Relations and Functions

Exercise 2.1: Solutions of Questions on Page Number: 33

Q1:

If
$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$
, find the values of xand y.

Answer:

t is given that
$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore,
$$\frac{x}{3} + 1 = \frac{5}{3}$$
 and $y - \frac{2}{3} = \frac{1}{3}$.

$$\frac{x}{3} + 1 = \frac{5}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{5}{3} - 1 \quad y - \frac{2}{3} = \frac{1}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{2}{3} \quad \Rightarrow y = \frac{1}{3} + \frac{2}{3}$$

$$\Rightarrow x = 2 \quad \Rightarrow y = 1$$

∴ *x*= 2 and *y*= 1

Q2:

If the set A has 3 elements and the set $B = \{3, 4, 5\}$, then find the number of elements in $(A \times B)$?

Answer:

It is given that set A has 3 elements and the elements of set B are 3, 4, and 5.

 \Rightarrow Number of elements in set B = 3

Number of elements in (A x B)

= (Number of elements in A) x (Number of elements in B)

$$= 3 \times 3 = 9$$

Thus, the number of elements in (A x B) is 9.

Q3:

If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$.

Answer:

$$G = \{7, 8\}$$
 and $H = \{5, 4, 2\}$

We know that the Cartesian product P x Q of two non-empty sets P and Q is defined as

 $P \times Q = \{(p, q): p \in P, q \in Q\}$

$$\therefore$$
G x H = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)}

$$H \times G = \{(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)\}$$

Q4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

(i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$.

(ii) If A and B are non-empty sets, then A x B is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.

(iii) If $A = \{1, 2\}, B = \{3, 4\}, \text{ then } A \times (B \cap \Phi) = \Phi$.

Answer:

(i) False

If $P = \{m, n\}$ and $Q = \{n, m\}$, then

 $P \times Q = \{(m, m), (m, n), (n, m), (n, n)\}$

- (ii) True
- (iii) True

Q5:

If $A = \{-1, 1\}$, find $A \times A \times A$.

Answer:

It is known that for any non-empty set A, A x A x A is defined as

$$A \times A \times A = \{(a, b, c): a, b, c \in A\}$$

It is given that $A = \{-1, 1\}$

Q6:

If A x B = $\{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B.

Answer:

It is given that A x B = $\{(a, x), (a, y), (b, x), (b, y)\}$

We know that the Cartesian product of two non-empty sets P and Q is defined as P x Q = $\{(p, q): p \in P, q \in Q\}$

: A is the set of all first elements and B is the set of all second elements.

Thus, $A = \{a, b\}$ and $B = \{x, y\}$

Q7:

Let $A = \{1, 2\}$, $B = \{1, 2, 3, 4\}$, $C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$. Verify that

(i) A x (B \cap C) = (A x B) \cap (A x C)

(ii) A x C is a subset of B x D

Answer:

(i) To verify: A x (B \cap C) = (A x B) \cap (A x C)

We have B \cap C = {1, 2, 3, 4} \cap {5, 6} = Φ

 \therefore L.H.S. = A x (B \cap C) = A x Φ = Φ

 $A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\}$

 $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$

∴ R.H.S. = (A x B) \cap (A x C) = Φ

 $\therefore \mathsf{L.H.S.} = \mathsf{R.H.S}$

Hence, $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(ii) To verify: A x C is a subset of B x D

 $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$

 $B \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\}$

We can observe that all the elements of set A x C are the elements of set B x D.

Therefore, A x C is a subset of B x D.

Q8:

Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write A x B. How many subsets will A x B have? List them.

Answer:

 $A = \{1, 2\} \text{ and } B = \{3, 4\}$

 $\therefore A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$

 \Rightarrow $n(A \times B) = 4$

We know that if C is a set with n(C) = m, then $n[P(C)] = 2^m$.

Therefore, the set A x B has 2⁴= 16 subsets. These are

 Φ , {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), (1, 4)}, {(1, 3), (2, 3)},

 $\{(1, 3), (2, 4)\}, \{(1, 4), (2, 3)\}, \{(1, 4), (2, 4)\}, \{(2, 3), (2, 4)\},$

 $\{(1, 3), (1, 4), (2, 3)\}, \{(1, 3), (1, 4), (2, 4)\}, \{(1, 3), (2, 3), (2, 4)\},$

 $\{(1, 4), (2, 3), (2, 4)\}, \{(1, 3), (1, 4), (2, 3), (2, 4)\}$

Q9:

Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A x B, find A and B, wherex, y and z are distinct elements.

Answer:

It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in A x B.

We know that A = Set of first elements of the ordered pair elements of $A \times B$

B = Set of second elements of the ordered pair elements of A x B.

 \therefore x, y, and z are the elements of A; and 1 and 2 are the elements of B.

Since n(A) = 3 and n(B) = 2, it is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Q10:

The Cartesian product A x A has 9 elements among which are found (-1, 0) and (0, 1). Find the set A and the remaining elements of A x A.

Answer:

We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$.

$$n(A \times A) = n(A) \times n(A)$$

It is given that $n(A \times A) = 9$

$$\therefore n(A) \times n(A) = 9$$

$$\Rightarrow n(A) = 3$$

The ordered pairs (-1, 0) and (0, 1) are two of the nine elements of A x A.

We know that A x A = $\{(a, a): a \in A\}$. Therefore, -1, 0, and 1 are elements of A.

Since n(A) = 3, it is clear that $A = \{-1, 0, 1\}$.

The remaining elements of set A x A are (-1, -1), (-1, 1), (0, -1), (0, 0),

(1, -1), (1, 0), and (1, 1)

Exercise 2.2: Solutions of Questions on Page Number: 35

Q1:

Let A = $\{1, 2, 3, ..., 14\}$. Define a relation R from A to A by R = $\{(x, y): 3x - y = 0, where x, y \in A\}$. Write down its domain, codomain and range.

Answer:

The relation R from A to A is given as

 $R = \{(x, y): 3x - y = 0, \text{ where } x, y \in A\}$

i.e., $R = \{(x, y): 3x = y, \text{ where } x, y \in A\}$

 $\therefore R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation.

 \therefore Domain of R = {1, 2, 3, 4}

The whole set A is the codomain of the relation R.

 \therefore Codomain of R = A = {1, 2, 3, ..., 14}

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of R = {3, 6, 9, 12}

Q2:

Define a relation R on the set Nof natural numbers by R = $\{(x, y): y= x+ 5, x \text{ is a natural number less than } 4; x,y \in \mathbb{N}\}$. Depict this relationship using roster form. Write down the domain and the range.

Answer:

R = {(x, y): y= x+ 5, x is a natural number less than 4, $x, y \in \mathbb{N}$ }

The natural numbers less than 4 are 1, 2, and 3.

$$\therefore R = \{(1, 6), (2, 7), (3, 8)\}$$

The domain of R is the set of all first elements of the ordered pairs in the relation.

: Domain of $R = \{1, 2, 3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of R = {6, 7, 8}

Q3:

A = $\{1, 2, 3, 5\}$ and B = $\{4, 6, 9\}$. Define a relation R from A to B by R = $\{(x, y)$: the difference between x and y is odd; $x \in A$, $y \in B\}$. Write R in roster form.

Answer:

 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$

 $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$

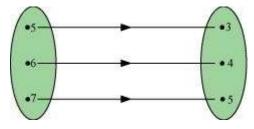
 $\therefore R = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$

Q4:

The given figure shows a relationship between the sets P and Q. write this relation

(i) in set-builder form (ii) in roster form.

What is its domain and range?



Answer:

According to the given figure, $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$

(i) $R = \{(x, y): y = x-2; x \in P\}$ or $R = \{(x, y): y = x-2 \text{ for } x=5, 6, 7\}$

(ii) $R = \{(5, 3), (6, 4), (7, 5)\}$

Domain of $R = \{5, 6, 7\}$

Range of $R = \{3, 4, 5\}$

Q5:

Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by

 $\{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}.$

(i) Write R in roster form

- (ii) Find the domain of R
- (iii) Find the range of R.

Answer:

 $A = \{1, 2, 3, 4, 6\}, R = \{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}$

$$(i) \ \mathsf{R} = \{(1,\,1),\,(1,\,2),\,(1,\,3),\,(1,\,4),\,(1,\,6),\,(2,\,2),\,(2,\,4),\,(2,\,6),\,(3,\,3),\,(3,\,6),\,(4,\,4),\,(6,\,6)\}$$

- (ii) Domain of $R = \{1, 2, 3, 4, 6\}$
- (iii) Range of $R = \{1, 2, 3, 4, 6\}$

Q6:

Determine the domain and range of the relation R defined by $R = \{(x, x+5): x \in \{0, 1, 2, 3, 4, 5\}\}$.

Answer:

 $\mathsf{R} = \{(x, \, x\!\!+\!\, 5) \colon x \in \{0, \, 1, \, 2, \, 3, \, 4, \, 5\}\}$

$$\therefore$$
 R = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)}

 \therefore Domain of R = {0, 1, 2, 3, 4, 5}

Range of $R = \{5, 6, 7, 8, 9, 10\}$

Q7:

Write the relation $R = \{(x, x^3): x \text{ is a prime number less than 10}\}$ in roster form.

Answer:

 $R = \{(x, x^3): x \text{ is a prime number less than } 10\}$

The prime numbers less than 10 are 2, 3, 5, and 7.

$$\therefore R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$$

Q8:

Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

Answer:

It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

$$\therefore$$
 A x B = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)}

Since $n(A \times B) = 6$, the number of subsets of A x B is 2^6 .

Therefore, the number of relations from A to B is 26.

Q9:

Let R be the relation on Zdefined by $R = \{(a, b): a, b \in Z, a - b \text{ is an integer}\}$. Find the domain and range of R.

Answer:

 $R = \{(a, b): a, b \in \mathbb{Z}, a - b \text{ is an integer}\}$

It is known that the difference between any two integers is always an integer.

∴Domain of R = **Z**

Range of R = Z

Exercise 2.3: Solutions of Questions on Page Number: 44

Q1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

(iii) {(1, 3), (1, 5), (2, 5)}

Answer:

$$(i) \; \{(2,\,1),\,(5,\,1),\,(8,\,1),\,(11,\,1),\,(14,\,1),\,(17,\,1)\}$$

Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 5, 8, 11, 14, 17\}$ and range = $\{1\}$

Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 4, 6, 8, 10, 12, 14\}$ and range = $\{1, 2, 3, 4, 5, 6, 7\}$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Find the domain and range of the following real function:

(i)
$$f(x) = \hat{a} \in |x|$$
 (ii) $f(x) = \sqrt{9 - x^2}$

Answer:

(i)
$$f(x) = \hat{a} \in |x|, x \in \mathbb{R}$$

We know that
$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

$$\therefore f(x) = -|x| = \begin{cases} -x, & x \ge 0 \\ x, & x < 0 \end{cases}$$

Since f(x) is defined for $x \in \mathbb{R}$, the domain of f is \mathbb{R} .

It can be observed that the range of $f(x) = \hat{a} \in [x]$ is all real numbers except positive real numbers.

∴The range of fis (â€" [∞], 0].

(ii)
$$f(x) = \sqrt{9 - x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to $\hat{a} \in 3$ and less than or equal to 3, the domain of f(x) is $\{x : \hat{a} \in 3 \le x \le 3\}$ or $[\hat{a} \in 3, 3]$.

For any value of xsuch that $\hat{a} \in x \le 3$, the value of f(x) will lie between 0 and 3.

∴The range of f(x) is $\{x: 0 \le x \le 3\}$ or [0, 3].

Q3:

A function fis defined by f(x) = 2x-5. Write down the values of

(i) f(0), (ii) f(7), (iii) f(-3)

Answer:

The given function is f(x) = 2x-5.

Therefore,

(i)
$$f(0) = 2 \times 0 - 5 = 0 - 5 = -5$$

(ii)
$$f(7) = 2 \times 7 - 5 = 14 - 5 = 9$$

(iii)
$$f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$$

Q4:

The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined

$$t(C) = \frac{9C}{5} + 32$$

Find (i) t(0) (ii) t(28) (iii) t(â€"10) (iv) The value of C, when t(C) = 212

Answer:

The given function is
$$t(C) = \frac{9C}{5} + 32$$

Therefore,

$$t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$$

$$t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5}$$

$$t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$$

(iv) It is given that t(C) = 212

$$\therefore 212 = \frac{9C}{5} + 32$$

$$\Rightarrow \frac{9C}{5} = 212 - 32$$

$$\Rightarrow \frac{9C}{5} = 180$$

$$\Rightarrow 9C = 180 \times 5$$

$$\Rightarrow C = \frac{180 \times 5}{9} = 100$$

Thus, the value of t, when t(C) = 212, is 100.

Q5:

Find the range of each of the following functions.

(i)
$$f(x) = 2 - 3x$$
, $x \in \mathbb{R}$, $x > 0$.

- (ii) $f(x) = x^2 + 2$, x, is a real number.
- (iii) f(x) = x, xis a real number

Answer:

(i)
$$f(x) = 2 \ \hat{a}$$
€" $3x, x \in \mathbb{R}, x > 0$

The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as

x	0.01	0.1	0.9	1	2	2.5	4	5	
f(x)	1.97	1.7	–0.7	–1	–4	–5.5	–10	–13	•••

Thus, it can be clearly observed that the range of fis the set of all real numbers less than 2.

i.e., range of *f*= (â€" [∞] , 2)

Alter:

Let x > 0

 $\Rightarrow 3x > 0$

⇒ 2 –3*x*< 2

 $\Rightarrow f(x) < 2$

∴Range of *f* = (– [∞], 2)

(ii) $f(x) = x^2 + 2$, x, is a real number

The values of f(x) for various values of real numbers xcan be written in the tabular form as

x	0	±0.3	±0.8	±1	±2	±3	•••
f(x)	2	2.09	2.64	3	6	11	

Thus, it can be clearly observed that the range of fis the set of all real numbers greater than 2.

i.e., range of $f=[2, \infty)$

Alter:

Let x be any real number.

Accordingly,

*x*² ≥0

 $\Rightarrow x^2 + 2 \ge 0 + 2$

 $\Rightarrow x^2 + 2 \ge 2$

 $\Rightarrow f(x) \ge 2$

 \therefore Range of $f = [2, \infty)$

(iii) f(x) = x, x is a real number

It is clear that the range of fis the set of all real numbers.

∴ Range of $f = \mathbf{R}$

Exercise Miscellaneous: Solutions of Questions on Page Number: 46

$$f\left(x\right)\!=\!\begin{cases} x^2,\ 0\leq x\leq 3\\ 3x,\ 3\leq x\leq 10 \end{cases}$$
 The relation f is defined by

$$g(x) = \begin{cases} x^2, & 0 \le x \le 2\\ 3x, & 2 \le x \le 10 \end{cases}$$

The relation gis defined by

Show that f is a function and g is not a function.

Answer:

$$f(x) = \begin{cases} x^2, & 0 \le x \le 3\\ 3x, & 3 \le x \le 10 \end{cases}$$

The relation fis defined as

It is observed that for

$$0 \le x < 3$$
, $f(x) = x^2$

$$3 < x \le 10$$
, $f(x) = 3x$

Also, at
$$x = 3$$
, $f(x) = 3^2 = 9$ or $f(x) = 3 \times 3 = 9$

i.e., at
$$x = 3$$
, $f(x) = 9$

Therefore, for $0 \le x \le 10$, the images of f(x) are unique.

Thus, the given relation is a function.

$$g(x) = \begin{cases} x^2, & 0 \le x \le 2\\ 3x, & 2 \le x \le 10 \end{cases}$$

The relation gis defined as

It can be observed that for x=2, $g(x)=2^2=4$ and $g(x)=3\times 2=6$

Hence, element 2 of the domain of the relation gcorresponds to two different images i.e., 4 and 6. Hence, this relation is not a function.

Q2:

If
$$f(x) = x^2$$
, find
$$\frac{f(1.1) - f(1)}{(1.1-1)}$$
.

Answer:

$$f(x) = x^{2}$$

$$\therefore \frac{f(1.1) - f(1)}{(1.1 - 1)} = \frac{(1.1)^{2} - (1)^{2}}{(1.1 - 1)} = \frac{1.21 - 1}{0.1} = \frac{0.21}{0.1} = 2.1$$

Q3:

 $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$ Find the domain of the function

Answer:

The given function is
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$$

It can be seen that function fis defined for all real numbers except at x=6 and x=2.

Hence, the domain of fis R â€" {2, 6}.

Q4:

Find the domain and the range of the real function fdefined by $f(x) = \sqrt{(x-1)}$

Answer:

The given real function is $f(x) = \sqrt{x-1}$

It can be seen that $\sqrt{x-1}$ is defined for $(x \hat{a} \in 1) \ge 0$.

 $f(x) = \sqrt{(x-1)}$ is defined for $x \ge 1$.

Therefore, the domain of fis the set of all real numbers greater than or equal to 1 i.e., the domain of $f = [1, \infty)$.

As
$$x \ge 1 \Rightarrow (x \, \hat{a} \in 1) \ge 0 \Rightarrow \sqrt{x-1} \ge 0$$

Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of $f = [0, \infty)$.

Q5:

Find the domain and the range of the real function fdefined by f(x) = |x-1|.

Answer:

The given real function is f(x) = |x-1|.

It is clear that |x-1| is defined for all real numbers.

∴Domain of $f = \mathbf{R}$

Also, for $x \in \mathbb{R}$, |x-1| assumes all real numbers.

Hence, the range of fis the set of all non-negative real numbers.

Q6:

$$f = \left\{ \left(x, \frac{x^2}{1 + x^2} \right) : x \in \mathbf{R} \right\}$$

be a function from Rinto R. Determine the range of f.

Answer:

$$f = \left\{ \left(x, \ \frac{x^2}{1 + x^2} \right) : x \in \mathbf{R} \right\}$$

$$= \left\{ (0, \ 0), \ \left(\pm 0.5, \ \frac{1}{5} \right), \ \left(\pm 1, \ \frac{1}{2} \right), \ \left(\pm 1.5, \ \frac{9}{13} \right), \ \left(\pm 2, \ \frac{4}{5} \right), \ \left(3, \ \frac{9}{10} \right), \ \left(4, \ \frac{16}{17} \right), \ \ldots \right\}$$

The range of fis the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.

[Denominator is greater numerator]

Thus, range of f=[0, 1)

Q7:

 $\frac{J}{g}$

Let $f, g: \mathbb{R} \tilde{\mathbb{A}} \notin \hat{\mathbb{A}} \in \mathbb{C}^*$ R be defined, respectively by f(x) = x + 1, $g(x) = 2x \hat{\mathbb{A}} \in \mathbb{C}^*$ 3. Find f + g, $f\hat{\mathbb{A}} \in \mathbb{C}^*$ gand g.

Answer:

 $f, g: \mathbf{R} \tilde{A} \not\in \hat{a} \in \mathbf{R}$ is defined as f(x) = x + 1, $g(x) = 2x \hat{a} \in \mathbf{S}$

$$(f+g)(x) = f(x) + g(x) = (x+1) + (2x \hat{a} \in 3) = 3x \hat{a} \in 2$$

∴
$$(f + g)(x) = 3x \hat{a} \in 2$$

$$(f\,\hat{a}{\in}^{\text{``}}\,g)\;(x)=f(x)\;\hat{a}{\in}^{\text{``}}\,g(x)=(x+1)\;\hat{a}{\in}^{\text{``}}\;(2x\hat{a}{\in}^{\text{``}}\,3)=x+1\;\hat{a}{\in}^{\text{``}}\,2x+3=\hat{a}{\in}^{\text{``}}\,x+4$$

$$\therefore (f\,\hat{a}{\in}``g)\;(x)=\hat{a}{\in}``x{+}\;4$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \ g(x) \neq 0, \ x \in \mathbf{R}$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, \ 2x-3 \neq 0 \text{ or } 2x \neq 3$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, \ x \neq \frac{3}{2}$$

Q8:

Let $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be a function from Zto Zdefined by f(x) = ax + b, for some integers a, b. Determine a, b.

Answer:

 $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$

f(x) = ax + b

 $(1, 1) \in f$

 $\Rightarrow f(1) = 1$

 \Rightarrow a x 1 + b= 1

 \Rightarrow a+ b= 1

 $(0, -1) \in f$

 $\Rightarrow f(0) = -1$

 \Rightarrow a x 0 + b= -1

 \Rightarrow b= -1

On substituting b=-1 in a+b=1, we obtain $a+(-1)=1 \Rightarrow a=1+1=2$.

Thus, the respective values of aand bare 2 and -1.

Q9:

Let R be a relation from N to N defined by $R = \{(a, b): a, b \in N \text{ and } a = b^2\}$. Are the following true?

(i) $(a, a) \in \mathbb{R}$, for all $a \in \mathbb{N}$

(ii) $(a, b) \in \mathbb{R}$, implies $(b, a) \in \mathbb{R}$

(iii) $(a, b) \in \mathbb{R}$, $(b, c) \in \mathbb{R}$ implies $(a, c) \in \mathbb{R}$.

Justify your answer in each case.

Answer:

 $R = \{(a, b): a, b \in \mathbb{N} \text{ and } a = b^2\}$

(i) It can be seen that $2 \in \mathbf{N}$; however, $2 \neq 2^2 = 4$.

Therefore, the statement " $(a, a) \in \mathbb{R}$, for all $a \in \mathbb{N}$ " is not true.

(ii) It can be seen that $(9, 3) \in \mathbf{N}$ because $9, 3 \in \mathbf{N}$ and $9 = 3^2$.

Now, $3 \neq 9^2 = 81$; therefore, $(3, 9) \angle$ " $^{\circ}$ **N**

Therefore, the statement " $(a, b) \in \mathbb{R}$, implies $(b, a) \in \mathbb{R}$ " is not true.

(iii) It can be seen that $(16, 4) \in R$, $(4, 2) \in R$ because 16, 4, $2 \in \mathbb{N}$ and 16 = 4^2 and 4 = 2^2 .

Now, $16 \neq 2^2 = 4$; therefore, $(16, 2) \angle$ o **N**

Therefore, the statement " $(a, b) \in R$, $(b, c) \in R$ implies $(a, c) \in R$ " is not true.

Q10:

Let $A = \{1, 2, 3, 4\}$, $B = \{1, 5, 9, 11, 15, 16\}$ and $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$. Are the following true?

(i) fis a relation from A to B (ii) fis a function from A to B.

Justify your answer in each case.

Answer:

 $A = \{1, 2, 3, 4\}$ and $B = \{1, 5, 9, 11, 15, 16\}$

It is given that $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$

(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product A x B.

It is observed that fis a subset of A x B.

Thus, fis a relation from A to B.

(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11, relation f is not a function.

Q11:

Let fbe the subset of Z x Zdefined by $f = \{(ab, a+b): a, b \in Z\}$. Is fa function from Zto Z: justify your answer.

Answer:

The relation fis defined as $f = \{(ab, a+b): a, b \in \mathbf{Z}\}$

We know that a relation from a set A to a set B is said to be a function if every element of set A has unique images in set B.

Since 2, 6, -2, -6 \in **Z**, (2 x 6, 2 + 6), (-2 x -6, -2 + (-6)) \in f

i.e., (12, 8), $(12, -8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8. Thus, relation fis not a function.

Q12:

Let A = $\{9, 10, 11, 12, 13\}$ and let $f: A \rightarrow Nbe$ defined by f(n) = the highest prime factor of n. Find the range of f.

Answer:

 $A = \{9, 10, 11, 12, 13\}$

 $f: A \rightarrow N$ is defined as

f(n) = The highest prime factor of n

Prime factor of 9 = 3

Prime factors of 10 = 2, 5

Prime factor of 11 = 11

Prime factors of 12 = 2, 3

Prime factor of 13 = 13

 $\therefore f(9)$ = The highest prime factor of 9 = 3

f(10) = The highest prime factor of 10 = 5

f(11) = The highest prime factor of 11 = 11

f(12) = The highest prime factor of 12 = 3

f(13) = The highest prime factor of 13 = 13

The range of fis the set of all f(n), where $n \in A$.

∴Range of f= {3, 5, 11, 13}