion is regarded as +*ve*, the direction of acceleration is -*ve* and it is, therefore, denoted by – g. The body thus moves with a retardation and its velocity gradually becomes lesser and lesser till it is zero. Thus, for upward motion, the equations of motion are,

$$v = u - gt$$
, $h = ut - \frac{1}{2}gt^2$, $v^2 = u^2 - 2gh$, $s_t = u - \frac{1}{2}g(2t - 1)$.

(3) Important deductions

(i) **Greatest height attained :** Let *H* be the greatest height. From the result, $v^2 = u^2 - 2gh$.

We have,
$$0 = u^2 - 2gH$$
 $\therefore H = \frac{u^2}{2g}$. Hence greatest height $(H) = \frac{u^2}{2g}$.

(ii) **Time to reach the greatest height :** Let *T* be the time taken by the particle to reach the greatest height.

From the result, v = u - gt

We have, 0 = u - gT *i.e.*, $T = \frac{u}{g}$. Therefore time to reach the greatest height $(T) = \frac{u}{g}$

(iii) **Time for a given height :** Let *t* be the time taken by the body to reach at a given height

h. Then,
$$h = ut - \frac{1}{2}gt^2 \Rightarrow gt^2 - 2ut + 2h = 0$$
. Hence, $t_1 = \frac{u - \sqrt{u^2 - 2gh}}{g}$ and $t_2 = \frac{u + \sqrt{u^2 - 2gh}}{g}$
Clearly t_1 and t_2 are real; if $u^2 \ge 2gh$. If $u^2 = 2gh$,

then $t_1 = t_2 = \frac{u}{a}$, which is the time taken to reach the highest

point.

So, let $u^2 > 2gh$.

The lesser value of t_1 gives the time when the body is going up

i.e., it is time from O to P and the larger value t_2 gives the total time taken by the body to reach the highest point and then coming back to the given point, *i.e.*, it is the time from O to A and then A to P.

(iv) **Time of flight :** It is the total time taken by the particle to reach the greatest height and then return to the starting point again. When the particle returns to the starting point, h = 0. Therefore, from the result, $h = ut - \frac{1}{2}gt^2$.

We have,
$$0 = ut - \frac{1}{2}gt^2$$
 or $t = 0$ or $\frac{2u}{g}$

t = 0 corresponds to the instant with the body starts, and t = 2 u/g corresponds to the time when the particle after attaining the greatest height reaches the starting point. \therefore Time of flight $=\frac{2u}{g}$.

A stone is dropped from a certain height which can reach the ground in 5 sec. If the stone is stopped Example: 16 after 3 seconds of its fall and then time taken by the stone to reach the ground for the remaining [MNR 1985; UPSEAT 2000] distance is (c) 4 seconds (a) 2 seconds (b) 3 seconds (d) None of these Let distance travelled in 5 sec. is h_1 metre. \therefore $h_1 = 0 + \frac{1}{2}g \times 5 \times 5$ or $h_1 = \frac{25}{2}g$ Solution: (c) Let distance travelled in 3 seconds is h_2 metre. So, $h_2 = 0 + \frac{1}{2}g \times 3 \times 3$ or $h_2 = \frac{9}{2}g$ So remaining distance $h = h_1 - h_2$ or $h = \frac{25}{2}g - \frac{9}{2}g$ or $h = \frac{16}{2}g = 8g$. Let time taken by the stone to reach the ground for the remaining distance 8g is t second. \therefore 8g = 0 + $\frac{1}{2}gt^2$ or $t^2 = 16$, $\therefore t = 4$ sec. A man in a balloon, rising vertically with an acceleration of 4.9 m/sec^2 releases a ball 2 seconds after Example: 17 the balloon is let go from the ground. The greatest height above the ground reached by the ball is (a) 14.7 m (c) 9.8 m (b) 19.6 m (d) 24.5 m Velocity after 2 seconds = (4.9)2 = 9.8 m/sec. **Solution:** (a) Distance covered in 2 seconds = $\frac{1}{2}ft^2 = \frac{1}{2}(4.9)(2)^2 = 9.8m$ Again after the release of ball, velocity of the ball = 9.8 m/sec. v = 0; Using $v^2 = u^2 - 2gh$, we get $0 = (9.8)^2 - 2(9.8)h \Rightarrow h = \frac{9.8}{2} = 4.9$ metre. Hence greatest height attained = 9.8 + 4.9 = 14.7 m. Example: 18 A particle is dropped under gravity from rest from a height $h(g = 9.8m/\sec^2)$ and then it travels a distance $\frac{9h}{25}$ in the last second. The height *h* is (a) 100 metre (c) 145 metre (d) 167.5 metre (b) 122.5 metre **Solution:** (b) $S_n = u + \frac{1}{2}f(2n-1) = \frac{1}{2}g(2n-1)$ (:: u = 0, f = g) $\frac{9h}{25} = \frac{1}{2}g(2n-1)$ and $h = \frac{1}{2}gn^2$ $\therefore \ \frac{9}{25} \cdot \frac{1}{2} gn^2 = \frac{1}{2} g(2n-1) \implies \frac{9}{25} n^2 = (2n-1) \implies 9n^2 = 50n-25$ $\Rightarrow 9n^2 - 50n + 25 = 0 \Rightarrow n = \frac{50 \pm \sqrt{2500 - 900}}{18} = \frac{50 \pm 40}{18}; n = 5 \text{ or } \frac{5}{9}$ Since $\frac{5}{9} < 1$, \therefore rejecting this value. We have n = 5; \therefore $h = \frac{1}{2}(9.8) \times 25 = 122.5$ metre.

4.7 Laws of Motion

(1) Newton's laws of motion

(i) **First law :** Every body continues in its state of rest or of uniform motion in a straight line except when it is compelled by external impressed forces to change that state.

(ii) **Second law :** The rate of change of momentum is proportional to the impressed force, and takes place in the direction of the straight line in which the force acts.

$$\frac{d}{dt}(mv) \propto F \Longrightarrow m \frac{dv}{dt} \propto F \quad \Rightarrow \quad m \frac{dv}{dt} = KF \Longrightarrow F = mf \qquad (\text{for } K = 1)$$

Force = mass \times acceleration. The S.I. unit of force is Newton and C.G.S. unit of force is dyne.

1 Newton = $1 kg \cdot m/sec^2$, 1 Dyne = $1 gm \cdot cm/sec^2$

(iii) **Third law :** To every action there is an equal and opposite reaction, or the actions and reaction are always equal and opposite.

Note : \square 1 Newton = 10⁵ Dynes.

□ The action and reaction do not act together on the same body or the same part of the body.

(2) **Weight :** The weight of a body is the force with which it is attracted by the earth towards its centre.

For a body of mass m, the weight W is given by W = mg (By Newton's second law of motion)

Note : \Box Let W_1 and W_2 be the weights of two bodies of masses m_1 and m_2 respectively at a

place on the earth then, $W_1 = m_1 g$ and $W_2 = m_2 g \Rightarrow \frac{W_1}{W_2} = \frac{m_1}{m_2}$

 \Box 1 *gm.wt.* = *g* dynes = 981 dynes

1 kg. wt. = g Newtons = 9.81 N.

(3) **Momentum of a body** : It is the quantity of motion in a body and is equal to the product of its mass (*m*) and velocity (*v*) with which it moves. Thus, momentum of the body is mv. The units of momentum are gm-cm/sec or kg-m/sec.

Momentum = Mass \times Velocity = m.v.

(4) **Impulse of a body** : The impulse of a force in a given time is equal to the product of the force and the time during which it acts. The impulse of a force *F* acting for a time *t* is therefore *F*.*t*.

Example: 19 A train weighing W tons is moving with an acceleration $f ft/sec^2$. When a carriage of weight w tons is suddenly detached from it, then the change in the acceleration of the train is

(a)
$$\frac{Wf}{W-w} ft / \sec^2$$
 (b) $\frac{W}{W-w} ft / \sec^2$ (c) $\frac{wf}{W-w} ft / \sec^2$ (d) $\frac{w}{W-w} ft / \sec^2$

Solution: (c) Mass of train = W × 2240 lbs.
∴ Pull of the engine = W × 2240 × f Poundals
When a carriage of mass W tons is detached, mass of the train = (W - w) tons = (W - w). 2240 lbs
Pull is the same as before *i.e.*, W × 2240 × f

 $\therefore \text{ New acceleration} = f_1 = \frac{W \times 2240 \times f}{(W - w)2240}$

$$f_1 = \frac{Wf}{W - w} ft / \sec^2$$

Change in acceleration = $f_1 - f = \frac{Wf}{W - w} - f = \left(\frac{W - W + w}{W - w}\right)f = \frac{wf}{W - w}$.

Example: 20 A hockey stick pushes a ball at rest for 0.01 second with an average force of 50 *N*. If the ball weighs 0.2 *kg*, then the velocity of the ball just after being pushed is

(a) 3.5 m/sec. (b) 2.5 m/sec. (c) 1.5 m/sec. (d) 4.5 m/sec.**Solution:** (b) If *v* m/sec. is the velocity of the ball just after being pushed, then $50 \times 0.01 = 0.2 \times v$ [\because Impulse = change of move v = 2.5 m/sec.

A mass *m* is acted upon by a constant force *P lb.wt*., under which in *t* seconds it moves a distance of *x* Example: 21 feet and acquires a velocity v ft/sec. Then x is equal to (b) $\frac{mg}{2v^2 P}$ (c) $\frac{gt^2}{2Pm}$ (d) $\frac{mv^2}{2Pm}$ (a) $\frac{gP}{2mt^2}$ Force = *P lb.wt*.= *Pq* poundals and mass = *m lbs* Solution: (d) $\therefore f = \frac{F}{m} = \frac{Pg}{m} ft / \sec^2$ Now initial velocity = 0, final velocity = v ft/sec. Distance = x and time = tHence $x = \frac{v^2 - u^2}{2f} = \frac{v^2 - 0}{2\frac{Pg}{2}} = \frac{mv^2}{2Pg}$. Example: 22 An engine and train weight 420 tons and the engine exerts a force of 7 tons. If the resistance to motion be 14 lbs. wt. per ton, then the time, the train will take to acquire a velocity of 30 m/hr. from rest is [BIT Ranchi 1994] (a) 2.2 m (b) 2.6 m (c) 2.8 m (d) 3 m Effective force = Pull of the engine - Resistance **Solution:** (a) $= 7 \text{ tons} - 420 \times 14 \text{ lbs} = 7 \times 2240 \text{ lbs} - 5880 \text{ lbs} = 9800 \text{ lbs} = 9800 \times 32 \text{ Poundals}$ Also acceleration = $\frac{P}{m} = \frac{9800 \times 32}{420 \times 2240} = \frac{1}{3} ft / \sec^2$ Again initial velocity = 0 and final velocity = 30 m.p.h. = 44 ft/sec.Use v = u + ft, we get $44 = 0 + \frac{1}{2}t$ \therefore t = 132 second = $2\frac{12}{60}$ minute; $t = 2\frac{1}{5}$ minute = 2.2 minute. 4.8 Motion of a Body released from a Balloon or a Lift

(1) When a lift is ascending with uniform acceleration of $f m/sec^2$ and after t second a body is dropped from it, then at the time when the body is dropped:

(i) Initial velocity of the body is same as that of the lift and is in the same direction. So, the velocity of the body is ft m/sec.

(ii) Initial velocity of the body relative to the lift = Velocity of the body – Velocity of the lift = ft - ft = 0

(iii) Acceleration of the body = $g m/sec^2$ in downward direction.

(iv) Acceleration of the lift = $f m/sec^2$ in upward direction.

(v) Acceleration of the body relative to the lift

= Acceleration of the body – Acceleration of the lift = g - (-f) = f + g in downward direction.

(2) When a lift is ascending with uniform acceleration of $f m / \sec^2$ and after *t* second a body is thrown vertically upward with velocity $v m / \sec$, then at that time, we have the following :

(i) Initial velocity of the body = v + velocity of lift = v + ft, in upward direction

(ii) Initial velocity of the body relative to the lift = Velocity of the body – Velocity of lift = (v + ft) - ft = v m/sec.

(iii) Acceleration of the body relative to the lift in vertically downward direction is $(f + g) m/sec^2$.

(3) When a lift is descending with uniform acceleration fm/\sec^2 and after time *t* a body is dropped from it. Then at that time, we have the following

(i) Velocity of the body = Velocity of the lift = ft m/sec in downward direction

(ii) Acceleration of the body relative to the lift in downward direction

= Acceleration of the body – Acceleration of lift = $g - f m / \sec^2$

4.9 Apparent weight of a Body resting on a moving Horizontal plane or a Lift

Let a body of mass m be placed in a lift moving with an acceleration f and R is the normal reaction, then

(1) When the lift is rising vertically upwards : Effective force in upward direction = Sum of the external forces in the same direction.

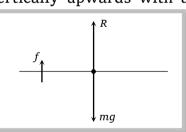
 $\Rightarrow mf = R - Mg \Rightarrow R = m(f + g)$

Clearly, the pressure R exerted by the body on the plane is greater than the actual weight mg of the body. This pressure is also known as apparent weight.

If a man of mass *m* is standing on a lift which is moving vertically upwards with an acceleration, then $R = m(g + f) \Rightarrow R = mg\left(1 + \frac{f}{r}\right)$

$$\Rightarrow R = (weight of the man) \left(1 + \frac{f}{g}\right)$$

$$\Rightarrow$$
 R = Weight of the man + $\frac{f}{g}$ (weight of the man)



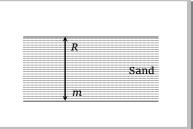
Thus, the apparent weight of the man is $\frac{f}{g}$ times more than the actual weight.

(2) When the lift is descending vertically downwards : Effective force in downward direction = Sum of the forces in the same direction.

 $\Rightarrow mf = mg - R \Rightarrow R = m(g - f) \quad \dots \dots (ii)$

Clearly, the pressure exerted by the body on the plane is less than its actual weight when the plane moves vertically downwards.

If a man of mass *m* in is standing on a lift, which is moving vertically downward with an acceleration *f*, then the pressure $R = m(g - f) = mg\left(1 - \frac{f}{g}\right) \Rightarrow R$ = weight of the man - $\frac{f}{g}$ (weight of the man)



 l_{ma}

Thus, the apparent weight of the man is $\frac{f}{f}$ times less than his actual weight.

Note : \Box Effective force stopping a falling body = F - mg

Important Tips

- The plane moves vertically upward with retardation equal to g i.e., f = -g, then from R = m(f+g), we get R = 0. Thus there is no pressure of the body on the plane when the plane rises vertically with retardation equal to g.
- If the plane moves down freely under gravity i.e., with acceleration equal to g, then from R = m(g f), we get R = 0.
 Thus there is no pressure of the body on the plane, when it moves vertically downwards with an acceleration equal to g.

Example: 23 A paracute weighing 112 *lbs. wt.* falling with a uniform acceleration from rest, describes 16 *ft.* in the first 4 *sec.* Then the resultant pressure of air on the parachute is

(a) 85 *lbs. wt.* (b) 95 *lbs. wt.* (c) 105 *lbs. wt.* (d) 115 *lbs. wt.* Solution: (c) Let f be the uniform acceleration. Here u = 0, s = 16, $t = 4 \sec$. Since $s = ut + \frac{1}{2}ft^2$, $\therefore 16 = 0 + \frac{1}{2}f(4)^2$. $\therefore f = 2ft/\sec^2$

Equation of motion is mf = mg - R (Downward)

 $\therefore R = m(g - f) = 112 (32 - 2)$

= 112 × 30 Poundals = $\frac{112 \times 30}{32}$ lbs. wt. = 105 lbs. wt.

[□] If *R* be the resistance of sand on a body of mass *m* falling in sand, then effective force = R - mg.

Example: 24	A man falls vertically under gravity with a box of mass ' m ' on his head. Then the reaction force between his head and the box is												
	(a) <i>mq</i>	(b) 2 mg	(c) 0	(d) 1.5 <i>mg</i>									
Solution: (c)		. Since the man falls vert		-									
		, we have $mg - R = mg$. \therefore											
Example: 25		30 <i>kg</i> . is travelling in a scending upwards at 4 m		tween the floor of the lift and	the man								
	(a) 1464.8 <i>N</i>	(b) 1784.8 <i>N</i>	(c) 1959.8 i	V (d) 1104.8 <i>N</i>									
Solution: (d)	When the lift is a	scending, we have $R = n$	ng + ma = m(g + a) = 80	0(9.81+4) = 80(13.81) = 1104.8 N.									
Example: 26	A particle of mas	s <i>m</i> falls from rest at a h	neight of 16 <i>m</i> and is	brought to rest by penetrating	$\frac{1}{6}m$ into								
	the ground. If the particle is	e average vertical thrust	exerted by the gro	und be 388 kg. wt, then the ma	ass of the								
	(a) 2 <i>kg</i>	(b) 3kg	(c) 4kg	(d) 8kg									
Solution: (c)	Let $f m / \sec^2$ be t	the retardation produced	by the thrust exert	ed by the ground and let vm/sc	ec . be the								
	velocity with whi	ich the mass <i>m</i> penetrate	s into the ground. T	hen, $v^2 = 0^2 + 2g \times 16$ [:: $v^2 =$	$u^2 + 2gh$]								
	$\Rightarrow v = \sqrt{2 \times 9.8 \times 16}$	$=4\sqrt{19.6}=17.70 \ m/\sec$.		• <i>u</i> =0									
	Since the mass m	a penetrates through $\frac{1}{6}m$	16 m										
	Therefore, its fin	al velocity is zero.											
	So, $0^2 = v^2 - 2fs =$	$\Rightarrow 0 = (4\sqrt{19.6})^2 - 2f \times \frac{1}{6}$		$1/6 \int_{m} \int_{v=0}^{1/6} f$									

$$\Rightarrow f = \frac{16 \times 19.6 \times 6}{2} = 940.8 \, m \, / \, \sec^2 \ \Rightarrow \ (388 - m) = \frac{940.8 \, m}{9.8} \qquad [\because g = 9.8 \, m \, / \, \sec^2]$$

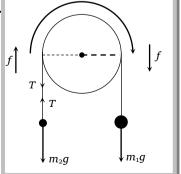
$$\Rightarrow 388 - m = 96m \Rightarrow m = \frac{388}{97} = 4$$
. Hence, the mass of the particle is 4 kg.

4.10 Motion of two particles connected by a String

(1) Two particles hanging vertically : If two particles of masses m_1 and $m_2 (m_1 > m_2)$ are suspended freely by a light inextensible string which passes over a smooth fixed light pulley,

then the particle of mass $m_1(>m_2)$ will move downwards, with Acceler

Tension in the string $T = \frac{2m_1m_2g}{m_1 + m_2}$ Pressure on the pulley = $2T = \frac{4m_1m_2g}{m_1 + m_2}$



(2) One particle on smooth horizontal table : A particle of mass m_1 attached at one end of light inextensible string is hanging vertically, the string passes over a pulley at the end of a smooth

horizontal table, and a particle of mass m_2 placed on the table is attached at the other end of the string. Then for the system,

Acceleration
$$f = \frac{m_1 g}{m_1 + m_2}$$

Tension in the string $T = \frac{m_1 m_2 g}{m_1 + m_2}$

Pressure on the pulley = $T\sqrt{2} = \frac{\sqrt{2}m_1m_2g}{m_1 + m_2}$.

(3) **One particle on an inclined plane** : A particle of mass m_1 attached at one end of a light inextensible string is hanging vertically, the string passes over a pulley at the end of a smooth plane inclined at an angle α to the horizontal, and a particle of mass m_2 placed on this inclined plane is attached at the other end of the string. If the particle (

downwards, then for the system,

Acceleration
$$f = \frac{(m_1 - m_2 \sin \alpha)}{m_1 + m_2} g$$

Tension in the string $T = \frac{m_1 m_2 (1 + \sin \alpha)}{m_1 + m_2} g$

Pressure on the pulley $=\sqrt{\{2(1+\sin\alpha)\}}T = \frac{\sqrt{2}m_1m_2g(1+\sin\alpha)^{3/2}}{m_1+m_2}$

- **Example: 27** The sum of two weights of an Atwood's machine is 16 *lbs*. The heavier weight descends 64 *ft* in 4 *seconds*. The value of weights in *lbs* are
 - (a) 10, 6 (b) 9, 7 (c) 8, 8 (d) 12, 4
- **Solution:** (a) Let the two weights be m_1 and m_2 (*lbs.*) $(m_1 > m_2), \therefore m_1 + m_2 = 16$ (i)

Now, the distance moved by the heavier weight in 4 seconds from rest is 64 ft.

If acceleration = f, then
$$64 = 0 + \frac{1}{2}f(4)^2 \implies f = 8ft / \sec^2$$

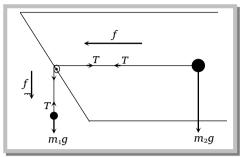
But
$$f = \frac{m_1 - m_2}{m_1 + m_2} g \implies \frac{m_1 - m_2}{16} \times 32 = 8 \implies m_1 - m_2 = 4$$
(ii)

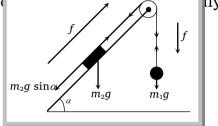
From (i) and (ii), $m_1 = 10$ *lbs*, $m_2 = 6 lbs$.

Example: 28 Two weights *W* and *W'* are connected by a light string passing over a light pulley. If the pulley moves with an upward acceleration equal to that of gravity, the tension of the string is

(a)
$$\frac{WW'}{W+W'}$$
 (b) $\frac{2WW'}{W+W'}$ (c) $\frac{3WW'}{W+W'}$ (d) $\frac{4WW'}{W+W'}$

Solution: (d) Suppose *W* descends and *W'* ascends. If *f* is the acceleration of the weights relative to the pulley, then since the pulley ascends with an acceleration *f*, the actual acceleration of *W* and *W'* are (f - g) (downwards) and (f + g) (upwards) respectively. Let *T* be tension in the string.





:
$$Wg - T = W(f - g)$$
 and $T - W'g = W'(f + g)$ or $g - \frac{T}{W} = f - g$ and $\frac{T}{W'} - g = f + g$

Subtracting, We get $\frac{T}{W} + \frac{T}{W'} - 2g = 2g$ or $T = \frac{4WW'}{W+W'}$ kg. wt.

Example: 29 To one end of a light string passing over a smooth fixed pulley is attached a particle of mass M, and the other end carries a light pulley over which passes a light string to whose ends are attached particles of masses m_1 and m_2 . The mass M will remain at rest or will move with a uniform velocity, if [MNR 1993]

(a)
$$\frac{1}{M} = \frac{1}{m_1} + \frac{1}{m_2}$$
 (b) $\frac{2}{M} = \frac{1}{m_1} + \frac{1}{m_2}$ (c) $\frac{4}{M} = \frac{1}{m_1} + \frac{1}{m_2}$ (d) $\frac{8}{M} = \frac{1}{m_1} + \frac{1}{m_2}$

Solution: (c) If the mass *M* has no acceleration, then $Mg = T_1$

But
$$T_1 = 2T_2 = 2\left(\frac{2m_1m_2}{m_1 + m_2}g\right) = \frac{4m_1m_2}{m_1 + m_2}g$$

 $\therefore Mg = \frac{4m_1m_2}{m_1 + m_2}g$ or $\frac{4}{M} = \frac{m_1 + m_2}{m_1m_2} = \frac{1}{m_1} + \frac{1}{m_2}$

4.11 Impact of Elastic Bodies

(1) **Elasticity**: It is that property of bodies by virtue of which they can be compressed and after compression they recover or tend to recover their original shape. Bodies possessing this property are called elastic bodies.

(2) **Law of conservation of momentum**: It states "the total momentum of two bodies remains constant after their collision of any other mutual action." Mathematically $m_1.u_1 + m_2.u_2 = m_1.v_1 + m_2.v_2$

where $m_1 = \text{mass}$ of the first body, $u_1 = \text{initial velocity}$ of the first body, $v_1 = \text{final velocity}$ of the first body.

 m_2, u_2, v_2 = Corresponding values for the second body.

(3) **Coefficient of restitution** : This constant ratio is denoted by e and is called the coefficient of restitution or coefficient of elasticity. The values of e varies between the limits 0 and 1. The value of e depends upon the substances of the bodies and is independent of the masses of the bodies. If the bodies are perfectly elastic, then e = 1 and for inelastic bodies e = 0.

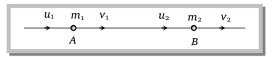
(4) **Impact** : When two bodies strike against each other, they are said to have an impact. It is of two kinds : Direct and Oblique.

(5) **Newton's experimental law of impact** : It states that when two elastic bodies collide, their relative velocity along the common normal after impact bears a constant ratio of their relative velocity before impact and is in opposite direction.

If u_1 and u_2 be the velocities of the two bodies before impact along the common normal at their point of contact and v_1 and v_2 be their velocities after impact in the same direction, $v_1 - v_2 = -e(u_1 - u_2)$

Case I : If the two bodies move in direction shown in diagram given below, then

(a) $v_1 - v_2 = -e(u_1 - u_2)$ and (b) $m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$



Case II : If the direction of motion of two bodies before and after the impact are as shown below, then by the laws of direct impact, we have

(a)
$$v_1 - v_2 = -e[u_1 - (-u_2)]$$
 or $v_1 - v_2 = -e(u_1 + u_2)$
and (b) $m_1v_1 + m_2v_2 = m_1u_1 + m_2(-u_2)$ or $m_1v_1 + m_2v_2 = m_1u_1 - m_2u_2$
$$\underbrace{\begin{array}{c}u_1 & m_1 & v_1 & u_2 & m_2 & v_2\\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet\end{array}}_{\bullet \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \end{array}}$$

Case III : If the two bodies move in directions as shown below, then by the laws of direct impact, we have

(a)
$$v_1 - (-v_2) = -e[-u_1 - (-u_2)]$$
 or $v_1 + v_2 = -e(u_2 - u_1)$
and (b) $m_1v_1 + m_2(-v_2) = m_1(-u_1) + m_2(-u_2)$ or $m_1v_1 - m_2v_2 = -(m_1u_1 + m_2u_2)$
$$\underbrace{\frac{u_1 \quad m_1 \quad v_1 \qquad u_2 \quad m_2 \quad v_2}{A}}_{A}$$

(6) **Direct impact of two smooth spheres**: Two smooth spheres of masses m_1 and m_2 moving along their line of centres with velocities u_1 and u_2 (measured in the same sense) impinge directly. To find their velocities immediately after impact, *e* being the coefficient of restitution between them.

Let v_1 and v_2 be the velocities of the two spheres immediately after impact, measured

along their line of centres in the same direction in which u_1 and u_2 are measured. As the spheres are smooth, the impulsive action and reaction between them will be along the common normal at the point of contact. From the principle of conservation of momentum,

$$m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$$
(i)

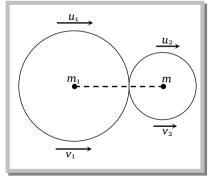
Also from Newton's experimental law of impact of two bodies,

$$v_2 - v_1 = e[u_1 - u_2]$$
(ii)

Multiplying (ii) by m_2 and subtracting from (i), we get

$$\Rightarrow (m_1 + m_2)v_1 = (m_1 - em_2)u_1 + m_2u_2(1 + e)$$

$$\therefore v_1 = \frac{(m_1 - em_2)u_1 + m_2u_2(1 + e)}{m_1 + m_2} \qquad \dots \dots (iii)$$



(7) **Oblique impact of two spheres** : A smooth spheres of mass m_1 , impinges with a velocity u_1 obliquely on a smooth sphere of mass m_2 moving with a velocity u_2 . If the direction of motion before impact make angles α and β respectively with the line joining the centres of the spheres, and if the coefficient of restitution be *e*, to find the velocity and directions of motion after impact,

Let the velocities of the sphere after impact be v_1 and v_2 in directions inclined at angles

 θ and ϕ respectively to the line of centres. Since the spheres are smooth, there is no force perpendicular to the line joining the centres of the two balls and therefore, velocities in that direction are unaltered.

$$v_1 \sin \theta = u_1 \sin \alpha \qquad \dots \dots (1)$$

 $v_2 \sin \phi = u_2 \sin \beta \qquad \dots \dots (ii)$

And by Newton's law, along the line of centres,

 $v_2 \cos \phi - v_1 \cos \theta = -e(u_2 \cos \beta - u_1 \cos \alpha)$ (iii)

Again, the only force acting on the spheres during the impact is along the line of centres. Hence the total momentum in that direction is unaltered.

 $\therefore m_1 v_1 \cos \theta + m_2 v_2 \cos \phi = m_1 u_1 \cos \alpha + m_2 u_2 \cos \beta \quad \dots \text{(iv)}$

The equations (i), (ii), (iii) and (iv) determine the unknown quantities.

(8) **Impact of a smooth sphere on a fixed smooth plane** : Let a smooth sphere of mass m moving with velocity u in a direction making an angle α with the vertical strike a fixed smooth horizontal plane and let v be the velocity of the sphere at an angle θ to the vertical after impact.

Since, both the sphere and the plane are smooth, so there is no change in velocity parallel to the horizontal plane.

 $\therefore v \sin \theta = u \sin \alpha \qquad \dots (i)$ And by Newton's law, along the normal *CN*, velocity of separation = e.(velocity of approach) $\therefore v \cos \theta - 0 = eu \cos \alpha \qquad \dots (ii)$ Dividing (i) by (ii), we get $\cot \theta = e \cot \alpha$ **Particular case :** If $\alpha = 0$ then from (i), $v \sin \theta = 0 \Rightarrow \sin \theta = 0$ $\therefore \theta = 0; \quad \because v \neq 0 \text{ and from (ii) } v = eu$

Thus if a smooth sphere strikes a smooth horizontal plane normally, then it will rebound along the normal with velocity, *e* times the velocity of impact *i.e.* velocity of rebound = *e.*(velocity before impact).

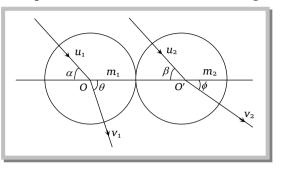
Rebounds of a particle on a smooth plane : If a smooth ball falls from a height h upon a fixed smooth horizontal plane, and if e is the coefficient of restitution, then whole time before

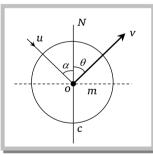
the rebounding ends = $\sqrt{\left(\frac{2h}{g}\right)} \cdot \frac{1+e}{1-e}$

And the total distance described before finishing rebounding = $\frac{1+e^2}{1-e^2}h$.

Example: 30 A ball is dropped from a height *h* on a horizontal plane and the coefficient of restitution for the impact is *e*, the velocity with which the ball rebounds from the floor is

(a)
$$eh$$
 (b) egh (c) $e\sqrt{gh}$ (d) $e\sqrt{2gh}$





Solution: (d)	Let <i>u</i> be the velocity	with which the ball strikes	s the ground. Then, u^2	$=2gh \Rightarrow u = \sqrt{2gh}$ (i)							
	Suppose the ball rebo	ounds with velocity v, then	$V = -e(-u - 0) \implies v = ue$	$\Rightarrow v = e\sqrt{2gh}$, [from (i)].							
Example: 31	A sphere impinges of	lirectly on a similar sphe	ere at rest. If the coe	efficient of restitution is $\frac{1}{2}$, the							
	velocities after impa	ct are in the ratio									
	(a) 1:2	(b) 2:3	(c) 1:3	(d) 3:4							
Solution: (c)											
	$mv_1 + m'v_1' = mu_1 + mu_1 + mu_2'$	$m'u'_1$	(i)								
		for relative velocities befo	-								
	$mv_{1} + m'v'_{1} = mu_{1} + m'u'_{1} \qquad \dots \dots (i)$ From Newton's rule for relative velocities before and after impact. $v_{1} - v'_{1} = -e(u_{1} - u'_{1}) \qquad \dots \dots (ii)$ Here $m = m'$, $e = \frac{1}{2}$ and let $u'_{1} = 0$ Then from (i) $mv_{1} + mv'_{1} = mu_{1}$ or $v_{1} + v'_{1} = u_{1} \qquad \dots \dots (iii)$ From (ii), $v_{1} - v'_{1} = \frac{-1}{2}u_{1} \qquad \dots \dots (iv)$ Adding (iii) and (iv), $2v_{1} = \frac{1}{2}u_{1}$ or $v_{1} = \frac{1}{4}u_{1} \qquad \dots \dots (v)$ From (iii) and (v), $v'_{1} = u_{1} - \frac{1}{4}u_{1} = \frac{3}{4}u_{1}$. Hence $v_{1} : v'_{1} = 1 : 3$.										
	2										
	Then from (i) $mv_1 + mv_2 + mv_3 + mv_4 + mv_4$	$vv_1' = mu_1$ or $v_1 + v_1' = u_1$	(iii)								
	From (ii), $v_1 - v_1' = \frac{-1}{2}u$	<i>u</i> ₁	(iv)								
	Adding (iii) and (iv)	, $2v_1 = \frac{1}{2}u_1$ or $v_1 = \frac{1}{4}u_1$	(v)								
	From (iii) and (v), v'_1	$=u_1 - \frac{1}{4}u_1 = \frac{3}{4}u_1$. Hence v_1 :	$v'_1 = 1:3$.								
Example: 32		tly upon another ball at re in the collision, the coeffic		ed to rest by the impact. If half of							
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{3}{4}$	(d) $\frac{1}{2}$							
Solution: (d)	Let masses of the two	b balls be m_1 and m_2 .									
	By the given questior	n, we have									
	m_1	m_2									
	<i>u</i> ₁	$u_2 = 0$									
	$v_1 = 0$	v ₂									
	$\therefore m_1 u_1 + m_2 .0 = m_1 .0 +$	$m_2 v_2$ or $m_1 u_1 = m_2 v_2$ (i)	and $0 - v_2 = e(0 - u_1)$ <i>i.e.</i>	<i>P</i> ., $v_2 = eu_1$ (ii)							
	Again for the given c	ondition, K.E. (before imp	act) = 2 × K.E. after in	npact							
	$\therefore \ \frac{1}{2}m_1u_1^2 + 0 = 2\left(0 + \frac{1}{2}\right)$	$m_2 v_2^2 \bigg) \qquad(iii)$	or $\frac{1}{2}m_1u_1^2 = 2.\frac{1}{2}m_2v_2^2$								
	But from (i), $m_1 u_1 = m_1$	$_{2}v_{2}$, $\therefore \frac{1}{2}u_{1} = v_{2}$ <i>i.e.</i> , $u_{1} = 2v$	$_2$. Putting in (ii), we g	yet $v_2 = e.2v_2$, $\therefore e = \frac{1}{2}$.							

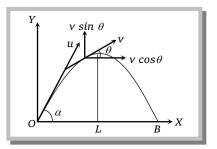
4.12 Projectile Motion

When a body is thrown in the air, not vertically upwards but making an acute angle α with the horizontal, then it describes a curved path and this path is a Parabola.

The body so projected is called a projectile. The curved path described by the body is called its trajectory.

The path of a projectile is a parabola whose equation is

$$y = x \tan \alpha - \frac{gx^2}{2u^2 \cos^2 \alpha}$$



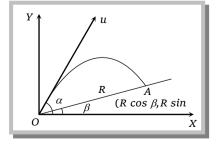
Its vertex is
$$A\left(\frac{u^2 \sin \alpha \cos \alpha}{g}, \frac{u^2 \sin^2 \alpha}{2g}\right)$$
.
Focus is $S\left(\frac{u^2 \sin 2\alpha}{2g}, \frac{-u^2 \cos 2\alpha}{2g}\right)$

(1) Some important deductions about projectile motion: Let a particle is projected with velocity u in a direction making angle α with OX. Let the particle be at a point P(x,y) after time t and v be its velocity making an angle θ with OX.

(i) Time of flight = $\frac{2u \sin \alpha}{g}$ (ii) Range of flight *i.e.*, Horizontal Range $R = \frac{u^2 \sin 2\alpha}{g}$ Maximum horizontal Range = $\frac{u^2}{g}$ and this happens, when $\alpha = \frac{\pi}{4}$ (iii) Greatest height = $\frac{u^2 \sin^2 \alpha}{2g}$ Time taken to reach the greatest height = $\frac{u \sin \alpha}{g}$ (iv) Let P(x,y) be the position of the particle at time *t*. Then $x = (u \cos \alpha)t$, $y = (u \sin \alpha)t - \frac{1}{2}gt^2$ (v) Horizontal velocity at time $t = \frac{dx}{dt} = u \cos \alpha$ Vertical velocity at time $t = \frac{dy}{dt} = u \sin \alpha - gt$ (vi) Resultant velocity at time $t = \sqrt{u^2 - 2ugt \sin \alpha + g^2t^2}$. And its direction is $\theta = \tan^{-1}\left(\frac{u \sin \alpha - gt}{u \cos \alpha}\right)$ (vii) Velocity of the projectile at the height $h = \sqrt{u^2 - 2gh}$ and its direction

is
$$\theta = \tan^{-1} \left[\frac{\sqrt{u^2 \sin^2 \alpha - 2gh}}{u \cos \alpha} \right]$$

(2) Range and time of flight on an inclined plane



Let OX and OY be the coordinate axes and OA be the inclined plane at an angle β to the horizon OX. Let a particle be projected from O with initial velocity u inclined at an angle α with the horizontal *OX*. The equation of the trajectory is $y = x \tan \alpha - \frac{gx^2}{2\mu^2 \cos^2 \alpha}$.

(i) Range and time of flight on an inclined plane with angle of inclination β are given by

$$R = \frac{2u^2 \cos \alpha \sin(\alpha - \beta)}{g \cos^2 \beta} \text{ and maximum range up the plane} = \frac{u^2}{g(1 + \sin \beta)}, \text{ where } 2\alpha - \beta = \frac{\pi}{2}$$

(ii) Time of flight
$$T = \frac{2u \sin(\alpha - \beta)}{g \cos \beta}$$

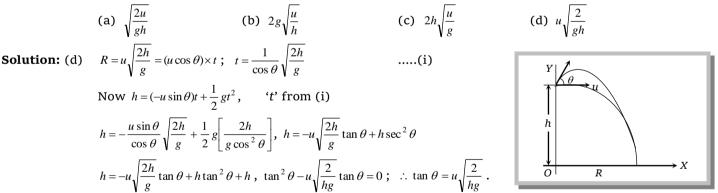
(iii) Range down the plane =
$$\frac{2u^2 \cos \alpha \sin(\alpha + \beta)}{g \cos^2 \beta}$$

(iv) Maximum range down the plane = $\frac{u^2}{g(1 - \sin \beta)}$, where $2\alpha + \beta = \frac{\pi}{2}$

(v) Time of flight = $\frac{2u\sin(\alpha + \beta)}{g\cos\beta}$, down the plane

(vi) Condition that the particle may strike the plane at right angles is $\cot \beta = 2 \tan(\alpha - \beta)$.

Two stones are projected from the top of a cliff *h* metres high, with the same speed *u* so as to hit the Example: 33 ground at the same spot. If one of the stones is projected horizontally and the other is projected at an angle θ to the horizontal then $\tan \theta$ equals



A gun projects a ball at an angle of 45° with the horizontal. If the horizontal range is 39.2 *m*, then the Example: 34 ball will rise to

[AMU 1999]

(a) 9.8 m (b) 4.9 m (c) 2.45 m (d) 19.6 m
Solution: (a) Horizontal range =
$$\frac{u^2 \sin 2\alpha}{g} = 39.2 \Rightarrow \frac{u^2 \sin 90^{\circ}}{g} = 39.2 \Rightarrow \frac{u^2}{g} = 39.2$$

Greatest height attained = $\frac{u^2 \sin^2 \alpha}{2g} = \frac{39.2}{2} \sin^2 45^{\circ} = (19.6) \frac{1}{2} = 9.8m$.
Example: 35 If the range of any projectile is the distance equal to the height from which a particle attains the velocity equal to the velocity of projection, then the angle of projection will be

(h) 10m

(a)
$$60^{\circ}$$
 (b) 75° (c) 36° (d) 30

Solution: (b) Range = $\frac{u^2 \sin 2\alpha}{\alpha}$, where α is the angle of projection.

 $(a) \ 0.8 \ m$

Also,
$$u^2 = 2gh \Rightarrow \frac{u^2}{2g} = h$$

By the given condition, $\frac{u^2}{2g} = \frac{u^2 \sin 2\alpha}{g} \Rightarrow \frac{1}{2} = \sin 2\alpha$, $\therefore 2\alpha = 30^\circ$ or 150°
 $\therefore \alpha = 15^\circ$ or 75° . Hence, required angle of projection = 75° .
Example: 36
A particle is thrown with the velocity v such that its range on horizontal plane is twice the maximum height obtained. Its range will be
(a) $\frac{2v^2}{3g}$ (b) $\frac{4v^2}{3g}$ (c) $\frac{4v^2}{5g}$ (d) $\frac{v^2}{7g}$
Solution: (c) Range = $2 \times (\text{maximum height})$
 $\therefore \frac{v^2 \sin 2\alpha}{g} = 2 \frac{v^2 \sin^2 \alpha}{2g} \Rightarrow \sin 2\alpha = \sin^2 \alpha$
 $\Rightarrow 2\sin\alpha\cos\alpha - \sin^2 \alpha = 0 \Rightarrow \sin\alpha(2\cos\alpha - \sin\alpha) = 0 \Rightarrow \sin\alpha = 0 \text{ or } \tan\alpha = 2$
But $\alpha \neq 0$, $\therefore \sin\alpha \neq 0$, $\therefore \tan\alpha = 2$. Now $R = \frac{v^2 \sin 2\alpha}{g} = \frac{v^2}{g} \cdot \frac{2\tan\alpha}{1 + \tan^2 \alpha} \Rightarrow \frac{v^2}{g} \cdot \frac{2.2}{1 + 4} = \frac{4v^2}{5g}$.
Example: 37
Let u be the velocity of projection and v_1 be the velocity of striking the plane when projected so that the range up the plane is maximum, and v_2 be the velocity of striking the plane when projected so that the range up the plane is maximum, then u is the
(a) A.M. of v_1, v_2 (b) G.M. of v_1, v_2 (c) H.M. of v_1, v_2 (d) None of these
Solution: (b) Let u be the velocity of projection and β be the inclination of the plane with the horizon. Let R be the maximum range up the plane. Then, $R = \frac{u^2}{g(1 + \sin\beta)}$
The coordinates of the point where the projected so that the range up the plane. Then, $R = \frac{u^2}{g(1 + \sin\beta)}$
 $\therefore v_1^2 = u^2 - 2g \sin\beta$ $\frac{u^2}{g(1 + \sin\beta)} \Rightarrow v_1^2 = u^2 (\frac{1 - \sin\beta}{1 + \sin\beta})$ (1)

Replacing
$$\beta$$
 by $-\beta$ in (i), we get $v_2^2 = u^2 \left(\frac{1 + \sin \beta}{1 - \sin \beta} \right)$ (ii)

From (i) and (ii), we get $v_1^2 \cdot v_2^2 = u^4 \implies v_1 v_2 = u^2$ i.e., *u* is the G.M. of v_1, v_2 .

4.13 Work, Power and Energy

(1) **Work** : Work is said to be done by a force when its point of application undergoes a displacement. In other words, when a body is displaced due to the action of a force, then the force is said to do work. Work is a scalar quantity.

Work done = force × displacement of body in the direction of force $W = \vec{F} \cdot \vec{d}$

 $W = F d \cos \theta$, where θ is the angle between *F* and *d*.

(2) **Power** : The rate of doing work is called power. It is the amount of work that an agent is capable of doing in a unit time. 1 *watt* = 10^7 *ergs per sec* = 1 *joule* per *sec.*, 1 H.P. = 746 watt.

(3) Energy : Energy of a body is its capacity for doing work and is of two kinds :

(i) **Kinetic energy :** Kinetic energy is the capacity for doing work which a moving body possesses by virtue of its motion and is measured by the work which the body can do against

any force applied to stop it, before the velocity is destroyed.

$$K.E. = \frac{1}{2}mv^2$$

(ii) **Potential energy :** The potential energy of a body is the capacity for doing work which it possesses by virtue of its position of configuration. P.E. = mgh.

Example: 38Two bodies of masses m and 4m are moving with equal momentum. The ratio of their K.E. is [MNR 1990; UPS
(a) 1:4(a) 1:4(b) 4:1(c) 1:1(d) 1:2

Solution: (b) Momentum of first body = mu, where u is the velocity of the first body.
∴ Momentum of second body = 4mv, where v is the velocity of the second body. By the given condition, mu = 4mv ⇒ u = 4v

:. Ratio of K.E. =
$$\frac{\frac{1}{2}mu^2}{\frac{1}{2}.4mv^2} = \frac{(4v)^2}{4v^2} = 4$$
. Hence, the ratio of K.E. is 4 : 1.

Example: 39 A bowler throws a bumper with a speed of $24m/\sec$. The moment the ball touches the ground, it losses its energy by 1.5 kgm. If the weight of the ball is 225 gm, then speed of the ball at which it hits the bat is [UPSEAT 2000] (a) 2.22 m/sec. (b) 22.2 m/sec. (c) 4.44 m/sec. (d) 44.4 m/sec.

(a) 2.22 m/sec. (b) 22.2 m/sec. (c) 4.44 m/sec. Solution: (b) Weight of the ball = w = 225 gm = 0.225 kg Velocity of the ball = v = 25 m/sec. Loss of energy = 1.5 kg.m

 \therefore K.E. of the ball before it touches the ground = $\frac{1}{2} \frac{wv^2}{g} = \frac{1}{2} \cdot \frac{0.225}{9.81} \times (25)^2 = 7.17 kgm$.

K.E. of the ball after bumping = K.E. before touching the ground – loss of K.E. = $7.17 - 1.5 = 5.67 \ kg$ -m.

Let v_1 be the velocity of the ball at which it hits the bat.

Now K.E. of the ball at the time of hitting the bat $=\frac{1}{2}\frac{w}{g}v_1^2 \Rightarrow 5.67 = \frac{1}{2} \times \frac{0.225}{9.81}v_1^2 \Rightarrow \Rightarrow$

 $v_1^2 = 494 \implies v_1 = 22.2 \ m \,/\, \text{sec}$.

Example: 40 A particular starts from rest and move with constant acceleration. Then the ratio of the increase in the K.E. in m^{th} and $(m + 1)^{\text{th}}$ second is

(a)
$$m:m$$
 (b) $m+1:m+1$ (c) $2m-1:2m+1$ (d) None of these
Solution: (c) Required ratio = $\frac{\text{Increase in K.E. in } m^{th} \text{second}}{\text{Increase in K.E. in } (m+1)^{th} \text{second}} = \frac{\text{Work done against the force in } m^{th} \text{second}}{\text{Work done against the force in } (m+1)^{th} \text{second}}$

$$= \frac{P \times \left[0 + \frac{1}{2}f(2m-1)\right]}{P \times \left[0 + \frac{1}{2}f(2(m+1)-1)\right]} = \frac{2m-1}{2m+2-1} = \frac{2m-1}{2m+1}.$$

Velocity and Acceleration, Resultant and Component of Velocities

Basic Level

1. The initial velocity of a particle is u(at t = 0), and the acceleration f is given by at. Which of the following relation is valid

(a)
$$v = u + at^2$$
 (b) $v = u + \frac{at^2}{2}$ (c) $v = u + at$ (d) $v = u$

- 2. A particle is moving in a straight line such that the distance described *s* and time taken *t* are given by $t = as^2 + bs + c$, a > 0. If *v* is the velocity of the particle at any time *t*, then its acceleration is (a) -2av (b) $-2av^2$ (c) $-2av^3$ (d) None of these
- 3. If a particle, moving in a straight line, covers a distance *s* in time *t*, given by the relations $s^2 = at^2 + 2bt + c$, then its acceleration is
- (a) $\frac{b^2 ac}{s^3}$ (b) $\frac{ac b^2}{s^3}$ (c) $\frac{ac b^2}{s^2}$ (d) $\frac{ac b^2}{s}$ 4. The speed v of a body moving on a straight track varies according to $v = \begin{cases} 2t+13 & , \ 0 \le t \le 5 \\ 3t+8 & , \ 5 < t \le 7 \\ 4t+1 & , \ t > 7 \end{cases}$

The distances are measured in *metres* and time *t* in *seconds*. The distance in *metres* moved by the particle at the end of 10 *seconds* is

- (a) 127 (b) 247 (c) 186 (d) 313 If the velocity of a particle moving in a straight line is given by $v^2 = se^s$, then its acceleration is
 - (a) $\frac{v^2}{2s}$ (b) $\frac{v^2}{2s}(s+1)$ (c) $\frac{v^2}{2}(s-1)$ (d) $\frac{v}{2}(s+1)$
- 6. The position at any time *t*, of a particle moving along *x*-axis is given by the relation $s = t^3 9t^2 + 24t + 6$, where *s* denotes the distance in *metre* from the origin. The velocity *v* of the particle at the instant when the acceleration becomes zero, is given by

(a)
$$v=3$$
 (b) $v=-3$ (c) $v=0$ (d) $v=-6$

- **7.** For a particle moving in a straight line, if time *t* be regarded as a function of velocity *v*, then the rate of change of the acceleration *a* is given by
 - (a) $a^2 \frac{d^2 t}{dv^2}$ (b) $a^3 \frac{d^2 t}{dv^2}$ (c) $-a^3 \frac{d^2 t}{dv^2}$ (d) None of these

8. If the law of motion of a particle moving in a straight line is given by $ks = \log\left(\frac{1}{v}\right)$, then its acceleration *a* is given

by

5٠

(a)
$$a = -kv$$
 (b) $a = -kv^{3}$ (c) $a = -kv^{2}$ (d) None of these

9. A point moves rectilinearly with deceleration whose modulus depends on the velocity of the particle as $a\sqrt{v}$, where *a* is a positive constant. At the initial moment its velocity is equal to v_0 . The time it takes before it comes to rest is

(a)
$$2\frac{\sqrt{v_0}}{a}$$
 (b) $\frac{\sqrt{v_0}}{a}$ (c) $\frac{v_0}{a}$ (d) $\frac{a}{\sqrt{v_0}}$

10. The law of motion of a particle moving in a straight line is given by $s = \frac{1}{2}vt$, where *v* is the velocity at time *t* and *s* is the distance covered. Then acceleration is

(a) A function of t (b) a function of s

11. If the displacement of a particle varies with time as $\sqrt{x} = t+7$, then (a) The velocity of the particle is inversely proportional to t (b) The velocity of the particle is proportional to t

(c) The velocity of the particle is proportional to \sqrt{t} (d) The particle moves with a constant acceleration

(c) a function of *v*

(d) constant

1

12. The *x* and *y* displacement of a particle in the *xy*-plane at any instant are given by $x = at^2$ and y = 2at, where *a* is a constant. The velocity of the particle at any instant is given by

(a)
$$4a\sqrt{t^2+4}$$
 (b) $2a\sqrt{t^2+1}$ (c) $4a\sqrt{t^2+1}$ (d) $\frac{a}{2}\sqrt{t^2+4}$

13. The acceleration of a particle, starting from rest, varies with time according to the relation $a = -s\omega^2 \sin \omega t$. The displacement of this particle at time *t* will be

(a) $s \sin \omega t$ (b) $s \omega \cos \omega t$ (c) $s \omega \sin \omega t$ (d) $-\frac{1}{2} (s \omega^2 \sin \omega t) t^2$

14. A particle moves along a straight line in such a way that its distance from a fixed point on the line, at any time t from the start, is given by the equation $s = 6 - 2t + 3t^3$. Its acceleration after 1 *second* of motion is (a) 12 (b) 16 (c) 18 (d) None of these

15. A particle moves in a straight line with a velocity given by $\frac{dx}{dt} = x + 1$. The time taken by the particle to traverse a distance of a particle in

distance of 99 *metres* is

(a)
$$\log_{10} e$$
 (b) $2\log_e 10$ (c) $2\log_{10} e$ (d) $\frac{1}{2}\log_{10} e$

- **16.** A passenger travels along the straight road for half the distance with velocity v_1 and the remaining half distance with velocity v_2 . The average velocity is given by
 - (a) $v_1 + v_2$ (b) $\frac{v_1 + v_2}{2}$ (c) $\frac{2v_1v_2}{v_1 + v_2}$ (d) $\sqrt{v_1v_2}$

17. If a particle moves along a straight line according to the law $s^2 = at^2 + 2bt + c$, then its acceleration is given by

(a)
$$\frac{a-v}{s}$$
 (b) $\frac{a-v^2}{s}$ (c) $\frac{a-v^2}{s^2}$ (d) $\frac{a-v}{s^2}$

18. If a particle has two velocities each equal to *u* in magnitude and their resultant is also of magnitude *u*, then the angle between the two velocities is

(a)
$$60^{\circ}$$
 (b) 30° (c) 90° (d) 120°

- **19.** If two velocities *u* and *v* are inclined at such an angle that the resultant of 2*u* and *v* inclined at the same angle is at right angle to *v*, then the resultant of *u* and *v* is of magnitude
 - (a) 2*u* (b) v (c) 2*v* (d) *u*

20. If a particle having simultaneous velocities 3 *m/sec.*, 5 *m/sec.* and 7 *m/sec.* at rest, then the angle between the first two velocities is

(a) 120° (b) 150° (c) 60° (d) 90°

- The greatest and least magnitudes of the resultants of two velocities of constant magnitudes are u and v21. respectively. If a particle has these velocities inclined at an angle 2α , then the resultant velocity is of magnitude (a) $\sqrt{u^2 \cos^2 \alpha + v^2 \sin^2 \alpha}$ (b) $\sqrt{u^2 \sin^2 \alpha + v^2 \cos^2 \alpha}$ (c) $\sqrt{u^2 \cos \alpha + v^2 \sin \alpha}$ (d) None of these A particle possesses simultaneously two velocities 10 m/sec. and 15 m/sec. in directions inclined at an angle of 60°, 22. then its resultant velocity is (b) $5\sqrt{19} \ m/\sec$ (c) 25 *m*/sec (a) 15 *m*/sec. (d) None of these A particle is moving with a velocity of 30 *m*/sec. The components of the velocity in *m*/sec at angle 30° and 45° 23. in opposite sides to its direction are (b) $30(\sqrt{3}-1), 15(\sqrt{6}-\sqrt{3})$ (c) $30(\sqrt{3}+1), 30(\sqrt{3}-1)$ (a) $\sqrt{3} - 1, \sqrt{3} + 1$ (d) None of these If *OP* makes 4 revolutions in one *second*, the angular velocity in radians per second is 24. (a) π (b) 2π (c) 4π (d) 8π A velocity $\frac{1}{4}m/s$ is resolved into two components along *OA* and *OB* making angles 30° and 45° respectively 25. with the given velocity, then the component along *OB* is [AIEEE 2004] (d) $\frac{1}{8}m/s$ (a) $\frac{1}{8}(\sqrt{6} - \sqrt{2})m/s$ (b) $\frac{1}{4}(\sqrt{3} - 1)m/s$ (c) $\frac{1}{4}m/s$ Advance Level
- **26.** Two straight railways converge to a level crossing at an angle α and two trains are moving towards the crossing with velocities *u* and *v*. If *a* and *b* are the initial distances of the trains from the crossing, the least distance between them will be after time *t* given by

(a)
$$\frac{(au+bv)+(av+bu)\cos\alpha}{u^2+v^2+2uv\cos\alpha}$$
 (b)
$$\frac{(au+bv)-(av+bu)\cos\alpha}{u^2+v^2-2uv\cos\alpha}$$
 (c)
$$\frac{(au+bv)-(av+bu)\cos\alpha}{u^2+v^2+2uv\cos\alpha}$$
 (d) None of these

27. A particles moves from rest, away from a fixed point *O*, with an acceleration $\frac{\mu}{x^2}$, where *x* is the distance of the

particle from O. If it is at rest, then its distance from O is b. The velocity when it is at a distance 2b from O is

(a)
$$\frac{\mu}{b}$$
 (b) $\frac{\mu}{b^2}$ (c) $\sqrt{\frac{\mu}{b^2}}$ (d) $\sqrt{\frac{\mu}{b}}$

28. The velocity v of a particle is at any time related to the distance travelled by the particle by the relation v = as + b, where a > 0 and $b \le a/2$. Which of the following statements will be true for this motion (Given s = 0 when t = 0)

(a) The displacement of the particle at time t is $s = \frac{b}{a}(e^{at} - 1)$ (b) The particle will

experience a retardation if b > 0

(c) The particle will be at rest at t=0 (d) The motion of the particle is under constant acceleration

29. A particle moving in a straight line is subject to a resistance which produces a retardation kv^3 , where v is the velocity and k is a constant. If u is the initial velocity of the particle, then

(a)
$$v = \frac{u}{1 + kxu}$$
 (b) $v = \frac{u}{1 + xu}$ (c) $v = \frac{ku}{1 + kxu}$ (d) $v = \frac{u}{1 - kxu}$

- **30.** A man rows directly across a flowing river in time t_1 and rows an equal distance down the stream in time t_2 . If *u* be the speed of the man in still water and *v* be that of the stream, then $t_1 : t_2 =$
 - (a) u+v:u-v (b) u-v:u+v (c) $\sqrt{u+v}:\sqrt{u-v}$ (d) $\sqrt{u-v}:\sqrt{u+v}$

Relative velocity

- **31.** Two trains, each 250 *m* long, are moving towards each other on parallel lines with velocities of 20 *km/hr* and 30 *km/hr* respectively. The time that elapses from the instant when they first meet until they have cleared each other is
- (a) 20 sec.
 (b) 36 sec.
 (c) 30 sec.
 (d) None of these
 32. A train A is moving towards east with a velocity of 30 km/hr and another train B is moving on parallel lines towards west with a velocity of 40 km/hr. The relative velocity of train A with respect to train B is
 (a) 10 km/hr
 (b) 70 km/hr towards east
 (c) 70 km/hr towards west(d) None of these
- **33.** Two scooterists P and Q are moving due north at 48 km/hr and 36 km/hr respectively. The velocity of P relative to Q is

(a) $12 \ km/hr$ due south (b) $12 \ km/hr$ due north (c) $84 \ km/hr$ due south (d) $84 \ km/hr$ due north **34.** If two particles, *A* and *B*, moves with speed *u* and 2u respectively in two straight lines inclined at an angle α ,

(a) $u\sqrt{5+4\cos\alpha}$ (b) $u\sqrt{5-4\cos\alpha}$ (c) $u\sqrt{4-5\cos\alpha}$ (d) $u\sqrt{4+5\cos\alpha}$

then the relative velocity of *B* with respect to *A* is

- **35.** A railway train, moving at the rate of 44 *m/sec*, is struck by a stone, moving horizontally and at right angles to the train with velocity of 33 *m/sec*. The magnitude and direction of the velocity with which the stone appears to meet the train is
 - (a) $50, \tan^{-1}\frac{3}{4}$ (b) $55, \tan^{-1}\left(\frac{-3}{4}\right)$ (c) $40, \cos^{-1}\frac{3}{4}$ (d) None of these
- **36.** To a boy cycling at the rate of 4 *km/hr* eastward, the wind seems to blow directly, from the north. But when he cycles at the rate of 7 *km/hr*, it seems to blow from north-east. The magnitude of the actual velocity of the wind is

(a)
$$5/\sqrt{2km/hr}$$
 (b) $5\sqrt{2km/hr}$ (c) $5km/hr$ (d) $5\frac{1}{2}km/hr$

37. If a particle *A* is moving along a straight line with velocity 3 m/sec and another particle *B* has a velocity 5 m/sec. at an angle of 60° to the path of *A*, then the velocity *B* relative to *A*

(a)
$$\sqrt{39} \text{ m/sec}$$
 (b) $\sqrt{19} \text{ m/sec}$ (c) 19 m/sec (d) None of these

38. A train *A* is moving towards east with a velocity of 30 km/h and another train *B* is moving on parallel lines towards west with a speed of 40 km/h. The velocity of train *A* relative to train *B* is

(a) 10 km/h
(b) 70 km/h towards east
(c) 70 km/h towards west
(d) None of these
39. A car is travelling at a velocity of 10 km/h on a straight road. The driver of the car throws a parcel with a velocity of 10√2 km/hr when the car is passing by a man standing on the side of the road. If the parcel is to reach the man, the direction of throw makes the following angle with the direction of the car

(a)
$$135^{\circ}$$
 (b) 45° (c) $\tan^{-1}(\sqrt{2})$ (d) $\tan^{-1}(1/\sqrt{2})$

- 40. A man wishes to cross a river to an exactly opposite point on the other bank, if he can swim with twice the velocity of the current, then the inclination to the current of the direction in which he should swim is
 (a) 90°
 (b) 120°
 (c) 150°
 (d) None of these
- 41. A ship is moving with velocity 12 *km/hr* in east direction and another ship is moving with velocity 16 *km/hr* in north direction. The relative velocity of second ship with respect to first ship will be

(a) 20 *km/hr* (b) 22 *km/hr* (c) 18 *km/h*

- **42.** A particle moves towards east from a point *A* to a point *B* at the rate of 4 km/h and then towards north from *B* to *C* at the rate of 5 km/h. If AB = 12 km and BC = 5 km, then its average speed for its journey from *A* to *C* and resultant average velocity direct from *A* to *C* are respectively
 - (a) $\frac{13}{9}$ km/h and $\frac{17}{9}$ km/h (b) $\frac{13}{4}$ km/h and $\frac{17}{4}$ km/h (c) $\frac{17}{9}$ km/h and $\frac{17}{9}$ km/h(d)

(d) $20\sqrt{2} \ km/h$

Advance Level

A person travelling towards the north-east, finds that the wind appears to blow from north, but when he 43. doubles his speed it seems to come from a direction inclined at an angle $\tan^{-1}\frac{1}{2}$ on the east of north. The true direction of the wind is towards

(a) North-east (b) North

(c) East (d) None of these A man is walking towards north with speed 4.5 km/hr. Another man is running towards west with speed 6 44. km/hr. The magnitude and direction of the relative velocity of the second with respect to first is

(a) 7.5 km/hr at an angle $\tan^{-1}\left(\frac{3}{4}\right)$ south of west (b) 7.5 km/hr at an angle $\tan^{-1}\left(\frac{3}{4}\right)$ west of south (c) 7.5 km/hr south-west (d) None of these

A man is swimming in a lake in a direction 30° east of north with a speed of 5 *km/hr* and a cyclist is going on 45. the road along the lake shore towards east at a speed of 10 km/hr. The direction of the swimmer relative to the cyclist is

(c) 60° west of north (a) 30° west of north (b) West-north (d) None of these

- Two cars A and B are moving uniformly on two straight roads at right angles to one another at 40 and 20 km/hr 46. respectively. A passes the intersection of the road when B has still to move 50 km to reach it. The shortest distance between the two cars and the time when they are closest are
 - (a) $20\sqrt{5}$ km, 30 minutes (b) 20 *km*, 10 *minutes* (c) 20 *km*, 20 *minutes* (d) None of these
- A man is tavelling in a train moving at the rate of $60\sqrt{3}$ km/hr and the rain is falling vertically at the rate of 60 47. *km/hr*. The magnitude and direction of the apparent velocity of the rain to the man sitting in the train

(a) 120 *km/hr*, making an angle of 60° with the motion of the train

- (b) 120 km/hr making an angle of 30° with the motion of the train
- (c) 120 km/hr making an angle of 45 ° with the motion of the train
- (d) None of these
- A person travelling towards eastwards at the rate of 4 km/hr. finds that the wind seems to blow directly from 48. the north. On doubling his speed it appears to come from north-east. The velocity and direction of the wind are

(a)
$$4\sqrt{2} km/hr$$
, 90° (b) $5\sqrt{2} km/hr$, 60° (c) $4\sqrt{2} km/hr$, 135° (d) None of these

A boat takes 10 *minutes* to cross a river in a straight line from a point A on the bank to a point B on the other 49. bank and 20 minutes to do the return journey. The current flows at the rate of 3 km/hr and the speed of the boat relative to the water is 6 *km/hr*. The width of the river and the down stream distance from A to B are

(a)
$$\frac{\sqrt{15}}{4}, \frac{3}{4}$$
 (b) $\frac{\sqrt{10}}{4}, \frac{1}{3}$ (c) $\sqrt{6}, \frac{1}{2}$ (d) None of these

If a moving particle has two equal velocities inclined at an angle 2α such that their resultant velocity is twice 50. as great as when they are inclined at an angle 2β , then

(c) $\cos \alpha = 3 \cos \beta$ (b) $\cos \beta = 2 \cos \alpha$ (a) $\cos \alpha = 2\cos \beta$ (d) $\cos \beta = 3 \cos \alpha$

The speed of a boat in a river is u m/sec and that of the current is v m/sec. The boat traverse a distance of d51. metres down the stream and then comes back to its original position. The average speed of the boat for to and fro journey is

(a)
$$\frac{u^2 - v^2}{u^2}$$
 (b) $\frac{u^2 - v^2}{v^2}$ (c) $\frac{u^2 - v^2}{u}$ (d) $\frac{u^2 - v^2}{v}$

A thief, when detected, jumps out of a running train at right angles to its direction with a velocity of 5 *m/min*. 52. If the velocity of the train is 36 km/hr, then the angle θ between the direction in which the thief falls and the direction of motion of the train is given by (a) $\tan^{-1}\left(\frac{5}{36}\right)$ (c) $\tan^{-1}\left(\frac{5}{120}\right)$ (b) $\tan^{-1}\left(\frac{1}{20}\right)$ (d) None of these A 30 *m* wide canal is flowing at the rate of 20 *m/min*. A man can swim at the rate of 25 *m/min*. in still water. 53. The time taken by him to cross the canal perpendicular to the flow is (a) 1.0 min (b) 1.5 min. (c) 2.0 min. (d) 2.5 min. A man crosses a 320 *m* wide river perpendicular to the current in 4 *minutes*. If in still water he can swim with a 54. speed 5/3 times that of the current, then the speed of the current in *m/min* is (a) 30 (b) 40 (c) 50 (d) 6 Rectilinear motion with acceleration **Basic Level** A body starts from rest with a uniform acceleration of $8m/\sec^2$. Then the time it will take in traversing the 55. second metre of its journey is (c) $\left(\frac{\sqrt{2}-1}{2}\right)$ sec (d) $\left(\frac{\sqrt{2}+1}{\sqrt{2}}\right)$ sec (b) $\frac{1}{2}$ sec (a) $\sqrt{2}$ sec A body starts from rest and moves with a uniform acceleration. The ratio of the distance covered in n^{th} sec to 56. the distance covered in *n* seconds is (c) $\frac{2}{n^2} - \frac{1}{n}$ (b) $\frac{1}{n^2} - \frac{1}{r}$ (d) $\frac{2}{n} + \frac{1}{n^2}$ (a) $\frac{2}{n} - \frac{1}{n^2}$ If a particle moves in a straight line with uniform acceleration, the distance traversed by it in consecutive 57. seconds are in (a) A.P. (b) G.P. (c) H.P. (d) None of these If a point moves with constant acceleration from A to B in the straight line AB has velocities u and v at A and B 58. respectively, then the velocity at C, the mid-point of AB is (c) $\sqrt{\frac{u^2 + v^2}{2}}$ (a) $\frac{u+v}{2}$ (b) $\sqrt{u^2 + v^2}$ (d) None of these A point is moving with uniform acceleration ; in the eleventh and fifteenth seconds from the commencement it 59. moves through 720 and 960 cm respectively. Its initial velocity, and the acceleration with which it moves are (d) None of these (a) 60, 40 (b) 70, 30 (c) 90,60 A particle is moving in a straight line with initial velocity u and uniform acceleration f. If the sum of the 60. distances travelled in t^{th} and $(t+1)^{\text{th}}$ seconds is 100 cm, then its velocity after t seconds, in cm/sec. is (a) 20 (b) 30 (c) 50 (d) 80 If the coordinates of a point moving with the constant acceleration be x_1, x_2, x_3 at the instants t_1, t_2, t_3 61. respectively, then $x_1(t_2 - t_3) + x_2(t_3 - t_1) + x_3(t_1 - t_2) =$ (a) $f(t_1-t_2)(t_2-t_3)(t_3-t_1)$ (b) $2f(t_1-t_2)(t_2-t_3)(t_3-t_1)$ (c) $\frac{f}{2}(t_1-t_2)(t_2-t_3)(t_3-t_1)$ (d) None of these A body is in motion along a straight line. As it crosses a fixed point, a stop watch is started. The body travels a 62. distance of 180 cm in the first three seconds and 220 cm in the next five seconds. The velocity of the body after 9 seconds is (a) 66 *cm/sec* (c) 36 cm/sec (b) 30 cm/sec (d) 45 cm/sec

- A body starts from rest and moves in a straight line with uniform acceleration F, the distances covered by it in 63. second, fourth and eighth seconds are (a) In arithmetic progression (b) In geometrical progression (c) In the ratio 1:3:764. A bullet of mass 0.006 kg travelling at 120 metres/sec penetrates deeply into a fixed target and is brought to
- rest in 0.01 sec. The distance through which it penetrates the target is (b) 6 cm (a) 3 *cm* (c) 30 cm (d) 60 cm A person travelling on a straight line moves with uniform velocity v_1 for some time and with uniform velocity 65.
- v_2 for the next equal time. The average velocity 'v' is given by

(a)
$$v = \frac{v_1 + v_2}{2}$$
 (b) $v = \sqrt{v_1 v_2}$ (c) $\frac{2}{v} = \frac{1}{v_1} + \frac{1}{v_2}$ (d) $\frac{1}{v} = \frac{1}{v_1} + \frac{1}{v_2}$

- A particle starts with a velocity of 200 *cm/sec* and moves in a straight line with a retardation of 10 *cm/sec*². 66. Then the time it takes to describe 1500 cm is (c) 10 sec (d) 30 sec
 - (b) 5 sec, 15 sec. (a) 10 sec, 30 sec

Advance Level

- For $\frac{1}{m}$ of the distance between two stations a train is uniformly accelerated and $\frac{1}{n}$ of the distance it is 67. uniformly retarded, it starts from rest at one station and comes to rest at the other. Then the ratio of its greatest velocity to its average velocity is
 - (b) $\left(\frac{1}{m} + \frac{1}{n}\right):1$ (c) $\frac{1}{m} + \frac{1}{n} + 1 : 1$ (d) m + n + 1 : mm(a) m+n+1:1

A train starts from station A with uniform acceleration f_1 for some distance and then goes with uniform retardation f_2 68. for some more distance to come to rest at *B*. If the distance between stations *A* and *B* is 4 km and the train takes 4 *minutes* to complete this journey, then $\frac{1}{f_1} + \frac{1}{f_2} =$

(a) 1 (b) 2 (c) 4 (d) None of these

- A bullet moving at 100 *m*/sec is fired into a wood-block in which it penetrates 50 cm. If the same bullet moving 69. with the same velocity were fired into a similar piece of wood but only 12.5 cm thick, then the velocity with which it emerges is
 - (b) $\frac{500}{\sqrt{3}}m/\sec$ (c) $500\sqrt{3}m / \sec$ (d) None of these (a) 500 m/sec
- A body traversed half the distance with velocity v_0 . The remaining part of the distance was covered with 70. velocity v_1 for half the time and with velocity v_2 for the other half of the time. The mean velocity of the body averaged over the whole time of motion is

(a)
$$\frac{v_0 + v_1 + v_2}{3}$$
 (b) $\frac{2v_0 + v_1 + v_2}{4}$ (c) $\frac{2v_0(v_1 + v_2)}{2v_0 + v_1 + v_2}$ (d) $\frac{v_0(v_1 + v_2)}{v_0 + v_1 + v_2}$

Two points move in the same straight line starting at the same moment from the same point in the same direction. 71. The first moves with constant velocity u and the second starts from rest with constant acceleration f. The distance between the two points will be maximum at time

(a)
$$t = \frac{2u}{f}$$
 (b) $t = \frac{u}{f}$ (c) $t = \frac{u}{2f}$ (d) $t = \frac{u^2}{f}$

A train starts from rest from a station with constant acceleration for 2 minutes and attains a constant speed. It 72. then runs for 11 minutes at this speed and retards uniformly during the next 3 minutes and stops at the next station which is 9 km off. The maximum speed (in km/hr) attained by the train is

A point moves from rest with constant acceleration. If it covered $\frac{9}{25}$ part of its total distance in its last second 73. of motion, then upto what time it travelled (b) $\frac{5}{9}$ second $6\frac{1}{3}$ second (c) (a) and (b) both are true (a) 5 second (d) Motion under gravity **Basic Level** If a particle is thrown vertically upwards with a velocity of *u* cm/sec under gravity, then the time for the particle 74. to come to earth again is [MNR 1995] (b) $\frac{2u}{g}$ sec (c) $\frac{u}{2g}$ sec (a) $\frac{u}{q}$ sec (d) None of these Two balls are projected at the same instant, from the same point with the same velocity, one vertically upwards 75. and other vertically downwards. If first takes t_1 sec and second takes t_2 sec to reach the ground, then $t_1t_2 =$ (c) $\frac{2h}{g}$ (a) $\frac{h}{q}$ (b) 2*gh* (d) gh 76. If a particle is projected vertically upwards and is at a height h after t_1 seconds and again after t_2 seconds, then h =[UPSEAT 1993, 1999] (d) $\frac{1}{2}gt_1t_2$ (b) $\sqrt{gt_1t_2}$ (c) $2gt_1t_2$ (a) gt_1t_2 From the top of a tower, 98 *m* high, a body is projected vertically upwards with a velocity of 39.2 *m*/sec. The 77. velocity with which it strikes the ground is (a) 58 *m*/sec (b) 60 m/sec (c) 58.8 m/sec (d) 55 *m*/sec If the acceleration of falling bodies on the moon is 1.6 m/sec^2 and t_1 and t_2 seconds are timings of free fall 78. from equal altitude above the moon's and earth's surface, then $t_1: t_2 =$ (a) $7:2\sqrt{2}$ (b) $2\sqrt{2}:7$ (c) $\sqrt{2}:7$ (d) 2:7 A house has multi-storeys. The lowest storey is 20 *ft* high. A stone which is dropped from the top of the house 79. passes the lowest storey in $\frac{1}{4}$ sec . The height of the house is (a) 100 ft (b) 110 *ft* (c) 110.25 *ft* (d) None of these Two bodies of different masses m_1 and m_2 are dropped from different heights h_1 and h_2 . The ratio of the times 80. taken by the two bodies to fall through these distances is (b) $\sqrt{h_1} : \sqrt{h_2}$ (a) $h_1: h_2$ (c) $h_1^2 : h_2^2$ (d) $h_2: h_1$ The time to slide down the chord through the highest point of a vertical circle is 81. (a) Variable (b) Constant (c) Dependent on the position of the chord (d) None of these 82. Two particles *A* and *B* are dropped from the height of 5 *m* and 20 *m* respectively. Then the ratio of time taken by A to that taken by B, to reach the ground is (a) 1:4 (b) 2:1 (c) 1:2 (d) 1:1 A body is projected upwards with a certain velocity, and it is found that when in its ascent, it is 29430 cm from 83. the ground it takes 4 seconds to return to the same point, again. The velocity of projection of the body is (b) 7848 cm/sec (c) 8000 cm/sec (a) 7000 *cm/sec* (d) None of these 84. A particle is projected from the top of tower 5 m high and at the same moment another particle is projected upward from the bottom of the tower with a speed of 10 m/s, meet at distance 'h' from the top of tower, then h (b) 2.5 m (d) None of these (a) 1.25 m (c) 3 m **Advance** Level

- **85.** If a body is projected vertically upwards with velocity u and t seconds after words another body is similarly projected with the same velocity, then the two bodies will meet after *T* seconds of the projection of the second body, where T =
 - (a) $\frac{u-gt}{2g}$ (b) $\frac{u-2gt}{2g}$ (c) $\frac{2u-gt}{g}$ (d) $\frac{2u-gt}{2g}$
- **86.** A stone falling from the top of a vertical tower described m metres, when another is let fall from a point n metres below the top. If the two stones fall from rest and reach the ground together, then the time taken by them to reach the ground is

(a)
$$\frac{n+m}{\sqrt{2gm}}$$
 (b) $\frac{n+m}{\sqrt{2gn}}$ (c) $\frac{n-m}{\sqrt{2gm}}$ (d) $\frac{m-n}{\sqrt{2gn}}$

87. Let $g_1 m / \sec^2$, $g_2 m / \sec^2$ be the accelerations due to gravity at two places *P* and *Q*. If a particle occupies *n* seconds less and acquires a velocity of *m* metre/sec more at place *P* than place *Q* in falling through the same distance, then m/n equals

(a)
$$g_1g_2$$
 (b) $\sqrt{\frac{g_1}{g_2}}$ (c) $\sqrt{\frac{g_2}{g_1}}$ (d) $\sqrt{g_1g_2}$

- 88. After a ball has been falling under gravity for 5 *seconds* it passes through a pane of glass and loses half of its velocity and now reaches the ground in one second. The height of the glass above the ground is
 (a) 2000 m
 (b) 2500 m
 (c) 2943 m
 (d) None of these
- 89. A tower is 61.25 *m* high. A rigid body is dropped from its top and at the same instant another body is thrown upwards from the bottom of the tower with such a velocity that they meet in the middle of the tower. The velocity of the projection of the second body is
 (a) 20 *m/sec*(b) 25 *m/sec*(c) 24.5 *m/sec*(d) None of these
- **90.** A particle is dropped from the top of a tower *h* metres high and at the same moment another particle is projected upwards from the bottom of the tower. If the two particles meet when the upper one has described

 $\left(\frac{1}{n}\right)^{h}$ of the distance, then the velocities when they meet are in the ratio

(b) 302 metre/sec.

- (a) 2:n-2 (b) (n-2):2 (c) (n+2):2 (d) 2:n+2
- **91.** A particle was dropped from the top of the tower of height *h* and at the same time another particle is thrown vertically upwards form the bottom of the tower with such a velocity that it can just reach the top of the tower. The two particles meet at a height

[UPSEAT 1998]

(a)
$$\frac{h}{2}$$
 (b) $\frac{3}{5}h$ (c) $\frac{3h}{4}$ (d) $\frac{h}{4}$

92. A stone is dropped from an aeroplane which is rising with acceleration f and t seconds after this another stone is dropped. The distance between the two stones at time T after the second stone is dropped is

(a)
$$\frac{1}{2}(g+f)(t+T)$$
 (b) $\frac{1}{2}(g+f)(t+2T)$ (c) $\frac{1}{2}(g+f)(2t+T)$ (d) $\frac{1}{2}(g-f)(t+2T)$

93. A stone is dropped slowly from the top of the wall and it reaches the surface of the water with the velocity 3924 *cm/sec*, if sound of splash is heard after $4\frac{109}{475}$ *seconds*, then the velocity of sound will be

(a) 312 metre/sec

(c) 321 *metre/sec* (d

(d) 342 metre/sec

Laws of motion, Apparent weight of a body on lift

Basic Level

A man on a lift ascending with an acceleration fm/\sec^2 throws a ball vertically upwards with a velocity of 94. vm/sec relative to the lift and catches it again in *t seconds*. The value of *t* is (a) $\frac{2v}{f-q}$ (d) $\frac{2v}{f+q}$ (b) $\frac{v}{f-q}$ (c) $\frac{v}{f+q}$ A body weighs most 95. [Roorkee 1994] (a) At the earth's surface(b) Above the earth's surface (c) Inside the earth (d) At the centre of the earth A dyne is the force which produces an acceleration of $1 cm / sec^2$ when acted on a mass of 96. (a) 1mg (b) 10 gm (c) 1gm (d) 1kg A balloon of mass *M* ascends with a uniform acceleration *f*. If a certain part of the balloon is detached in such a 97. way that the acceleration is doubled, then the mass of the detached portion is (c) $\frac{fM}{2f+g}$ (b) $\frac{fM}{f+2g}$ (a) $\frac{fM}{f+g}$ (d) $\frac{gM}{2f+g}$ In a rectilinear motion a particle of mass *m* changes its velocity from *u* to *v* in describing a distance *x*. If *F* is the 98. constant force which produces the changes, then F =(a) $\frac{1}{2}m(v^2 - u^2)$ (b) $\frac{1}{2x}m(v^2 - u^2)$ (c) $\frac{1}{2x}m(v^2 + u^2)$ (d) None of these A cricket ball of mass 200 gm moving with a velocity of 20 m/sec is brought to rest by a player in 0.1 sec. The 99. average force applied by the player is (c) 4×10^5 dynes (a) $4 \times 10^3 dvnes$ (d) 4×10^6 dynes (b) 4×10^4 dynes 100. A train whose mass is 16 metric tons, moves at the rate of 72 km/hr. After applying breaks it stops in 500 metre. What is the force exerted by breaks obtaining it to be uniform (a) 800 N (b) 1600 N (c) 3200 N (d) 6400 N **101.** A mass of 8 kg is rolled a grass with a velocity of 28 *m*/sec. If the resistance be $\left(\frac{1}{10}\right)^{m}$ of the weight, then the body comes to rest after travelling (a) 200 m (b) 400 m (c) 600 m (d) 800 m **102.** If a force F_1 acts on a mass of 10 kg and in one-fifth of a second produces in it a velocity of 2 m/sec and the other force F_2 acting on a mass of 625 kg in a minute produces in it a velocity of 18 km/hr, then $F_1: F_2$ (b) 48:25 (c) 24:5(d) 48:125 (a) 24 : 25 **103.** In a diving competition, the boards fixed at a height of 10 *m* above the water level. A competitor jumps from the board and dives to a depth of 5 m. If the mass of the competitor is 60 kg, then the resistance offered by the water is (a) 588 N (b) 1176 N (c) 1764 N (d) None of these **104.** A man weighing 60 kg jumps off a railway train running on horizontal rails at 20 km/h with a packet weighing 10 kg in his hand. The thrust of the packet on his hand is (a) 0 (b) 10 kg wt. (c) 50 kg wt. (d) 70 kg wt. 105. A hockey stick pushes a ball at rest for 0.01 sec with an average force of 50 N. If the ball weighs 0.2 kg, then the velocity of the ball just after being pushed is (c) 1.5 *m/sec* (a) 3.5 *m/sec* (b) 2.5 *m/sec* (d) 4.5 m/sec 106. A bullet of mass 10 gram fired into a wall with a velocity of 10 m/sec loses its velocity in penetrating through 5 *cm* into the wall. The average force exerted by the wall is (b) 10^6 dynes (a) $10^4 \, qm \, wt$ (c) $10^5 dynes$ (d) None of these 107. If body of mass M kg and at rest is acted upon by a constant force of W kg weight, then in seconds it moves through a distance of

(a) $\frac{gTW}{2M}$ metre (b) $\frac{gTW^2}{2M}$ metre (c) $\frac{g^2TW}{2M}$ metre (d) $\frac{gT^2W}{2M}$ metre

- 108. A train is moving with constant velocity. If the resistance of its motion is 10 lbs per ton (of mass) and the force exerted by the engine is 200 lbs wt, then the mass of engine is (a) 20 tons (b) 200 tons (c) 2000 tons (d) 2 tons
- 109. If the barrel of the gun is cut down 50 cm, then a bullet of 49 kilogram fire out with velocity 361 m/sec instead of 441 *m*/sec. The approximate thrust of gas on the bullet will be (a) 317.6 metric ton weight (b) 318.4 metric ton weight (c) 319.3 metric ton weight (d) 320.8 metric ton weight
- 110. A cart of 100 kg is free to move on smooth rails and a block of 20 kg is resting on it. Surface of contact between the cart and the block is smooth. A force of 60 Newton is applied to the cart. Acceleration of 20 kg, block in metres per second² is [UPSEAT 1993] (b) 0.6 (c) 0.5 (d) 0
 - (a) 3
- A man having mass 70 *kilogram* is standing in a lift which is moving with uniform acceleration of 25 *cm/sec*². 111. What will be the reaction of floor when lift coming down

- From the gun cartage of mass *M*, a fire arm of mass *m* with velocity *u* relative to gun cartage is fired. The real 112. velocities of fire arms and gun cartage will be respectively
 - $\frac{Mu}{M+m} = \frac{Mu}{M-u}$ (b) $\frac{Mu}{M+m} = \frac{mu}{M+m}$ (c) $\frac{M+m}{Mu} = \frac{M+m}{mu}$ (d) $\frac{M+m}{M-m} = \frac{M+m}{Mm}$
- 113. The shortest time from rest to rest in which a steady load of P tons can lift a weight of W tons through a vertical distance *h* feet is

(a)
$$\sqrt{\left(\frac{2h}{g}, \frac{P}{P-W}\right)}$$
 (b) $\sqrt{\left(\frac{2h}{g}, \frac{P}{P+W}\right)}$ (c) $\sqrt{\left(\frac{2h}{g}, \frac{P+W}{P-W}\right)}$ (d) None of these

- 114. A shot, whose mass is 400 kq, is discharged from a 80 metric ton gun with a velocity of 490 m/sec. The necessary force required to stop the gun after a recoil of 1.6 *m* is (b) 15 metric ton (a) 245/16 metric ton (c) 20 metric ton (d) None of these
- **115.** A rough plane is 100 ft long and is inclined to the horizon at an angle $\sin^{-1}(3/5)$, the coefficient of friction being 1/2, and a body slides down it from rest at the highest point, the velocity on reaching the bottom would be
 - (a) $16/\sqrt{5}$ ft/sec (b) 16 ft / sec(c) $16\sqrt{5} ft / sec$ (d) $16 / \sqrt{7} ft / sec$.
- **116.** A particle slide down a rough inclined plane whose inclination to the horizontal is 45^{*o*} and whose coefficient of friction is 3/4. The time of descending the distance $4\sqrt{8/5}$ *m* down the plane is (a) 0.8 sec (b) 1.2 sec (c) 1.4 sec (d) 1.62 sec
- 117. The times of ascent and descent of a particle projected along an inclined plane of inclination α are t_1 and t_2 respectively, the coefficient of friction is

(a)
$$\frac{t_2 - t_1}{t_2 + t_1} \tan \alpha$$
 (b) $\frac{t_2 + t_1}{t_2 - t_1} \tan \alpha$ (c) $\frac{t_2^2 - t_1^2}{t_2^2 + t_1^2} \tan \alpha$ (d) $\frac{t_2^2 + t_1^2}{t_2^2 - t_1^2} \tan \alpha$

Motion of two particles connected by a string

118. A pulley carrying a total load W hangs in a loop of a chord which passes over two fixed pulleys and has unequal weights P and Q freely suspended from the ends, each segment of the chord vertical. If W remains at rest, then W =

Basic Level

	(a) $\frac{PQ}{P+Q}$	(b) $\frac{2PQ}{P+Q}$	(c) $\frac{3PQ}{P+Q}$	(d) $\frac{4PQ}{P+Q}$
119.	Two particles of masse	s m_1 and m_2 are connected b	y a light inextensible strin	g m_2 is placed on a smooth
		string passes over a light pulle		
		n_2 is replaced by m_3 , then the a		
	are in	2		1. 2
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
120.	A light string passing ov	ver a light smooth pulley carries	s masses of 3 kg and 5 kg at	t its ends. If the string breaks
	after the masses have m	oved 9 <i>m</i> , then the 3 <i>kg</i> mass w	rill farther rise $(g = 10m / \sec^2)$	²)
	(a) 1.75 <i>m</i>	(b) 1.95 <i>m</i>	(c) 2.05 <i>m</i>	(d) 2.25 <i>m</i>
121.		s placed on a smooth table from com the end of table, then time		
	(a) $\sqrt{2}$ sec	(b) $\sqrt{3}$ sec	(c) 2 sec	(d) $\sqrt{5}$ sec
122.	Two bodies of mass 8 an	nd 10 gm is attached to a light r	ope which is passing over a	smooth pulley. If this system
	is given to a velocity $\frac{3}{16}$	$\frac{1}{5}gcm/\mathrm{sec}.$ then small body will	l move downwards and hea	avy body will move upwards
	then after what time the	ey will move in opposite direction	ons	
	(a) $\frac{25}{16}$ sec	(b) $\frac{23}{14}$ sec	(c) $\frac{27}{16}$ sec	(d) $\frac{81}{512}$ sec
123.	Two masses m_1 and m_2	are connected by a light inexte	ensible string and suspende	d over a smooth fixed pulley
	Then	[Roorkee 1994]		
	(a) Pressure on the pull		(b) Pressure on the pulley	$m = m_2 g$
	(c) Pressure $< (m_1 + m_2)g$		(d) Pressure > $(m_1 + m_2)g$	
124.		smooth pulley, on one side the f 5 <i>kg</i> . Then the tensions of the	-	3 and 4 <i>kg</i> respectively, and
	(a) 2, 3 <i>kg wt</i> .	(b) 5/2, 10/3 <i>kg wt</i> .	(c) 3, 4 <i>kg wt</i> .	(d) None of these
125.		is placed on a smooth table a a body of mass 10 <i>gram</i> . The con		passing over a light smooth
	(a) $2g/3$	(b) 3 g/2	(c) 2.5 q	(d) 0.5 q
126.	-	d to the pulley as shown in fig.,		
	(a) $\frac{g}{4}$	(b) $\frac{-g}{4}$ 3	(c) $\frac{g}{2}$	(d) $\frac{-g}{2}$
		Advance	Level	

- **127.** A light string passing over a light smooth pulley carries masses of 3 kg and 5 kg at its ends. If the string breaks after the masses have moved 9 m, how much further the 3 kg mass will rise (Take $g = 10 \text{ m/sec}^2$) (a) 1.75 m (b) 1.95 m (c) 2.05 m (d) 2.25 m
- **128.** A mass 2Q on a horizontal table, whose coefficient of friction is $\sqrt{3}$ is connected by a string with a mass 6Q which hangs over the edge of the table. Eight seconds after the commencement of the motion, the string breaks. The distance of the new position of equilibrium of 2Q from its initial position is

Dynamics 149 (a) 117.6 m (b) 120.4 m (c) 130.4 m (d) None of these **129.** A mass of 6 kg slides down a smooth inclined plane whose height is half its length, and draws another mass from rest over a distance 3 m in 5 sec along a smooth horizontal table which is level with the top of the plane over which the string passes, the mass on the table is (a) 86.5 kg (b) 96.5 kg (c) 106.5 kg (d) 116.5 kg **130.** Masses of 5 kg and 3 kg rest on two inclined planes each inclined at 30° to the horizontal and are connected by a string passing over the common vertex. After 2 second the mass of 5 kg. is removed. How far up the plane will the 3 kg. mass continue to move (a) 1.9/8 m(b) 2.9/8 m (c) 3.9/8 m(d) 4.9/8 mImpact of elastic ladies **Basic** Level **131.** Two equal perfectly elastic balls impinges directly, then after impact they (b) Interchange their velocities (a) Are at rest (c) Move with the same velocities Move with twice velocities (d) 132. A sphere impinges directly on an equal sphere at rest. If the coefficient of restitution is e, their velocities after the impact are as [UPSEAT 1999] (c) 1+e:1-e(d) 1-e:1+e(a) 1 : e (b) *e*:1 **133.** A ball is dropped from a height of 22.5 *metre* on a fixed horizontal plane. If e = 2/5, then it will stop rebounding after (a) 5 sec. (b) 6 sec. (c) 7 sec. (d) 8 sec. **134.** An elastic ball with coefficient of elasticity 1/2 is dropped from rest at a height *h* on a smooth floor. The total distance covered by the ball is (a) More than 2h (b) Less than 2h but more than (3/2)h(c) Less than (3/2)h but more that (4/3)h(d) Less then (4/3)h**135.** Hailstorm are observed to strike the surface of a frozen lake in a direction making an angle of 30° to the vertical and to rebound at an angle of 60° to the vertical. Assuming the contact to be smooth, the coefficient of [MNR 1986] restitution is (c) $1/\sqrt{3}$ (d) None of these (a) 1/3 (b) 2/3 **136.** Any heavy elastic ball falls from the ceiling of any room and after rebounding two times reaches the half of the height of ceiling. The coefficient of restitution is (b) $(0.50)^{1/3}$ (d) $(0.25)^{1/2}$ (c) $(0.50)^{1/4}$ (a) $(0.50)^{1/2}$ **137.** A ball of 1 kg moving with velocity 7 m/sec overtakes and collides with a ball of mass 2 kg moving with velocity 1 *m*/sec. in the same direction. If e = 3/4, the velocity of the lighter ball after impact is (b) $\frac{1}{2}$ *m*/sec (a) 120 *m/sec* (c) 1 *m/sec* (d) 0 *m/sec* **138.** A ball is dropped from a height of 25 *dm* above a fixed horizontal plane. If it rebounds to a height of 16 *dm*, then the coefficient of restitution is (a) 16/25 (b) 0.8 (c) 16 g/25 (d) 0.8 g Advance Level

- **139.** A ball falls from a height *h* upon a fixed horizontal plane, *e* is the coefficient of restitution, the whole distance described by the ball before it comes to rest is
 - (a) $\frac{1+e^2}{1-e^2}h$ (b) $\frac{1-e^2}{1+e^2}h$ (c) $\frac{1+e^2}{(1-e^2)h}$ (d) $\frac{1-e^2}{(1+e^2)h}$

140. A ball is thrown from a point at a distance c from a smooth vertical wall and against the wall and returns to the point of projection. If e as the coefficient of restitution, α the angle of projection, the time of flight of the ball is

(a) $\left[\frac{2(1-e)c}{eg}\tan\alpha\right]^{1/2}$ (b) $\left[\frac{2(1+e)c}{eg}\right]^{1/2}$	$\tan \alpha \bigg]^{1/2}$ (c) $2(1+e)c \tan \alpha$	(d) None of these
---	--	-------------------

141. A ball of mass 8 kg and moving with velocity 4 m/sec collides with another ball of mass 10 kg moving with velocity 2 m/sec in the same direction. If the coefficient of restitution is 1/2, the velocities (in m/sec) of the balls after impact are [MNR 1983] (a) 0, 0 (b) 7/3, 10/3 (c) 2/3, 5/3 (d) 2, 2

142. Three balls of masses m_1 , m_2 , m_3 are lying in straight line. The first ball is moved with a certain velocity so that it strikes the second ball directly, then the second ball collides with the third. If the coefficient of elasticity for each ball is *e* and after impact first ball comes to rest, while after second impact the second ball comes to rest. Then m_1, m_2, m_3 are in

(d) None of these (a) A.P., (b) G.P. (c) H.P. 143. A sphere impings directly on an equal sphere which is at rest. Then the original kinetic energy lost is equal $\frac{1-e^2}{2}$ (c) $\frac{1-e^2}{2}$ times the initial

(a) $\frac{1+e^2}{2}$ times the initial K.E.(b) (d) None of these K.E.

Projectile motion **Basic Level**

144. A particle is projected with velocity $2\sqrt{2g}$ so that it just clears two walls of equal height 2 *metre*, which are at a distance of 4 metre from each other. What is the time of passing from one wall to another (a) $\sqrt{(2/g)}$ (b) $\sqrt{(2g)}$ (c) $2\sqrt{(2/g)}$ (d) $\sqrt{(g/2)}$ **145.** A particle is thrown over a triangle from one end of horizontal base. If α, β are the base angles and θ the angle of projection, then (a) $\tan \theta = \tan \alpha - \tan \beta$ (b) $\tan \theta = \tan \beta - \tan \alpha$ (c) $\tan \theta = \tan \alpha + \tan \beta$ (d) None of these 146. A particle is projected down an inclined plane with a velocity of 21 m/sec at an angle of 60° with the horizontal. Its range on the inclined plane, inclined at an angle of 30° with the horizontal is (a) 21 *dm* (b) 2.1 dm (c) 30 dm (d) 6 dm 147. If you want to kick a football to the maximum distance the angle at which it should be kicked is (assuming no resistance) [MNR 1981, 95] (a) 45° **(b)** 90° (c) 30° (d) 60° 148. The path of projectile in vacuum is a [MNR 1971; UPSEAT 1998]

(c) Ellipse (a) Straight line (b) Circle (d) Parabola **149.** A particle is projected under gravity $(g = 9.81 m / sec^2)$ with a velocity of 29.43 m / sec at an elevation of 30°. The time of flight in seconds to a height of 9.81 m are (a) 5, 1, 5 (b) 1, 2 (c) 1, 5, 2 (d) 2, 3

150. From the top of a tower of height 100 m, a ball is projected with a velocity of 10 m/sec. It takes 5 seconds to reach the ground. If $g = 10m / \sec^2$, then the angle of projection is (a) 30° (d) 90° (b) 45° (c) 60°

151. A particle is projected with initial velocity u making an angle α with the horizontal, its time of flight will be given by

[MNR 1979; UPSEAT 1998]

				Dynamics 151
	(a) $\frac{2u\sin\alpha}{g}$	(b) $\frac{2u^2 \sin \alpha}{g}$	(c) $\frac{u\sin\alpha}{g}$	(d) $\frac{u^2 \sin \alpha}{g}$
152.		for a body projected vertice angle of 60° with the vertice		ec. If the body is projected in a ill be
	(a) 11.2 <i>km/sec</i>	(b) $5.6\sqrt{3}$ km/sec	(c) 5.6 <i>km/sec</i>	(d) None of these
153.	1 1 5	d with the speed of $10\sqrt{5}m/s$ aches the height of 10 <i>m</i> is (<i>g</i>	Ũ	the horizontal. The velocity of the
	(a) $4\sqrt{(19)} m / \sec(19)$	(b) $\sqrt{(179)} m / \sec(179)$	(c) $15 m / sec$	(d) $5\sqrt{(15)} m / \sec(15)$
154.	_	l of height 150 <i>m</i> , a ball is pr e of projection of the ball is	ojected with a velocity of 10	<i>m/sec.</i> It takes 6 <i>second</i> to react
	(a) 15°	(b) 30°	(c) 45°	(d) 60 °
155.		-		80 <i>m/sec.</i> at an elevation of 30° point where it hits the ground is
	(a) 595.3 m	(b) 695.3 m	(c) 795.3 m	(d) 895.3 m
156.	angle to the direction	of projection after the time	-	e horizontal. It will move at righ
57	(a) 8 sec Let R and R respec	(b) 5 <i>sec</i> ctively be the maximum rang	(c) 6 sec	(d) 10 sec
57.		tal plane. Then R_1, R, R_2 are in		
	(a) Arithmetic-Geom	etric progression (A.G.P.)	(b) A.P.	
58	(c) G.P. If t and t are the	times of flight of two part	(d) H.P.	al velocity u and range R on th
	horizontal, then $t_1^2 + t_1^2$		teres having the same mitt	a verocity a and range it on th
	(a) 1	(b) $4u^2/g^2$	(c) $u^2/2g$	(d) u^2/g
59.	(a) 9.8 <i>metre</i>	(b) 4.9 metre		<i>nd</i> . The horizontal range will be (d) $9.8\sqrt{2}$ metre
1 60.	Two balls are proje		same point in directions i	inclined at 60° and 30° to th
	(a) $\sqrt{3}:1$	(b) $1:\sqrt{3}$	(c) 1:1	(d) 1:2
61.	If a projectile having angle of projection an		lires a maximum height of 8	3, then its initial velocity and th
				[Roorkee Screeninig 1990
	-		(c) $5\sqrt{g}, \sin^{-1}(0.8)$	
62.	The range of a project then the range will be	_	is 50 <i>m</i> , if it is fixed with th	ne same speed at an angle of 45°
	(a) 50 m	(b) 100 m	(c) 150 m	[UPSEAT 2002 (d) None of these
63.				when it becomes perpendicular t
				[UPSEAT 2002
			(c) $\frac{u\sqrt{3}}{q}$	

164. *AB* is the vertical diameter of a circle in a vertical plane. Another diameter *CD* makes an angle of 60° with *AB*, then the ratio of the time taken by a particle to slide along *AB* to the time taken by it to slide along *CD* is

152	2 Dynamics											
	(a) 1:1	(b) $\sqrt{2}:1$	(c) $1:\sqrt{2}$	(d) $3^{1/4}: 2^{1/2}$								
5.			e of inclination 60° along the lipotity of projection is $(g = 9.8m / s_{\odot})$									
6	(a) 9.8 m/s	(b) 10 m/s	(c) 16.97 <i>m/s</i> tical so that its range is half of :	(d) 19.6 m/s								
0.	(a) 60°	(b) 75°	(c) 30°	(d) 22.5°								
			vance Level									
7.	-	of an enemy's position on tile must not be less than	a hill <i>h</i> feet high is β . Show the	nat is order to shell if the init								
	(a) $[gh(1 + \sin \beta)]^{1/2}$		(c) $[gh(1 + \csc \beta)]^{1/2}$	(d) $[gh(1 - cosec \beta)]^{1/2}$								
8.	_	test range up an inclined p freely during the correspon	lane through the point of proje ding time of flight is	ection and the distance throu								
	(a) 2	(b) $\frac{1}{2}$	(c) 1	(d) 3								
э.	A stone is projected s it rises are	o that its horizontal range i	s maximum and equal to 80 <i>ft</i> .	Its time of flight and the hei								
	(a) $\sqrt{3}$, 1	(b) $\sqrt{4}$, 15	(c) $\sqrt{5}, 20$	(d) None of these								
) .	• The velocity and direction of projection of a shot which passes in horizontal direction just over the top of a which is 50 yds. away and 75 feet high											
	(a) 40,30°	(b) $40\sqrt{6}, 45^{\circ}$	(c) 50,60°	(d) None of these								
1.	A shot fired from a gu The velocity and direc	-	et high hits the ground at a dist	ance of 4352 feet in 17 secor								
	(a) 256, 30°	(b) $256\sqrt{2}, 45^{\circ}$	(c) 180,60°	(d) None of these								
2.		slipping down on smooth plane, then the inclination	inclined plane is twice to the of plane will be	time taken in falling from								
	(a) 45°	(b) 60°	(c) 75°	(d) 30°								
				Work power and Energ								
		Ba	asic Level									
3.	weights 3.75 kg, the h	orse power at which he is w		-								
4	(a) 0.0325	(b) 0.325	(c) 3.25 hour through a distance of 110	(d) None of these								
ŧ۰	-		oefficient of friction being $1/$									
	•	his work will be done is	Ŭ									
	(a) 6	(b) 8	(C) 10	(d) 20								
5.		ojected upwards with such body at the time of projection	a velocity that it can reach th on is	he height 196 <i>metres</i> only. 7								
-	(a) = a a a	(b) 5762.4 <i>Joule</i>	(c) 6000 Joule	(d) None of these								
-	(a) 5000 Joule											
-	A bullet of 125 grams	-	elocity of 400 <i>metres per secon</i> velocity of the target after imp									

177.	77. A bullet is shot with a velocity of 600 <i>m/sec</i> into a target weighing 12 kg and is free to move with a velocity 1 <i>m/sec</i> after impact. Then the percentage loss of kinetic energy in the impact is										
	(a) 79.75 %	(b) 89.75 %	(c) 99.75 %	(d) None of these							
178.	-	ng on ice with a speed of ether move with a velocity w	-	10 kg block is dropped onto it							
	(a) 3	(b) $\sqrt{(15)}$	(c) 5	(d) Indeterminate							
179.		-	• •	ec and rebounds with the same rce exerted by the surface on the							
	(a) 0.1	(b) 1.0	(c) 5.0	(d) 10.0							
		Adva	nce Level								
180.	the brick reach the mi			he bricks in such a manner that such that bricks just reach the							
	(a) 1/3	(b) 1/4	(c) 1/5	(d) 1/6							
181.		kg falls vertically through 1 ne ground. The resistance of	-	of mass 100 <i>gm</i> and drives it a							
	(a) 3441/210 <i>kg wt</i>	(b) 4441/210 <i>kg wt</i>	(c) 5441/210 kg wt	(d) None of these							
182.	=	netrates a thickness a of a p bullet will penetrate is	late of mass M at rest. If this	s plate is free to move, then the							
	(a) $Ma/(m+M)$	(b) $ma / (m + M)$	(c) $(M-m)a/(m+M)$	(d) None of these							
183.	A glass marble, whose	mass is $(1/10)kg$ falls from a	a height of 2.5 m and rebound	ds to a height of 1.6 <i>m</i> . Then the							
	average force between second, is	the marble and the floor, if	the time during which they	are in contact be one-tenth of a							
	(a) 10.58 <i>N</i>	(b) 11.58 <i>N</i>	(c) 12.58 <i>N</i>	(d) 13.58 <i>N</i>							
184.	A fire engine lifts 50 <i>k</i> The horse power of eng		r minutes and throws it out v	with the velocity of 19.62 <i>m/sec</i> .							
	(a) 0.12	(b) 0.24	(c) 0.36	(d) 0.48							

* * *

Assignment (Basic and Advance Level)

Dvnamics

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	С	b	b	b	b	С	С	а	d	d	b	а	С	b	С	b	d	d	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
а	b	b	d	а	С	d	а	а	С	b	b	b	b	b	С	b	b	а	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
а	d	C	а	C	а	b	С	а	а	C	b	C	d	С	а	а	C	C	С
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
С	b	d	d	а	а	С	b	С	С	b	С	а	b	С	d	С	b	С	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
b	С	b	а	d	С	d	С	d	b	С	b	d	d	а	b	С	b	d	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	b	С	а	b	b	d	а	d	С	а	b	а	а	С	d	С	d	b	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
d	С	С	b	а	b	d	а	d	d	b	d	а	b	а	С	d	b	а	b
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160

152

b	b	C	С	C	d	а	d	b	а	а	С	а	b	C	а	d	b	а	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
С	b	d	С	С	b	С	С	С	b	b	d	а	b	b	а	С	а	d	С
181	182	183	184																
b	а	d	b																

Indices and Surds 153