WORK, POWER & ENERGY
SYNOPSIS
WODK

- Work is done by a force when it acts on a body and displaces it such that the displacement has a component in the direction of the force.
- When a constant force 'F' acts on a body and produces in it a displacement 's' in a direction making an angle 'θ', then the work done W = F

s cos θ . In vector notation, $W = \overline{F} \cdot \overline{s}$. Thus work is a scalar.

• When the angle θ between the force and displacement is 0°, then W = F s. The work done is maximum.

When the angle θ between the force and displacement is 90°, then W = 0. The work done is zero

When the angle θ between the force and displacement is 180°, then W = -F s. The work done is negative.

When θ is acute, the work done by the force is positive and if θ is obtuse, the work done by the force is negative.

- •SI unit of work is *joule* (J), CGS unit of work is *erg*. 1 *joule* = 10^7 *erg*. The dimensional formula of work is [M L² T⁻²]. Other units of work are i) Calorie = 4.2 J
 - Electron volt (eV) = 1.6×10^{-19} J
- Kilowatt hour (kWh) = 3.6 × 10⁶ J.
 When a body moves in a circular path under the action of a centripetal force, such as an artificial satellite orbiting the Earth, the work done by the centripetal force is *zero* as the force is always perpendicular to the direction of motion.
- If a force linearly changes (*either increasing or decreasing*) from F₁ to F₂ over a displacement 's', the work done is

calculated by the formula $W = \left(\frac{F_1 + F_2}{2}\right)s$.

 When force is varying irregularly, a graph is drawn between the displacement 's' on X-axis and the force 'F' on the Y-axis.
 Work done = area under F - s graph.

Work done in compressing or expanding a spring: $W = \frac{1}{2} K x^2$ where 'K' is the force constant of the spring and 'x' is the extension or compression.

Work done in changing the elongation of a spring

from x_1 to x_2 is W = $\frac{1}{2}$ K($x_2^2 - x_1^2$)

- Work done in lifting an object of finite dimensions: W = m g h, where 'm' is the mass of the object, 'g' is acceleration due to gravity and 'h' is the height through which the centre of mass of the body rises.
- Work done in pulling the bob of a simple pendulum of length '1 ' through an angle ' θ ' is given by $W = mgl(1 - \cos\theta)$, where 'm' is the mass of the bob, g is the acceleration due to gravity.
- Work done in giving or imparting a velocity 'v' to a body of mass 'm' is $W = \frac{1}{2} mv^2$.
- When the body moves on a rough horizontal surface, the force of friction is μmg . If 's' is the displacement, work done against friction $W = \mu mgs$. This work is converted into heat. The calories produced = $\mu mgs/J$, where J = 4.2 joule/calorie.

POWER

Time rate of doing work or spending energy is called power.

 $Power = \frac{Work \text{ done or energy spent}}{Time \text{ taken}} \text{. If}$

'W' work is done in a time interval 't', the

average power P is calculated by $P = \frac{W}{t}$.

Power is a scalar.

- SI unit of power is watt (W). CGS unit of power is erg s⁻¹. Dimensional formula of power [M L² T⁻³]. Other units of power are kilo watt (kW) and horse power. One horse power (H.P.) = 746 W.
- Instantaneous power: If ΔW is the work done in a time Δt , the instantaneous power,

$$P = \underset{\Delta t \to 0}{\text{Lt}} \left(\frac{\Delta W}{\Delta t} \right) = \frac{dW}{dt}.$$
 It is also calculated

by $P = F v \cos \theta$ or $P = \overline{F} \cdot \overline{v}$

The power of a machine gun firing 'n' bullets each of mass 'm' with a velocity 'v' in a time

interval 't' is given by $P = \frac{mnv^2}{2t}$

JR. PHYSICS

•

•

If a motor pump set lifts water of mass 'm' over Potential energy of a compressed or elongated spring: If a spring of force constant 'K' is a head or height of 'h' in a time of 't', its output compressed or elongated over a distance 'x', power $P = \frac{mgh}{t}$. If 'η' is the efficiency of the the potential energy stored is $U = \frac{1}{2}Kx^2$. motor pump set, the input power $P_i = \frac{mgh}{tn}$. Gravitational potential energy of a two body system $U = -\frac{Gm_1m_2}{r}$. 18. When sand falls at the rate of $\frac{dm}{dt}$ on to a Energy possessed by a body by virtue of motion is called kinetic energy. It is measured through conveyor belt moving with a uniform velocity 'v', the amount of work the body can do before the additional force required to keep the belt coming to rest. A body of mass 'm' moving with moving with the same velocity 'v' is given by a velocity 'v' has kinetic energy $K = \frac{1}{2}mv^2$. $F = v \frac{dm}{dt}$. The additional power required is • Kinetic energy in terms of linear momentum 'p' given by $P = v^2 \frac{dm}{dt}$. is given by $K = \frac{1}{2}pv$ and $K = \frac{p^2}{2m}$ When a liquid of density 'd' is coming out of a When two bodies have the same kinetic energy, • hose pipe of area of cross section 'A' with a the lighter body has less momentum. On the other velocity 'v' and strikes normally a wall and stops hand when two bodies have the same momentum, dead, then the force exerted by the liquid on the the lighter body will have more kinetic energy. wall is $F = d A v^2$, and the power exerted by the A body cannot have kinetic energy without liquid is $P = d A v^3$. momentum and cannot have momentum without If a block of mass 'm' moves on a rough kinetic energy. horizontal surface (coefficient of friction μ) with Rest energy: Every body possesses a certain constant velocity 'v', the force required $F = \mu mg$ inherent amount of energy by virtue of its mass and the power required $P = \mu mgv$. called rest energy even if it is not moving (so that KE = 0) and is not being acted on by a **ENERGY** force (so that PE = 0). The rest energy is given Energy is ability or capacity to do work. Energy by $E = mc^2$ is something that can be converted to work. WORK ENERGY THEOREMS When a body or system possesses energy, it is Work-energy theorem: Work done by the capable of doing work. resultant force on a body is equal to the change Energy is a scalar. Energy has the same units and in its kinetic energy. F s = W = $\frac{1}{2}$ mv² - $\frac{1}{2}$ mu² dimensions as work. Kilo Watt Hour (kWh) is a or W = $K_f - K_i$. special unit of energy. 1 kWh = 3.6×10^6 J. Work done by the resultant force acting on a Energy has many forms, such as mechanical, body is equal to the change in its potential energy. thermal, chemical, electrical etc., $F s = W = U_{f} - U_{j}$. Potential energy: Energy possessed by a body • In a more general case the work done on a body or system by virtue of the relative positions of its by the resultant force is equal to increase in its parts or by virtue of its position in a force field. total mechanical energy (which includes both Ex. Water stored at a height, compressed spring. kinetic and potential energies). Gravitational potential energy of a body of mass $F s = W = E_f - E_i$, where E_i and E_f are the 'm' at a height 'h' above the ground is given by initial and final total mechanical energies. $[O h \le R, \text{ the radius of Earth}].$ This is to be used only when 'h' is very small LAW OF CONSERVATION OF ENERGY compared to the radius of earth (R). Energy can neither be created nor destroyed. For large heights comparable to radius of earth, The total energy of a system remains constant. However, energy may be transformed from one

 $U = \frac{mgRh}{R+h}$. For infinite height, U = mgR.

U = mgh

form to another form in a system.

•	In the case of a freely falling body the potential	2	A man pushes a wall and fails to displace it. He
·	energy starts decreasing and kinetic energy starts	2.	Anec
	the gum of		1) pegative work
	increasing. At any point on the path, the sum of		2) nositive but not maximum work
	potential and kinetic energies remains constant		2) positive out not maximum work 2) $-\frac{1}{2}$ (1) no work at all
	and equal to the initial potential energy.	2	3) maximum work 4) no work at an
•	In the case of a body projected vertically upward	3.	A bucket full of water is drawn up by a
	from the ground, the kinetic energy starts		person. In this case the work done by the
	decreasing and the potential energy starts		gravitational force is
	increasing. At any point on the path, the sum of		1) negative because the force and
	notential and kinetic energies remains constant		displacement are in opposite directions
	and equal to initial kinetic energy		2) positive because the force and
	In the absence of non-concernative forces like		displacement are in the same direction
*	In the absence of non-conservative forces inc		3) negative because the force and
	friction, air resistance etc., the loss of potential		displacement are in the same direction
	energy will always be equal to the gain of kinetic		4) positive because the force and displacement
	energy or the loss of kinetic energy will always		are in opposite directions
	be equal to the gain of potential energy.	4.	A man is rowing a boat upstream and in spite
•	In the case of a body thrown slantwise from the	••	of that the boat is found to be not moving with
	ground, the potential energy first		respect to the bank. The work done by the
	increases and then decreases, while the kinetic		man is
	energy first decreases and then increases. When		1) zero 2) nositive
	the body is at the highest point of the path the		$\frac{1}{2} \frac{1}{2} \frac{1}$
	the body is at the ingliest point of the path are	5	$\frac{5)}{10} \frac{1}{10} $
	$I_{I} = \frac{1}{2}mu^{2}\sin^{2}\theta$ and kinetic	5.	A Dall is unown venucany up wards norm and
	potential energy $0^{-1} - \frac{1}{2}ma$ sin 0^{-1} and kinetic		ground. Kegarding the work done by all $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $
	4		resistance, which of the following is correct?
	energy $K = \frac{1}{2}mu^2\cos^2\theta$ The total		1) work done is positive during the ascent and
	2^{2}		negative during the descent
	mechanical energy at any point on the parabolic		2) work done is positive during the ascent and
	1		positive during the descent
	nath is $\frac{1}{mu^2}$.		3) work done is negative during the ascent and
	2		positive during the descent
•	In the case of a simple pendulum, released from		4) work done is negative during the ascent and
	the position when the string is horizontal, its		negative during the descent
	velocity when it makes an angle θ with the vertical	6.	An agent is moving a positively charged body
	$\frac{1}{\sqrt{2}}$		towards another fixed positive charge. The
	is $v = \sqrt{2g} \cos \theta$ and the velocity of the bod		work done by the agent is
	at the lowest position is $y = \sqrt{2} \frac{1}{2}$		1) positive 2) negative
	at the lowest position is $v = \sqrt{2g_1}$.		3) zero 4) may be positive or negative
		7.	If U represents potential energy of a system,
	CONCEPTUAL QUESTIONS	-	then dU/dx represents
1.	In which of the following, the work done by		1) power 2) force 3) momentum 4) work
	the mentioned force is negative? The work	8	A shell explodes into two fragments of unequal
	done by	0.	masses then the two fragments will have
	1) the tension of the cable while the lift is		1) unequal speeds and equal kinetic energies
	accending		2) equal speeds and unequal kinetic energies
	2) the gravitational force when a body slides		2) upgual speeds and upgual kinetic
	2) the gravitational force when a body shaes		s) unequal specus and unequal knews
	2) de service d'harres in resintaining uniform		chergies
	3) the applied force in maintaining uniform	0	4) equal speeds and equal kinetic energies.
	motion of a block on a rough horizontal	9.	A curve is drawn expressing the kinetic energy
	surface		of a particle as a function of the distance traversed
	4) the gravitational force when a body is		(on X-axis). The slope of this curve represents
	thrown up		the instantaneous
			1) velocity 2) acceleration 3) force 4) power

10.	When the momentum of a body is doubled, the	18.	A particle is projected vertically upwards. Then,
	kinetic energy is		as it ascends, its
	1) doubled 2) halved		1) kinetic energy decreases uniformly with time
	3) increases four times 4) increases three times		2) velocity decreases uniformly with height
11.	A shell is rolling on a horizontal surface. Suddenly		3) potential energy increases uniformly with time
	it explodes. Neglecting the frictional forces its total		4) velocity decreases uniformly with time
	1) momentum increases, kinetic energy increases	19.	For a body with potential energy 'U', kinetic energy
	2) momentum decreases, kinetic energy		'T' and total mechanical energy 'E', the condition
	increases		for motion (to attain a non-zero speed) is
	3) momentum remains constant, kinetic energy		1) $E > U$ 2) $E < U$ 3) $E = U$ 4) $E < T$
	increases	20.	For a body thrown vertically upwards, its
	4) momentum remains constant, kinetic energy		direction of motion changes at the point where
	decreases		its total mechanical energy is
12.	For the same kinetic energy, the momentum shall		1) greater than the potential energy
	be maximum for which of the following particle?		2) less than the potential energy
	1) electron 2) proton		3) equal to the potential energy
	3) deuteron 4) alpha particle		4) zero
	13. A cricket ball and a ping-pong ball are	21.	The change in kinetic energy per unit 'space'
	dropped from the same height in a vacuum		(distance) is equal to
	chamber from same height. When they have		1) power 2) momentum
	fallen half way down, they have the same		3) force 4) pressure
	1) velocity 2) potential energy	22.	The product of linear momentum and velocity of
1.4	3) kinetic energy 4) rest energy		a body represents
14.	A cyclist free-wheels from the top of a hill,		1) half of the kinetic energy of the body
	gathers speed going down the hill, applies his		2) kinetic energy of the body
	brakes and eventually comes to rest at the		3) twice of the kinetic energy of the body
	bottom of the hill. Which one of the following	22	4) mass of the body
	1) Detential to lying the bast on any	23.	I he change in gravitational potential energy per
	2) Vinctic to notantial to heat energy		1) mass
	2) Chamical to heat to notantial anarray		2) linear momentum (1) weight
	4) Kinetic to heat to chemical energy	24	A particle starting from rest moves along a straight
15	If the momentum of a particle is plotted on	27.	line with uniform acceleration. Its kinetic energy
15.	X-axis and its kinetic energy on the Y-axis the		is 'K' when its displacement is 's' A graph is
	oranh is a		drawn between 'K' (on Y-axis) and 's' (on X-
	1) straight line 2) parabola		axis) The shape of the graph is
	3) rectangular hyperbola 4) circle		1) straight line not passing through the origin
16.	If 'E' represents total mechanical energy of a		2) parabola
101	system while 'U' represents the potential energy.		3) straight line passing through the origin
	then E–U is		4) rectangular hyperbola
	1) always zero 2) always less than zero		KEY
	3) always greater than zero		1) 4 2) 4 3) 1 4) 2 5) 4
	4) either positive or negative		6) 1 7) 2 8) 3 9) 3 10) 3
17.	When two identical balls are moving with equal		11) 3 12) 4 13) 1 14) 1 15) 2
	speeds in opposite direction, which of the		16) 3 17) 3 18) 4 19) 1 20) 3
	following is true? For the system of two bodies		21) 5 22) 5 23) 4 24) 3
	1) momentum is zero, kinetic energy is zero	1	LEVEL-I A staircase has 40 stars each of width 35 cm
	2) momentum is not zero, kinetic energy is zero	1.	and height 25 cm. A hov of mass 20 kg ascends
	3) momentum is zero, kinetic energy not zero		the staircase. The work done by him is
	4) momentum is not zero, kinetic energy is not		(takeg = 10 m s ⁻²)
	zero		1) 2×10^5 J 2) 4.8×10^3 J
			3) 2×10^3 J 4) 4.8×10^5 J

2.	A body of mass 5 kg is moved up over 10 m	
	along the line of greatest slope of a smooth	
	inclined plane of inclination of 30° with the	
	horizontal. If $g = 10 \text{ m/s}^2$, the work done will	13.
	be	
	1) 500 J 2) 250 \(3 J 3) 250 J 4) 250 \(\3 J 3)	
3.	Work done by the gravitational force on a body	
	of mass "m" moving on a smooth horizontal	
	surface through a distance 's' is	
	1) mgs 2) $-$ mgs 3) 0 4) 2 mgs	
4.	A body of mass 1 kg is made to travel with a	14.
	uniform acceleration of 30 cm/s ² over a distance	
	of 2 m, the work done is $1 \ge 6 \le 1 \le 2 \le 1 \le 1 \le 2 \le 1 \le 1 \le 2 \le 1 \le 1$	
~	1) 6 J 2) 60 J 3) 0.6 J 4) 0.3 J	
5.	A weight lifter jerks 220 kg vertically through	
	1.5 meters and holds still at that height for two	
	minutes. The works done by him in lifting and in	
	notating it still are respectively $(1) 2201 2201 = 2) 2224 1 0$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6	3) 2334 J, 10 J 4) 0, 3234 J A uniform ordinal of radius (r) longth (I) and	
0.	mass 'm' is lying on the ground with the curred	
	surface touching the ground. If it is to be oriented	
	on the ground with the flat circular end in contact	15
	with the ground the work to be done is	13.
	1) mg[(I /2)_r] 2) mI [($g/2$)_r]	
	$\frac{1}{3} mr(qL - 1) $ (g/2) 1] 2) mL[(g/2) 1] 3) mr(qL - 1) 4) mqL r	
7	A bicycle chain of length 1.6 m and of mass 1 kg	
<i>,</i> .	is lying on a horizontal floor. If $g = 10 \text{ m}\text{s}^{-2}$, the	
	work done in lifting it with one end touching the	
	floor and the other end 1.6 m above the floor is	
	1) 10 J 2) 3.2 J 3) 8 J 4) 16 J	16.
8.	A meter scale of mass 400 gm is lying horizontally	
	on the floor. If it is to be held vertically with one	
	end touching the floor, the work to be done is	
	1) 6 J 2) 4 J 3) 40 J 4) 2 J	17.
9.	A rain drop of mass $(1/10)$ gram falls vertically	
	at constant speed under the influence of the	
	forces of gravity and viscous drag. In falling	
	through 100 m, the work done by gravity is	
	1) 0.98 J 2) 0.098 J	
	3) 9.8 J 4) 98 J	18.
		-
10.	A force F is applied on a lawn mover at an angle	
	of 60° with the horizontal. If it moves through a	
	distance x, the work done by the force is	19
	1) $Fx/2$ 2) $F/2x$ 3) $2Fx$ 4) $2x/F$	17.
11.	A man weighing 80 kg climbs a staircase carrying	
	a 20 kg load. The staircase has 40 steps each	
	of 25 cm height. If he takes 20 seconds to	20
	climb, the work done is	20.
	1) 9800 J 2) 490 J	
	3) 98×10^5 J 4) 7840 J	
12	A force $\overline{z} = 6i$ 9 i N acts on a martial $z = 1$	0.1
12.	A force $F = o_i - \delta_j$ N, acts on a particle and	21.
	displaces it over 4 m along the X-axis and then	

displaces it over 6 m along the Y-axis. The total work done during the two displacements is 1) 72 J 2) 24 J 3) - 24 J 4) zero

A lawn roller is pulled along a horizontal surface through a distance of 20 m by a rope with a force of 200 N. If the rope makes an angle of 60° with the vertical while pulling, the amount of work done by the pulling force is

1) 4000 J 2) 1000 J 3) $2000\sqrt{3}$ J 4) 2000 J

A force acts on a body and displaces it in its direction. The graph shows the relation between the force and displacement, the work done by the force is

1) 420 J 2) 360 J 3) 840 J 4) 720 J

A uniform chain is held on a frictionless table with half of its length hanging over the edge. If the chain has a mass 'm' and length 'L', how much work is required to pull the hanging part back onto the table?

1) mgL/4	2) mgL/2
3) mgL/8	4) mgL/16

- A tennis ball has a mass of 56.7 gm and is served by a player with a speed of 180 kmph. The work done in serving the ball is nearly 1) 710 J 2) 71 J 3) 918 J 4) 91.8 J
- A cyclotron accelerates a proton to a final speed of 3×10^7 m s⁻¹, which is initially at rest. The work done on the proton in mega electron volts, by the electrical field of the cyclotron is (Mass of the proton is 1.6×10^{-27} kg)

- 3)45 4) 450 A man carries a load of 50 kg through a height
- of 40 m in 25 seconds. If the power of the man is 1568 W, his mass is

- A boy whose weight is 600 N runs up a flight of stairs 10 m high in a time of 12 s. The average power he develops, in watts is
- 3) 720 1)72 2) 500 4) 5000 An electric motor creates a tension of 4500 newton in a hoisting cable and reels it in at the rate of 2m/s. What is the power of the motor? 1) 15 kW 2) 9 kW 3) 225 W 4) 9000 kW
- A motor drives a body along a straight line with a steady force. If the body starts from rest, the

JR. PHYSICS

1 1.1
$m s^{-1}$ and the l
e power of
- F
4) 3150 W
'bullets each
n a time "t".
$1v^2/2t$
nv/t
m a depth of
the ground
engine is
8
al in 1 hour
efficiency of
ver must be
) 62.5 kW
acceleration
erage power
0
00 W
ter pump is
can be lifted
the pump is
0 liters
liters
minute with
f each bullet
gun will be
7
$-3\hat{i}+6\hat{k}$) m/
stant force
ieous power
4) 170 W
4) 1 /0 W
How much
m a mine of
the crane is
000 ka
80 000 kg
minute with
ach bullet is
$7.2 \mathrm{kW}$ the
red must be
s 4) 60 m/s

42.	A spring when compressed by 4 cm has 2 J	53.	A 150 gm mass has a velocity $(2i + 6j)$ m/s at a
	energy stored in it. The force required to extend		certain instant. It's kinetic energy is
	it by 8 cm will be		1) 6 J 2) 2 J 3) 3 J 4) 8 J
	1) 20 N 2) 2 N 3) 200 N 4) 2000 N	54.	A body starts from rest and moves with uniform
43.	A tank of size $10 \text{ m} \times 10 \text{ m} \times 10 \text{ m}$ is full of		acceleration. What is the ratio of kinetic energies
	water and built on the ground. If $g = 10 \text{ m s}^{-2}$,		at the end of 1st, 2nd and 3rd seconds of its
	the potential energy of the water in the tank is		journey?
	1) $5 \times 10^7 \text{ J}$ 2) $1 \times 10^8 \text{ J}$		1) 1 : 8 : 27 2) 1 : 2 : 3
	3) 5×10^4 J 4) 5×10^5 J		3) 1:4:9 4) 3:2:1
44.	The elastic potential energy of a stretched spring	55.	A shot is fired at 30° with the vertical from a
	is given by $E = 50x^2$ where x is the displacement		point on the ground with kinetic energy K. If air
	in meter and E is in joule, then the force constant		resistance is ignored, the kinetic energy at the
	of the spring is		top of the trajectory is
	1) 50 Nm 2) 100 N m^{-1}		1) 3K/4 2) K/2 3) K 4) K/4
	$3) 100 \text{ N/m}^2 \qquad 4) 100 \text{ Nm}$	56.	On increasing the speed of a body to 2 m s ⁻¹ , its
45.	An inelastic ball falls from a height of		kinetic energy is quadrupled. Then its original
	100 meters. It loses 20 % of its total energy due		speed must be
	to impact. The ball will now rise to a height of		1) 0.25 m s ⁻¹ 2) 1 m s ⁻¹
1.6	1) 80 m 2) 120 m 3) 60 m 4) 9.8 m		3) 4 m s ⁻¹ 4) 2 m s ⁻¹
46.	A rubber ball falling from a height of 5 m rebounds	57.	A liquid of specific gravity 0.8 is flowing in a
	from a hard floor to a height of 3.5 m. The %		pipe line with a speed of 2 m/s. The K.E. per
	$1 \times 20\%$ $2 \times 20\%$ $2 \times 42\%$ $4 \times 50\%$		cubic meter of it is
17	1)20% 2)30% 3)43% 4)30%		1) 160 J 2) 1600 J
47.	numerically equal to its kinetic energy if all units		3) 160.5 J 4) 1.6 J
	are expressed in SL the velocity of the particle	58.	A body starts from rest and is acted on by a
	must be		constant force. The ratio of kinetic energy gained
	1) 1 m/s 2) 2 m/s 3) $\frac{1}{2}$ m/s 4) 4 m/s		by it in the first five seconds to that gained in the
48.	If the momentum of a body is increased by		next five second is
	50 %, the percentage increase in its kinetic		1)2:1 2)1:1 3)3:1 4)1:3
	energy is	50	If the mass of a body is helved and its speed
	1) 100 2) 50 3) 125 4) 200	59.	doubled then its kinetic energy increased by
49.	A body has a unit mass and is at a state of rest.		1) 250% 2) 200% 3) 50% 4) 100%
	Then suddenly it receives an impulse 'x', then it	60	A proton and a deuteron have kinetic energies in
	will acquire a kinetic energy of	00.	the ratio 1 : 2. The ratio of their linear momenta
	1) x 2)x ² 3) $x^{2}/2$ 4) $2/x^{2}$		is
50.	Two masses of 1 gm and 4 gm are moving with		1) 1 : $\sqrt{2}$ 2) $\sqrt{2}$: 1 3) 2 : 1 4) 1 : 2
	equal kinetic energies. The ratio of the magnitudes	61.	The kinetic energy in joules of a freely falling body
	of their linear momenta is		as a function of time is given by the equation : K
51	$1)4:1 2) \forall 2:1 3) 1:2 4) 2:1 T 1 1: 1 1: 1: 1: 1:$		= $25 t^2$. If the acceleration due to gravity is 10
51.	Two bodies having kinetic energies K_1 and K_2		m s ² , the weight of the body
	have equal masses. Their momenta are p_1 and p_2 respectively, then p_1 is		1) 10 N 2) 20 N 3) 5 N 4) 25 N
	p_2 respectively, then p_1/p_2 is	62	A stationary U^{238} nucleus emits an α - particle
	1) $\mathbf{K}_1 : \mathbf{K}_2$ 2) $\mathbf{K}_2 : \mathbf{K}_1$ 2) $\sqrt{\mathbf{K}} \cdot \sqrt{\mathbf{K}}$ 4) $\sqrt{\mathbf{K}} \cdot \sqrt{\mathbf{K}}$	020	and is converted into Th^{234} nucleus. If the kinetic
52	5) $(\mathbf{K}_2, \mathbf{K}_1, \mathbf{K}_1)$ 4) $(\mathbf{K}_1, \mathbf{K}_2)$		energy of the α - particles is 1.67 MeV, the
52.	is found to pass two points 60 meters apart in a		kinetic energy of the recoiling Th ²³⁴ nucleus is
	is found to pass two points of meters apart in a time interval of 1.8 $\times 10^{-4}$ sec. The mass of a		1) 0.028 MeV 2) 0.01 MeV
	neutron is 1.7×10^{-27} kg assuming that the speed		3) 0.04 MeV 4) 0.08 MeV
	is constant its kinetic energy is	63.	A bullet of mass 10 gm strikes a target at
	1) 9.3 × 10 ⁻¹⁷ joule 2) 9.3 × 10 ⁻¹⁴ joule		400 m/s velocity and loses half of its initial
	3) 9.3 × 10 ⁻²¹ joule 4) 9.3 × 10 ⁻¹¹ joule		velocity. The loss of kinetic energy in joules is 1×800 (2) 200 (3) 400 (4) 600
			1,000 2,200 3,400 4,000

64.	A 60 kg boy lying on a surface of negligible friction throws horizontally a stone of mass 1 kg with a speed of 12 m/s away from him. As a result with what kinetic energy he moves back?	74.	A 4.0 kg mass moving with a speed of 2.0 m/sec collides with a spring bumper of negligible mass and having a force constant 100 N/meter. The maximum compression of the spring bumper will be
	1) $2 4 1 2$ $72 1 3$ $1 2 1 4$ $36 1$		1) 1.6 m = 2) 0.4 m = 3) 2.0 m = 4) 1.0 m
65	A body of mass 4 kg is moving with a momentum	75	1 / 1.0 III / 2 / 0.4 III / 3 / 2.0 III / 4 / 1.0 III
05.	of $12 \text{ kg} \text{ ms}^{-1}$ Its kinetic energy is	75.	A woman weighing 05 kg eats plum cake whose
	1) 48 J 2) 24 J 3) 96 J 4) 12 J		chergy content is 9800 calories. If all this chergy
66	An object is acted on by a retarding force of		could be utilized by her, she can ascend a height of $1 + 1 + 2 + 67 + 2 + 100 + 2 + 4 + 42 + 2 + 100 + 100$
000	10 N and at a particular instant its kinetic energy	76	1) 1 m 2) 0/m 3) 100 m 4) 42 m A store of mass "m" initially at rest on 4 drame of
	is 6 J. The object will come to rest after it has	70.	A stone of mass in initially at rest and dropped
	traveled a distance of		with a valoaity "y". If the gravitational force acting
	1) 3/5 m 2) 5/3 m 3) 4 m 4) 16 m		on the stone is W then which of the following
67.	By applying the brakes without causing a skid,		identities is correct?
	the driver of a car is able to stop his car in a		1) $mv - mh = 0$ 2) $\frac{1}{2}mv^2 - Wh^2 = 0$
	distance of 5 m, if it is going at 36 kph. If the car		$\frac{1}{10} \frac{1}{10} \frac$
	were going at 72 kph, using the same brakes, he	77	3/2 mv = wn = 0.4/2 mv = mn = 0 A cradle is 'h' meters above the ground at the
	can stop the car over a distance of	//.	lowest position and 'H' meters when it is at the
	1) 10 m 2) 2.5 m 3) 20 m 4) 40 m		highest point. If 'v' is the maximum speed of the
68.	A block of mass 4 kg slides on a horizontal		swing of total mass 'm' the relation between 'h'
	frictionless surface with a speed of 2 m/s. It is		and 'H' is
	brought to rest in compressing a spring in its path.		1) $\frac{1}{2}$ mv ² + h = H 2) (v ² /2g) + h = H
	If the force constant of the spring is 400 N/m,		3) $(v^2/g) + 2h = H$ 4) $(v^2/g) + H = h$
	by now much the spring will be compressed? $1 \ge 2 \times 10^{-2}$ m $\ge 2 \ge 0.2$ m	78.	Two stones of masses m and 2 m are projected
	2) 20 m (1) 200 m		vertically upwards so as to reach the same height.
69	A bullet fired into a trunk of a tree loses 1/4 of its		The ratio of the kinetic energies of their projection is
05.	kinetic energy in traveling a distance of 5 cm.		1) 2 : 1 2) 1 : 2 3) $4 : 1$ 4) $1 : 4$
	Before stopping it travels a further distance of	79.	At what height above the ground must a mass of
	1) 150 cm 2) 1.5 cm 3) 1.25 cm 4) 15 cm		5 kg be to have its P.E. equal in value to the
70.	A ship of mass 3×10^7 kg initially at rest is pulled		K.E. possessed by it when it moves with a
	by a force of 5×10^4 N through a distance of 3		velocity of 10 m/s ? (Assume g = 10 m/s^2)
	meters. Assuming that the resistance due to		1) 1 m 2) 5 m 3) 10 m 4) 50 m
	water is negligible, the speed of the ship is	80.	AB is a frictionless inclined surface making an
	1) 0.1 m/s 2) 1.5 m/s 3) 5 m/s 4) 60 m/s		angle of 30° of with horizontal. A is 6.3 m above
71.	A vehicle of mass 1000 kg is moving with a		the ground while B is 3.8 m above the ground. A
	velocity of 15 m s ^{-1} . It is brought to rest by		block slides down from A, initially starting from
	applying brakes and locking the wheels. If the		rest. Its velocity on reaching B is
	sliding friction between the tires and the rod is		A
	6000 N, distance moved by the vehicle before		
	coming to rest is 12.75 $(2).75$ $(1).15$		#
72	1) 3/.5 m 2) 1/.75 m 3) 75 m 4) 15 m		⁽²⁾ - ^{30°} - B _d
12.	A body of mass 2 kg is projected with an initial $x_{1} = x_{2} + x_{3} + x_{4} + x_{5} + x_{$, and the second
	The second dama and the here here the friction of		1) 7 m s^{-1} 2) 14 m s $^{-1}$ 3) 7 4 m s $^{-1}$ 4) 4 9 m s $^{-1}$
	The work done on the body by the inclinal	81.	A body slides down a fixed curved track that is
	Torces before it is brought to rest is $1 \ge 250 = 1 \ge 25 = 1 = 2 \ge 10 = 10 = 4 \ge 25 = 10$		one quadrant of a circle of radius R, as in the
72	(1) 230 J 2) 2.3 J 3) 10 J 4) 23 J		figure. If there is no friction and the body starts
/3.	The length of the neg dylym is 1 m. The help is		from rest, its speed at the bottom of the track is
	drown aside from the equilibrium position as that		
	the string makes on angle of 60° with the vertical		
	and lat go. The kinetic energy of the behavilit		
	and let go. The Knew energy of the bod wille		
	$1 \land 4 \land 4 \land 2 \land 3 \land 4 \land 4$		
	1)0.7/3 2)0.773 3)13 7)1.23		1) $5\sigma R = 2$) $\sqrt{5\sigma R} = 3$) $\sqrt{2\sigma R} = 4$) $\sqrt{\sigma R}$
			$\gamma \gamma $

WORK POWER ENERGY

JR. PHYSICS

120

82. 83.	Assume that a polevaulter obtains all his height by the complete conversion of his KE into PE. If his speed just before placing his pole down is v, the height reached is given by 1) $v/2g$ 2) $\sqrt{2vg}$ 3) $v^2/2g$ 4) $2g/v^2$ The bob of a pendulum is drawn aside so that it is at a height of 4.5 m above the ground and released. If it reaches the equilibrium position which is at a height of 2 m above the ground, the speed of the bob will be	 3. A uniform chain of length 'L' and mass 'm' is hanging down vertically from a hook fixed to the roof. The work done in hooking the other end of the chain as shown is 1) mgL 2) mgL/2 3) mgL/4 4) mgL/8 4. A solid rectangular block of mass 200 kg has
84.1.2.	1) 49 m/s 2) 7 m/s 3) $7\sqrt{2}$ m/s 4) $7/\sqrt{2}$ m/s A man standing on the edge of the roof of a 20 m tall building projects a ball of mass 100 gm vertically up with a speed of 10 m s ⁻¹ . The kinetic energy of the ball when it reaches the ground will be [g=10 m s ⁻²] 1) 5 J 2) 20 J 3) 25 J 4) zero KEY 1) 3 2) 3 3) 3 4) 4 5) 2 6) 1 7) 3 8) 4 9) 2 10 1 11) 1 12) 3 13) 3 14) 2 15) 3 16) 2 17) 2 18) 4 19) 2 20) 2 21) 2 22) 2 23) 4 24) 2 25) 2 26) 4 27) 3 28) 3 29) 4 30) 3 31) 1 32) 1 33) 2 34) 4 35) 2 36) 3 37) 1 38) 1 39) 3 40) 2 41) 2 42) 3 43) 1 44) 2 45) 1 46) 2 47) 2 48) 3 49) 3 50) 3 51) 4 52) 1 53) 3 54) 3 55) 4 56) 2 57) 2 58) 4 59) 4 60) 4 61) 3 62) 1 63) 4 64) 3 65) 2 66) 1 67) 3 68) 2 69) 4 70) 1 71) 2 72) 4 73) 1 74) 2 75) 2 76) 3 77) 2 78) 2 79) 2 80) 1 81) 3 82) 3 83) 2 84) 3 EEVEL – II A chain of mass m and length 'L' is over hanging from the edge of a smooth horizontal table such that 3/4 th of its length is lying on the table. The work done in pulling the chain completely on to the table is 1) mgL/16 2) mgL/32 3) 3mgL/32 4) mgL/8 A 5.0 kg box rests on a horizontal surface. The coefficient of kinetic friction between the box and the surface is $\mu = 0.5$. A horizontal force pulls the box at constant velocity for 10 cm. The work done by the applied horizontal force pulls the box at constant velocity for 10 cm. The work done by the applied horizontal force pulls	 he dimensions L = 2 m, b = 1 m, h = 0.5 m. It lies on a horizontal floor on sides L and b. The minimum work needed to turn it so that it lies on the sides b and h is 21 20 2) 1500 J 3) 3000 J 4) 2000 J A weight of 5 N is moved up a frictionless inclined plane from R to Q as shown. What is the work done in joules? 1) 15 2) 20 3) 25 4) 35 A particle moves under the effect of a force F = C x from x = 0 to x = x₁. The work done in the process is (treat C as a constant) C² / x₁² 2) Cx₁² 3) ½ Cx₁² 4) ½ C²/x₁² Under the action of a force a 2 kg body moves such that its position 'x' in meters as a function of time 't' in seconds given by: x = t²/2. The work done by the force in the first 5 seconds is 1) 2.5 J 2) 0.25 J 3) 25 J 4) 250J Two forces each of magnitude 10 N act simultaneously on a body with their directions inclined to each other at an angle of 120° and displaces the body over 10 m along the bisector of the angle between the two forces. Then the work done by each force is J 5 J 2) 1 J 3) 50 J 4) 100 J 'n' identical cubes each of mass 'm' and edge 'L' are on a floor. If the cubes are to be arranged one over the other in a vertical stack, the work to be done is Lmg (n-1)/2 2) Lg(n-1)/mn (n-1)/Lmng 4) Lmng/2(n-1) A spring obeying the linear law F = -Kx is first compressed by 10 cm and the work done is W₁. W₂ 1:3 2) 3:1 3) 1:6 4) 6:1
	3) 2.5 J and zero 4) 2.5 J and – 2.5 J	

JR. PHYSICS

11.	When a body of mass m slides down from the	19.	A tank on the roof of a 20 m high building can
	top of a smooth inclined plane of length L and		hold 10 m ³ of water. The tank is to be filled from
	inclination θ , the work done by the gravitational		a pond on the ground in 20 minutes. If the pump
	force on the body is		has an efficiency of 60 %, the input power
	1) mgL cos θ 2) mgL sin θ		required is
	3) mgL tan θ 4) 2mgL sin θ		1) 1.1 kW 2) 2.74 kW
12.	A body of mass 'm' starting from rest is acted		3) 5.48 kW 4) 7.0 kW
	on by a force producing a velocity $v = \sqrt{k \times s}$	20.	From a waterfall, water is pouring down at the
	where k is a constant and s is displacement. The		rate of 160 kg per second on the blades of a
	work done by the force in the first 't' seconds is		turbine. If the height of the fall be 50 m, the power
	1) $m^2 k^2 t^2 / 8$ 2) $mk^2 t^2 / 4$		delivered to the turbine is approximately equal to
	3) m k ² t ² /8 4) m ² k ² t/8		1) 7.84×10^4 W 2) 7.84×10^7 W
13.	A body of mass 5 kg at rest is under the action		3) 8400 W 4) 784 kW
	of a force which gives it a velocity given by	21.	A motor pump-set of efficiency 80 % lifts
	$v = 3 \times t$ m/s, here 't' is time in seconds. The		6000 litres of water per minute from a well 20 meters
	work done by the force in two seconds will be		deep. If $g = 10 \text{ m s}^{-2}$, its input power is
14	1) 90 J 2) 45 J 3) 180 J 4) 30 J	22	1) 20 KW 2) 23 KW 3) 10 KW 4) 230 KW
14.	A body of mass o kg is subjected to a steady	22.	section 'A', accelerates air of density 'd' to a
	equation of motion is given by $s(in meters) = 2$		speed 'v'. What is the power needed for this
	t^2 , here 't' is time in seconds. The work done by		process?
	the force in the first two seconds is		$(1) dAv = 2) \frac{1}{2} dAv = 3 dAv^{2} = 4 \frac{1}{2} dAv^{3}$
	1) 192 J 2) 384 J 3) 96 J 4) 48 J	23.	50 kg of sand is deposited each second on to a
15.	A tomato is thrown vertically upward from a point		conveyor belt moving at 5 m s ⁻¹ . The extra power
	on the ground. As it rises to the highest point,		required to maintain the belt in motion is 1) 1250 W 2) 250 W 2) 625 W 4) 2500 W
	the gravitational force does work of W_1 on it.	24	1) 1250 W 2) 250 W 5) 025 W 4) 2500 W A machine lifts a load of 2 tonnes wt with an
	As the tomato descends to the ground, the	27.	effort of 100 kg wt, when the effort moves
	gravitational force does a work of W_2 on it. Begording W and W, which of the following is		through 5 m the load moves through 0.2
	Regarding W_1 and W_2 , which of the following is correct?		m. The efficiency of the machine is
	1) $W = W_{1}$		1) 20 % 2) 40 % 3) 80% 4) 0.8 %
	2) W_1 is positive, W_2 is negative	25.	The input power to an electric motor is 200 kW .
	3) W_1^1 is negative, W_2^2 is positive		efficiency 90 % If the grane is lifting a load of 3 6
	4) both W_1 and W_2 are negative		tonnes, the velocity with which the load moves is
16.	A bucket of mass 'm' tied to a light rope is		1) 8 m s ⁻¹ 2) 4 m s ⁻¹ 3) 2 m s ⁻¹ 4) 40 m s ⁻¹
	lowered at a constant acceleration of $g/4$ '. If	26.	An engine lifts 2,250 litres of water per minute
	the bucket is lowered by a distance 'd', the work		from a well 20 m deep. If 25 % energy of the
	tone by the rope will be (neglect the mass of the rope)		engine is wasted, the power to be given to the
			engine musi de 1) 29 400 W 2) 9 800 W
	1) $\frac{1}{2}mgd$ 2) $\frac{3}{2}mgd$ 3) $-\frac{3}{2}mgd$ 4) $-\frac{5}{2}mgd$		3) 7.350 W 4) 13.067 W
	4 4 4 4 4 4 4	27.	A body initially at rest has an acceleration of
17.	A force $\overline{F} = 2\hat{i} + 3\hat{j} - 4\hat{k}N$ acts on a particle		$-10 \text{ j} \text{ m/s}^2$. If the force acting on the body is
	which is constrained to move in the XOY plane		$\overline{F} = (2i - 3j + 5k) N$, the instantaneous power
	along the line x = y. If the particle moves $5\sqrt{2} m$,		at $t = 5$ seconds will be
	the work done by the force in ioules is		1) 100 W 2) 150 W 3) 50 W 4) 200 W
	1) $25\sqrt{2}$ 2) $5\sqrt{59}$ 3) 25 4) 10	28.	An electric pump takes 30 minutes to fill a tank
10	$\frac{1}{20\sqrt{2}} \frac{2}{2} \frac{3}{2} \frac{3}{20} \frac{3}{20} \frac{3}{20} \frac{1}{20} \frac{1}{10}$		or volume 50 m ² with water. If the height over which the water is lifted be 30 m and the
10.	i wo mies me uie same number of bullets in a given interval of time. The second fires bullets		efficiency of the pump is 50% the input electric
	of mass twice that fired by the first and with a		power required by the pump is
	velocity that is half that of the first. The ratio of		1) 100,000 W 2) 10,000 W
	their powers is		3) 1000 W 4) 100 W
	1) 1 : 4 2) 4 : 1 3) 1 : 2 4) 2 : 1		
JR. P	HYSICS	122	WORK POWER ENERGY

R. P⊦	IYSICS	123
	1) 1 : 1 2) 1 : 3 3) 1 : 4 4) 1 : 5	
	kinetic energy ΔK_2 . The ratio $\Delta K_1 : \Delta K_2$ is	
	during the last one third of the interval, it gains a	
	the interval it gains a kinetic energy ΔK_1 and	
	ground in a time 't'. During the first one third of	
36.	A body freely falls from a certain height on to the	
	R+h $R-h$	45.
	3) $\frac{GMmR}{4}$ 4) $\frac{GMmR}{4}$	42
	$\Lambda(\Lambda + n)$ $\Lambda(\Lambda - n)$	
	1) $\frac{GMMM}{R(R+h)}$ 2) $\frac{GMMM}{R(R-h)}$	
	GMmh GMmh	
	the earth. $R = radius of earth)$	
	gravitational potential energy is $(M = mass of$	
	surface of the earth to a height 'h', the change in	42.
35.	When a body of mass 'm' is moved from the	
	3) Mg(R+h) = 4) Mgh/(1+h/R)	
	1) Mgh (2) Mg(Rh)	
	and the mass of the rocket is M'	
	at a neight Π : The factors of the earth is K and the acceleration due to gravity on the earth is 'g'	
	what will be the increase in its potential energy at a height 'h'? The radius of the earth is ' \mathbf{D} ' and	41.
94.	A rocket is fired up from the surface of the earth.	
21	1) WIGK/2 2) 2 WIGK/3 3) WIGK/64) MIGK/3 A reachest is fired up from the surface of the conth	
	K is equal to the radius of the earth Will be $1 M_{\alpha} R/2 = 2 M_{\alpha} R/2 = 3 M_{\alpha} R/6 = 4 M_{\alpha} R/2$	
	R is equal to the radius of the earth will be	
	beight of 2R above the surface of earth where	
	carm s surface, me gam in potential energy of an object of mass M raised from a height P to a	40.
)) .	ing is the acceleration due to gravity on the earth's surface the gain in potential energy of an	
22	5) 15/5 KW 4) 1080 KW	
	$\frac{1}{100} \frac{1}{100} \frac{1}$	
	power consumption of the pump is $(g = 10 \text{ m s}^2)$ 1) 1100 kW 2) 880 kW	
	If the efficiency of the pump $\eta = 80\%$, the input	39.
	ejected from the pump with velocity $v = 10 \text{ m s}^{-1}$. If the efficiency of the pump $n = 200\%$ the insut	
	-30 m at a rate of 2 m ² per second. The water is	
02.	An electric pump draws water from a well of pth d	
20	1) $AdV^2/2$ 2) $\frac{1}{2} AdV$ 3) $AdV^2/2$ 4) AdV^2	
	the pipe is v, then the power of the engine is 1) $A dx^3/2$ 2) $1/A dx^2/2$ $A dx^2/2$ $A A dx^2/2$	
	section 'A'. If the speed of the liquid through the pipe is 'y' then the neuron of the series is	
	continuously through a pipe of area of cross-	
91.	An engine pumps a liquid of density 'd'	
21	1 J 1 0,000 J 2 J 1000 J 3 J 1,00,000 J 4 J 108 J	
	$1)10\ 80012)\ 10801\ 3)1\ 08\ 0001\ 4)108\ 1$	30.
	is utilized to drive the stirrer will be	38
	in one minute, if 60% of the energy of the motor	
	drive the stirrer in a water bath The work done	
30.	An electric motor of nower 300 W is used to	
	1) 1 25 W 2) 12 5 W 3) 0 125 W 4) 125 W	
	(density of $H\sigma = 13.6 \text{ gm cm}^{-3}$)	
	ner minute the nower of the heart is	
	of Hg Assuming that the nulse frequency is 75	
- / .	per beat against an average pressure of 10 cm	57.
29.	The human heart discharges 75 cm ³ of blood	37.

Two identical bodies A and B each of mass 'm' are moving in the same direction with velocities of v_1 and v_2 respectively. The kinetic energy of B in the frame of reference attached to A is

1)
$$\frac{1}{2}mv_1^2$$
 2) $\frac{1}{2}mv_2^2$
3) $\frac{1}{2}m(v_1 - v_2)^2$ 4) $\frac{1}{2}m(v_1 + v_2)^2$

A ball of mass 'm' at rest receives an impulse I_1 in the direction of north. After some time it received another impulse I_2 in the direction of south. The final kinetic energy of the ball is

1)
$$\frac{(I_1 + I_2)^2}{2m}$$
 2) $\frac{(I_1 - I_2)^2}{2m}$

3)
$$\frac{I_1^2 + I_2^2}{2m}$$
 4) $\frac{I_1^2 - I_2^2}{2m}$

- The kinetic energy of a projectile at the highest point of its path is found to be 3/4th of its initial kinetic energy. If the body is projected from the ground, the angle of projection must be

 0°
 30°
 60°
 40°

 A body of mass 2 kg falls from a height of 20 m
- A body of mass 2 kg falls from a height of 20 m at a place where acceleration due to gravity is 10 m s⁻², and is found to acquire a velocity of 15 m s⁻¹. The work done against the air esistance is

1. A simple pendulum bob has a mass "m" and length "L". The bob is drawn aside such that the string is horizontal and then it is released. The velocity of the bob while it crosses the equilibrium position is

1)
$$\sqrt{gL}$$
 2) $\sqrt{2gL}$ 3) $\sqrt{5gL}$ 4) $\sqrt{3gL}$

H2. The speed of a car changes from 0 to 5 m s⁻¹ in the first phase and from 5 m s⁻¹ to 10 m s⁻¹ in the second phase and from 10 m s⁻¹ to 15 m s⁻¹ during the third phase. In which phase the increase in kinetic energy is more?

first phase
second phase
third phase 4) same in all the three phases

H3. A block of mass 5 kg is initially at rest on a rough horizontal surface. A force of 45 N acts on it in a horizontal direction and pushes it over a distance of 2 m. The force of friction acting on the block is 25 N. The final kinetic energy of the

block is 1) 40 J 2) 90 J 3) 50J 4) 140 J

JR. PHYSICS

WORK POWER ENERGY

- 61. A block of mass 2 kg is on a smooth horizontal surface. A light spring of force constant 800 N/m has one end rigidly attached to a vertical wall and lying on that horizontal surface. Now the block is moved towards the wall compressing the spring over a distance of 5 cm and then suddenly released. By the time the spring regains its natural length and breaks contact with the block, the velocity acquired by the block will be 1) 200 m/s 2) 100 m/s 3) 2 m/s 4) 1 m/s
- 62. The velocity of a train is increased from 10 m s⁻¹ to 25 m s⁻¹ in 2 minutes due to the application of some force by its engine developing an average power of 525 kW. Neglecting frictional forces, the mass of the train must be 1) 2.4×10^4 kg = 2) 2.4×10^5 kg

$$(2.4 \times 10^{6} \text{ kg})$$
 $(2.4 \times 10^{6} \text{ kg})$ $(2.4 \times 10^{6} \text{ kg})$ $(2.4 \times 10^{3} \text{ kg})$

63. A rocket is projected vertically up with a velocity of 7.8 k m s⁻¹ from the Earth's surface. Assuming that the resistance of the Earth's atmosphere is negligible, the height reached by it above the Earth's surface is nearly (Radius of the earth = 6400 km; g = 9.8 m s⁻²)

3) 12800 km 4) infinity

64. A typical rain drop formed in a cloud at an altitude of 800 m reaches the earth's surface with a speed of 8 m/s. The ratio of the me

chanical energy of the rain drop before and after the trip is

1) 500 : 1 2) 250 : 1 3) 125 : 1 4) 1000 : 1

65. A helicopter starts from the ground and reaches a height of 500 m, meanwhile attaining a velocity of 50 m/s. The energy spent by its engine for taking it to the height is E_1 and the energy spent by its engine to impart the velocity is E_2 , then the ratio $E_1 : E_2$ is

1)
$$2:1^{1}$$
 2) $4:1$ 3) $1:1$ 4) $1:4$

- 66. The work done is raising a body from the ground to a height 'h' is found to be W_1 . The work done to raise the same body from the ground to a height '3h' is found to be W_2 . If $W_2 = 2 \times W_1$, the value of 'h' in terms of the radius 'R' of the earth is 1) 2R 2) R 3) R/2 4) R/3
- 67. A car is going with a linear momentum 'p'. When brakes are applied, it comes to a stop in a distance 's'. If the same car were going with a linear momentum '2p' and the brakes are applied, it comes to a stop in a distance of (assume that the brake force is same in the two cases)

1) 2s 2) s 3) 4s 4) s/4

68. Two identical bodies each of mass 'm' are moving with velocities 'v₁' and 'v₂' respectively in the same direction. The kinetic energy of the system in the frame of reference attached to the center of mass is (v is relative velocity between the two bodies) 1) $\frac{1}{4}$ mv² 2) $\frac{1}{2}$ mv² 3) mv² 4) (1/8) mv² 69. A bomb of mass 'm' initially at rest, on the ground suddenly explodes in to two fragments. The fragment of mass '2m/3' moves out with a velocity 'v'. With the total energy released during the explosion, the unexploded bomb can be raised to what height above the ground?

1)
$$\frac{v^2}{2g}$$
 2) $\frac{2v^2}{g}$ 3) $\frac{v^2}{g}$ 4) $\frac{v^2}{4g}$

70. A ball is projected vertically up from a point on the ground with a certain initial velocity. At a certain point in its path, the ratio of the kinetic and potential energies is found to be 1 : 1. If the same ball were projected vertically up from the ground from the same point with twice the previous velocity, the ratio of the kinetic and potential energies at the same point will be

1)
$$1:1$$
 2) $3:1$ 3) $7:1$ 4) $5:1$

71. A bullet loses 1/10 of its velocity after penetrating a plank. How many planks in a row are required, to stop the bullet?

1) 70 m 2) 130 m 3) 180 m 4) 230 m

KEY

1)2	2)4	3) 3	4) 2	5) 1	6) 3	7) 3
8) 3	9)1	10) 1	11)2	12) 3	13)1	14)1
15)3	16) 3	17) 3	18)4	19) 2	20) 1	21) 2
22)4	23) 1	24) 3	25) 2	26) 2	27) 2	28) 2
29)1	30) 1	31) 1	32) 3	33) 3	34) 4	35) 1
36)4	37) 3	38) 2	39) 2	40) 3	41) 2	42) 3
43) 1	44) 4	45) 1	46) 2	47) 3	48) 2	49) 1
50) 3	51) 1	52) 2	53) 1	54) 2	55) 2	56) 1
57) 2	58) 2	59) 3	60) 4	61) 4	62) 2	63) 2
64) 2	65) 2	66) 4	67) 3	68) 1	69) 3	70) 3
71)1	72) 2					

LEVEL - III

 The work done in lifting a stone of mass 10 kg and specific gravity 3 from the bed of a lake to a height of 6 m inside the water is (Take acceleration due to gravity as 10 m/s², and neglect the effect of viscous forces)
 1) 200 J
 2) 600 J
 3) 400 J
 4) 800 J

200 J 2) 600 J 3) 400 J 4) 800 J
 A car starts from rest and travels forward with constant acceleration which of the following is correct

1) The power delivered by the drive shaft to the wheel is constant

2) The power delivered by the drive shaft to the wheels increases as the car gains speed

3) The KE of the car is proportional to the time 4) The power delivered by the drive shaft to the wheels decreases as the car gains speed

- 3. A force of 1 N acts upon a mass of 1 kg for 1 second and gives it a momentum P_1 and kinetic energy E_1 . The same force acts upon the same mass for a displacement of 1 m and gives it a momentum P_2 and kinetic energy E_2 . Then, which of the following is correct?
 - 1) $P_1 = P_2$, $E_1 = E_2$ 3) $P_1 < P_2$, $E_1 < E_2$ 4) $P_1 > P_2$, $E_1 < E_2$ 5) $P_1 < P_2$, $E_1 < E_2$ 5) $P_1 > P_2$, $E_1 < E_2$ 5) $P_1 > P_2$, $P_2 < P_2$, $P_1 < P_2$, $P_2 < P_2$,
- 4. A pair of identical light elastic springs support a mass less platform as shown in the figure. When a piece of clay of mass 0.1 kg falls on the platform from a height of 0.24 m and sticks to it, the compression in the spring is 0.01 m. The height in meters from which the same piece of clay has to fall to create a compression of 0.04 m is

1) 0.96 2) 1.04 3) 4.00 4) 3.96
 An outfielder throws a cricket ball with an initial kinetic energy of 800 J and an infielder at the same level catches the ball when its kinetic energy is 600 J. If the path of the ball between them is assumed straight and is 20 m long, the air resistance acting on the ball is

1) 26.6 N 2) 1.33 N 3) 100 N 4) 10 N

- 6. A rough inclined plane is 5 m long and 3 m high. A block of mass 6 kg is moved from the foot of the inclined plane to the top. If the coefficient of friction between the block and inclined plane is 0.5, the work done in this movement
- 30 J 2) 15 J 3) 196 J 4) 294 J
 The gravitational potential difference between the surface of a planet and a point 10 m above it is 20 J/kg. The work done in moving a 2 kg mass by 10 m on a smooth inclined surface making 30° with the horizontal is

1) 100 J 2) 200 J 3) 20 J 4) 2 J

8. Water flows out horizontally from a hose with a velocity of 20 m s⁻¹. The area of cross section of the hose is 2.5×10^{-3} m². Density of water is 1000 kg m⁻³. Power needed to produce the kinetic energy of water is

1) 2.5 kW 2) 20 kW 3) 1 kW 4) 10 kW
9. The kinetic energy of a moving body is given by K = 2v², K being in joules and v in m/s. It's momentum when traveling with a velocity of 2 m s⁻¹ will be
1) 16 kg m s⁻¹ = 2) 4 kg m s⁻¹

1) 16 kg m s ¹	$2) 4 \text{ kg m s}^{-1}$
3) 8 kg m s ^{-1}	4) 2 kg m s^{-1}

10. A block sliding along a horizontal frictionless surface with a velocity of 2 m s^{-1} comes to the bottom of a frictionless inclined plane making an angle of 30° with the horizontal and comes to a stop after ascending the inclined plane as indicated. If $g = 10 \text{ m s}^{-2}$, the value of 'h' is

1) 5 m 2) 10 m 3)
$$0.2$$
 m 4) 2 m

11. A small sphere of mass M is dropped from a great height, After it has fallen 100 m, it has attained its terminal velocity and continues to fall at that speed. The work done by air friction against the sphere during the first 100 m of fall is (g = acceleration due to gravity)

1) greater than the work done by air friction in the second 100 m

2) less than the work done by air friction in the second 100 m

3) equal to 100 Mg

- 4) greater than 100 Mg
- 12. A train of mass "M" is driven with acceleration "a" along a straight level track against a constant external resistance "R". When the velocity of the train is "v", the rate at which the engine of the train is doing work will be

1)
$$Rv$$
 2) Mav
3) $(R+Ma)v$ 4) $(Ma-R)v$

- 13. An empty truck moving on a straight road with a certain velocity can be stopped over a distance "s" by applying the brakes. If the truck is loaded so that its mass now is one and half times that of the empty truck and is moving with the same velocity, it can be stopped by the brakes in a distance of (assume that the same braking force is acting in the two cases)
 - 1) s/2 2) 2 s 3) 3s/2 4) 2s/3
- 14. A lifting machine, having an efficiency of 80% uses 2500 J of energy in lifting a 10 kg load over a certain height. If the load is now allowed to fall through that height freely, its velocity at the end of the fall will be (take acceleration due to gravity as 10 m/s^2)

1) 10 m s⁻¹2) 15 m s⁻¹ 3) 20 m s⁻¹ 4) 25 m s⁻¹

15. A body is projected vertically up from a point on the ground. When it is at a height "h" above the ground, its kinetic and potential energies are found to be in the ratio of 3 : 2. If the body rises to a maximum height of "H" above the ground, then the ratio of H : h will be

1) 5 : 3 2) 2 : 1 3) 5 : 2 4) 2 : 5

16. A small cube of mass 'm' slides down a quadrantal circular path of radius 'R' cut into a large block of mass 'M', as shown in the figure. The block rests on a table, and both cube and block move without friction. The cube and block are initially at rest, and the cube starts from the top of the path. The velocity of the cube as it leaves the block is

1)
$$\sqrt{2gR}$$

2) $\sqrt{\frac{2gR(M+m)}{(M+2m)}}$
3) $\sqrt{\frac{2gRM}{M+m}}$
4) $\sqrt{\frac{2gR(M+2m)}{(M+m)}}$

- 17. An engine developing an average power of 1500 kW applies a steady force for 4 minutes on a train moving with a velocity of 10 m s^{-1} . If there is no friction and the velocity attained by the train is 20 m s^{-1} , the mass of the train must be
 - 1) 240 tonnes 2) 24 tonnes

3) 2400 tonnes 4) 2.4 tonnes

18. A block of mass 150 kg is taken along a rough inclined plane on to the top of a platform which is at a height of 4 m above the ground level. If the force of friction between the surface of the plane and the block is 100 N and the length of the inclined plane is 10 m, the work done in pushing the body to the top is (Take acceleration due to gravity as 10 m s^{-2})

19. A long rod ABC of mass "m" and length "L" has two particles of masses "m" and "2m" attached to it as shown in the figure. The system is initially in the horizontal position. The work to be done to keep it vertical with A at the bottom is (g =acceleration due to gravity)

1)2mgL 2)3mgL/2 3)5mgL/2 4)3mgL

20. A block Z of mass 1.5 kg approaches and collides with another block R of mass 2.0 kg. See the accompanying diagram. Block R has a spring attached to it and it is initially at rest. When the separation between the blocks has reached a minimum, then

 $Z \rightarrow mR$

1) block R is still at rest

- 2) block Z has come to rest
- 3) both blocks have the same momentum

4) the kinetic energy of the system has reached aminimum

21. A mass less spring with a force constant K = 40 N/m hangs vertically from the ceiling. A 0.2 kg block is attached to the free end of the spring and held in such a position that the spring

has its natural length and suddenly released. The maximum elastic strain energy stored in the spring is(take $g = 10 \text{ m/s}^2$)

1) 0.1 J
 2) 0.2 J
 3) 0.05 J
 4) 0.4 J
 A block of mass 0.4 kg slides down an irregular path as shown and reaches the bottom with a velocity of 4 m/s. If during the journey the block has fallen through a vertical height of 2 m, the work done by the force of friction on the block

- 1) 3.8 J
 2) 4.8
 3) 8 J
 4) 3.2 J
 A carpet of mass 'm' is rolled along its length in the form of a cylinder of radius 'R' and is kept on a rough floor. When a small push is given, the carpet starts unrolling without slipping on the floor. The kinetic energy of the carpet, when the radius is reduced to 'R/2' will be
- 3mgR/42) mgR/4 3) 7mgR/8 4) mgR/8
 A bullet of mass 'm' is fired in to the suspended wooden block of mass 'M' and gets embedded in it and the string of length 'L' swings through an angle θ after impact before swinging back. The speed of the bullet 'u' is (g = acceleration due to gravity)

(M + M) A cable in the form of a spiral roll as shown in the figure has a linear density 0.25 kg/m. It is uncoiled at a uniform speed of 2 m/s. If the total

JR. PHYSICS

25.

WORK POWER ENERGY

1)0.2 m 2)0.3 m 3)0.4 m 4)0.1 m

A goods train moves steadily on a level track with a velocity 108 kph. Snow falls vertically on to it, and accumulates at a constant rate of 10 kg s⁻¹. The additional power required in order to maintain the train's speed despite the snow is 1) 4.5 kW 2) 9.0 kW 3)18.0 kW 4) 2.25 kW

1. A running man has half the kinetic energy that a running boy of half his mass has. The man speeds up by 1.0 m/s and now has the same kinetic energy as the boy. The original speed of the man expressed in m/s units must be

1) √2 + 1 2) √2-1 3) 2 + √2 4) 2 - √2
 A chain of mass 'm' and length 'L' is over hanging from the edge of a smooth horizontal table such that 1/n th of its length is lying on the table. The work done in pulling the chain completely on to the table is

1)
$$\frac{\text{mgL}}{2n^2}$$
 2) $\frac{\text{mgL}(n-1)^2}{2n^2}$
3) $\frac{\text{mgL}(n-1)^2}{n^2}$ 4) $\frac{\text{mgL}}{n^2}$
KEY
1) 3 2) 2 3) 3 4) 4 5) 4 6) 4
7) 3 8) 4 9) 3 10) 3 11) 2 12) 3
13) 3 14) 3 15) 3 16) 2 17) 3 18) 3
19) 4 20) 4 21) 2 22) 2 23) 3 24) 1
25) 2 26) 1 27) 3 28) 4 29) 2 30) 2
31) 1 32) 2
WORK, POWER AND ENERGY
NEW MODEL QUESTIONS
In the following questions, a statement of Assertion
(A) is followed by a statement of Reason(R)
Of these statements select the correct answer

according to the scheme given below.

1) Both A and R are individually true and R is the correct explanation of A

2) Both A and R are individually true but R is not the correct explanation of A

3) A is true but R is false

4) Both A and R are false

- Assertion (A): The work done by the centripetal force on a body in uniform circular motion is zero. Reason (R): In uniform circular motion, the force and displacement are always perpen-dicular to each other.
- . Assertion (A): A spring has potential energy, both when it is compressed or stretched. Reason (R): In compressing or stretching, work is done on the spring against the restoring force developed in it.
- 3. Assertion (A): Force acting on a body is not zero and the displacement of the body under the action

 4. 5. 6. 7. 8. 9. 10. 	of that for be zero. Reason (F and display between f direction. Assertion upward fra- force while by gravity Reason (F of the dire Assertion rough hor frictional f Reason (F body is op Assertion a two bod; Reason (F the work of to their fina Assertion mechanica are presen Reason (mechanica are present Reason (mechanica are present Reason (mechanica and is true Reason (R and its pre Assertion the work of equal to ch and is true Reason (R and its pre Assertion the work of cannot tak Assertion the instant and veloc Reason (F scalar. 1) 1 6) 1	ce is also no centent but the force of (A): When a om the group it is rising if force while (A): When a orce is negat (A): When rizontal sur orce is negat (A): The frice posite to th (A): The gra y system is C): When a lone in brin al positions b n (A): The gray system is C): When a lone in brin al positions b n (A): The lenergy is in the (A): Accorded lone by the nange in the only when f C): Frictional sence violat (A): When done positions b (A): Accorded lone by the nange in the only when f C): Frictional sence violat (A): When done positions b (A): When done positions b (A): Accorded to all energy to (A): Force a the only when f C): Frictional sence violat (A): When done positive to (A): Force a the ouspower ity. C): The dot KE 2) 1 7) 1	t zero, yet the ot only dependiso on the c lirection and unapple is prind, the work is negative ar- it is falling in ne by a force placement. n a body is face, the with tive tional force e displacement witational p always neg thraction fo ging the boo yan external e law of c valid when f on conver thermal energing to work resultant for kinetic energification like 1 force is a c tes the work a road rolle ve and whe megative. one by a for values. and velocit product of X 3) 1 8) 4	ie work de ends on the osine of the id display rojected ve k done by nd the wo s positive ze is indep dragged a 'ork done e on the d nent cause otential er ative rces are p dies from lagent isn conservation friction like ts some ergy. cenergy that forces, are onservation center gy that forces, are onservation reservation center gy that forces, are onservation reservation cenergy that forces, are onservation reservation center gy that forces, are onservation reservation cenergy that forces, are onservation cenergy that forces, are onservation center gy the reservation center gy the reservation center gy that forces, are onservation center gy that forces, are onservation for center gy that for center gy that f	one can he force he angle cement ertically gravity rk done borne along a by the hragged ed in it. hergy of bresent, infinity legative. tion of e forces, of the heorem, ystem is tsystem e absent. ve force heorem. by you shed by a scalar tors and erforce, of force by in a scalar tors is a 5) 1 10) 1 * * * 7	1. 2. 3. 4. 5.	PREVIO When a b a certain li increases to the spr 10 cm and in m/s is (m/s ²)[200 1) 0.5 A body of one-fourt m/4 .If th by 4 m/s, i kinetic en speed of th 1) 8 A block of horizontal $\overline{F} = (9 -$ block is a of the blo joules is: 1) 24 A machin the mass of of the bul the gun is: (1) 43200 A nucleus to emit an particle e (in MeV) 1) 1.0	PUS EAM ody of maight spring by 5 cm. 1 ing and if d released, Accelerat 03 ENG] 2) 1 fmass 'm' th kinetic ne speed of ts new kine ergy of th he heavier 2) 6 of mass 2 l frictionles x^2) \overline{i} new tx = 0. The ock betwo [2004 EN 2) 20 ne gun fire of each bu lets is 600 (2) 432 s of mass 2 $(\alpha$ -particles mitted is 6 of the daug 2) 0.5 2) 3	CET QUES ss 1.0 kg is s ;hanging ver By suspendi the block is , the maximu ion due to gr 3) 2 has a kinetic of another the heavier b etic energy eq e lighter bod body in m/s 3) 4 kg is initia ss surface. A vtons acts of ne maximum een $x = 0$ ar G] 3) 18 s 240 bullets allet is 10 g a ms ⁻¹ , the po (2) (3) 72 218 amu in fi le. Kinetic e 5.7 MeV. Th ghter nucleus 3) 0.25 KEY 3) 3	STIONS suspended from tically, its length ng 2.0 kg block pulled through in velocity in it ravity = 10 4) 4 energy equal to body of mass ody is increased quals the original is: [2003 MED] 4) 2 Illy at rest on a horizontal force n it, when the n kinetic energy nd $x = 3$ m in 4) 15 sper minute . If and the velocity ower (in kW) of 2005 ENG] (4) 7.2 ree state decays nergy of the α -ne recoil energy is [2005 MED] 4) 0.125 4) 4