Hyperbola

Q.1. Find the equation of tangents to the hyperbola $3x^2 - y^2 = 3$ which are perpendicular to the line x + 3y = 2.

Solution: 1

The given equation of hyperbola can be written as , $x^2 - y^2/3 = 1$ and line is x + 3y = 5. Slope of given line is -1/3 and slope of required line is 3. Equation of tangents are : $y = 3x \pm \sqrt{\{1.(3)^2 - 3\}}$

Or, $y = 3x \pm \sqrt{6}$.

Q.2. Find the foci and latus rectum for the hyperbola $x^2/4 - y^2/5 = 1/2$.

Solution: 2

We have equation of hyperbola as

 $x^{2}/4 - y^{2}/5 = 1/2$. Or, $x^{2}/2 - y^{2}/(5/2) = 1$. Thus, $a^{2} = 2$ and $b^{2} = 5/2 => a = \sqrt{2}$ and $b = (5\sqrt{2})/^{2} => 2a = 2\sqrt{2}$, $2b = 5\sqrt{2}$. Now, $b^{2} = a^{2} (e^{2} - 1)$ Or, $5/2 = 2(e^{2} - 1)$ Or, $5/4 = e^{2} - 1$ Or, $5/4 + 1 = e^{2}$ Or, $e = \pm 3/2$. Foci are ($\pm a \in 0$) or, $[\pm (3\sqrt{2})/2, 0]$ Length of latus rectum = $(2b^{2})/a = \{2.(5/2)\}/\sqrt{2} = 5/\sqrt{2} = (5\sqrt{2})/2$. **Q.3.** Find the equation of the hyperbola whose eccentricity is $\sqrt{5}$ and the sum of whose semi-axes is 9.

Solution: 3

We have, $e = \sqrt{5}$ and a + b = 9 => b = 9 - a. As, $b^2 = a^2 (e^2 - 1)$ Or, $(9 - a)^2 = a^2 \{(\sqrt{5})^2 - 1\}$ Or, $81 - 18a + a^2 = 4a^2$ Or, $3a^2 + 18a - 81 = 0$ Or, $a^2 + 6a - 27 = 0$ Or, (a - 3)(a + 9) = 0Or, a = 3, -9 but a > 0Therefore, a = 3 and hence b = 9 - 3 = 6. The equation of the hyperbola is thus $x^2/3^2 - y^2/6^2 = 1$

Or, $x^2/9 - y^2/36 = 1$.

Q.4. Find the equation of the hyperbola whose directrix is 2x + y = 1, focus is (1, 1) and eccentricity is $\sqrt{3}$.

Solution: 4

We have, focus of the hyperbola at F(1, 1), $e = \sqrt{3}$, directrix is 2x + y = 1.

Let P(x, y) be any point on the hyperbola and MP be the perpendicular distance from

P to the directrix, then by definition of hyperbola

| FP | = e | MP|

Or, $\sqrt{[(x-1)^2 + (y-1)^2]} = \sqrt{3} \cdot |2x + y - 1|/\sqrt{(2^2 + 1^2)}$

Or, $x^2 - 2x + 1 + y^2 - 2y + 1 = 3/5 \cdot (4x^2 + y^2 + 1 + 4xy - 4x - 2y)$ Or, $5x^2 - 10x + 5 + 5y^2 - 10y + 5 = 12x^2 + 3y^2 + 3 + 12xy - 12x - 6y$ Or, $7x^2 + 12xy - 2y^2 - 2x + 4y - 7 = 0$.

This is the equation of the hyperbola.