
15. Finally

Partial Fractions

An expression of the form , where f(x) and g(x) are polynomial in x, is called a rational fraction.

1. Proper rational functions: Functions of the form , where f(x) and g(x) are polynomials and 
g(x) ≠ 0, are called rational functions of x. 
If degree of f(x) is less than degree of g(x),then is called a proper rational function.

2. Improper rational functions: If degree of f(x) is greater than or equal to degree of g(x), then 

 is called an improper rational function.
3. Partial fractions: Any proper rational function can be broken up into a group of different rational 

fractions, each having a simple factor of the denominator of the original rational function. Each 
such fraction is called a partial fraction.

If by some process, we can break a given rational function  into different fractions, whose 
denominators are the factors of g(x),then the process of obtaining them is called the resolution or 

decomposition of  into its partial fractions.

Different cases of partial fractions

(1) When the denominator consists of non-repeated linear factors: 
To each linear factor (x – a) occurring once in the denominator of a proper fraction, there corresponds a 

single partial fraction of the form , where A is a constant to be determined. 
If g(x) = (x – a1)(x – a2)(x – a3) ……. (x – an), then we assume that, 

 
where A1, A2, A3, ………. An are constants, can be determined by equating the numerator of L.H.S. to the 
numerator of R.H.S. (after L.C.M.) and substituting x = a1, a2,…… an. 



(2) When the denominator consists of linear factors, some repeated: 
To each linear factor (x – a) occurring r times in the denominator of a proper rational function, there 
corresponds a sum of r partial fractions. 
Let g(x) = (x – a)k(x – a1)(x – a2) ……. (x – ar). Then we assume that 

 
Where A1, A2, A3, ………. Ak are constants. To determine the value of constants adopt the procedure as 
above. 

(3) When the denominator consists of non-repeated quadratic factors: 
To each irreducible non repeated quadratic factor ax2 + bx + c, there corresponds a partial fraction of 

the form , where A and B are constants to be determined. 
Example : 

 

(4) When the denominator consists of repeated quadratic factors: 

To each irreducible quadratic factor ax2 + bx + c occurring r times in the denominator of a proper 
rational fraction there corresponds a sum of r partial fractions of the form. 

 
where, A’s and B’s are constants to be determined.

Partial fractions of improper rational functions

If degree of is greater than or equal to degree of g(x), then  is called an improper rational 
function and every rational function can be transformed to a proper rational function by dividing the 
numerator by the denominator. 
We divide the numerator by denominator until a remainder is obtained which is of lower degree than the 
denominator.

General method of finding out the constants

1. Express the given fraction into its partial fractions in accordance with the rules written above.
2. Then multiply both sides by the denominator of the given fraction and you will get an identity 

which will hold for all values of x.
3. Equate the coefficients of like powers of x in the resulting identity and solve the equations so 

obtained simultaneously to find the various constant is short method. Sometimes, we substitute 
particular values of the variable x in the identity obtained after clearing of fractions to find some or 
all the constants. For non-repeated linear factors, the values of x used as those for which the 
denominator of the corresponding partial fractions become zero.

What is Mathematical Induction in Discrete Mathematics?



First principle of Mathematical induction

The proof of proposition by mathematical induction consists of the following three steps :

Step I : (Verification step) : Actual verification of the proposition for the starting value “i”.

Step II : (Induction step) : Assuming the proposition to be true for “k”, k ≥ i and proving that it is true 
for the value (k + 1) which is next higher integer.

Step III : (Generalization step) : To combine the above two steps. Let p(n) be a statement involving 
the natural number n such that

1. p(1) is true i.e. p(n) is true for n = 1.
2. p(m + 1) is true, whenever p(m) is true i.e. p(m) is true ⇒ p(m + 1) is true.

Then p(n) is true for all natural numbers n.

Second principle of Mathematical induction

The proof of proposition by mathematical induction consists of following steps :

Step I : (Verification step) : Actual verification of the proposition for the starting value i and (i + 1).

Step II : (Induction step) : Assuming the proposition to be true for k – 1 and k and then proving that it 
is true for the value k + 1; k ≥ i + 1.

Step III : (Generalization step) : Combining the above two steps. Let p(n) be a statement involving the 
natural number n such that

1. p(1) is true i.e. p(n) is true for n = 1 and
2. p(m + 1) is true, whenever p(n) is true for all n, where i ≤  n ≤ m.

Then p(n) is true for all natural numbers. 
For a ≠ b, The expression is divisible by 
(a) a + b, if n is even. 
(b) a – b, if n is odd or even.

Divisibility problems

To show that an expression is divisible by an integer

1. If a, p, n, r are positive integers, then first of all we write apn+r = apn . ar = (ap)n . ar.
2. If we have to show that the given expression is divisible by c.

Then express, ap = [1 + (ap – 1)], if some power of (ap – 1) has c as a factor. ap = [2 + (ap – 2)], if 
some power of (ap – 2) has c as a factor. 
ap = [k + (ap – k)], if some power of (ap – k) has c as a factor.

Mathematical Induction Problems with Solutions

1. For all positive integral values of n, 32n – 2n + 1 is divisible by 
(a)  2 
(b)  4 
(c)  8 
(d)  12 

Solution: 
Putting n = 2 in 32n – 2n + 1 then, 32(2) – 2×2 + 1 = 81 – 4 + 1 = 78, which is divisible by 2.

2. If n ∈ N, then x2n – 1 + y2n – 1 is divisible by 
(a)  x +y 
(b)  x – y 



(c)  x2 + y2 
(d)  x2 + xy 

Solution: 
x2n – 1 + y2n – 1 is always contain equal odd power. So it is always divisible by x + y.

3. If n ∈ N, then 72n + 23n – 3 . 3n – 1 is always divisible by 
(a)  25 
(b)  35 
(c)  45 
(d)  None of these 

Solution: 

4. If n ∈ N, then 11n + 2 + 122n + 1 is divisible by 
(a)  113 
(b)  123 
(c)  133 
(d)  None of these 

Solution: 

5. The remainder when 599 is divided by 13 is 
(a)  6 
(b)  8 
(c)  9 
(d)  10 

Solution: 

6. When 2301 is divided by 5, the least positive remainder is 
(a)  4 
(b)  8 
(c)  2 
(d)  6 



Solution: 

7. For a positive integer n, 

 

Solution: 

8. 10n + 3(4n + 2) + 5 is divisible by (n ∈ N) 
(a)  7 
(b)  5 
(c)  9 
(d)  17 
(e)  13 

Solution: 

The Binomial Theorem

You are faced with the problem of expanding  . What to do??? Do you really have to multiply 
this expression times itself 10 times?? That could take forever.



Let’s investigate:

When binomial expressions are expanded, is there any type of pattern developing which might help us 
expand more quickly? Consider the following expansions:

 

What observations can we make in general about the expansion of 

1. The expansion is a series (an adding of terms). 
2. The number of terms in each expansion is one more than n. (terms = n + 1) 
3. The power of a starts with an and decreases by one in each successive term ending with a0. The 
power of b starts with b0 and increases by one in each successive term ending with bn. 
4. The power of b is always one less than the “number” of the term. The power of a is always n minus 
the power of b. 
5. The sum of the exponents in each term adds up to n. 
6. The coefficients of the first and last terms are each one. 
7. The coefficients of the middle terms form an interesting (but perhaps not easily recognized) pattern 
where each coefficient can be determined from the previous term. The coefficient is the product of the 
previous term’s coefficient and a’s index, divided by the number of that previous term.

8. Another famous pattern is also developing regarding the coefficients. If the coefficients are “pulled 
off” of the terms and arranged, they form a triangle known as Pascal’s triangle. (The use of Pascal’s 
triangle to determine coefficients can become tedious when the expansion is to a large power.)



(The two outside edges of the triangle are comprised of ones. The other terms are each the sum of the 
two terms immediately above them in the triangle.)

By pulling these observations together with some mathematical syntax, a theorem is formed relating to 
the expansion of binomial terms:

Examples using the Binomial Theorem:



Binomial Theorem for any Index

Binomial theorem for positive integral index

The rule by which any power of binomial can be expanded is called the binomial theorem. 
If n is a positive integer and x, y ∈ C then

Binomial theorem for any Index

Statement : 

 
when n is a negative integer or a fraction, where , otherwise expansion will not be possible. 
If first term is not 1, then make first term unity in the following way, 



Problems on approximation by the binomial theorem :

We have, 

 
If x is small compared with 1, we find that the values of x2, x3, x4, ….. become smaller and smaller. 
∴ The terms in the above expansion become smaller and smaller. If x is very small compared with 1, we 
might take 1 as a first approximation to the value of (1 + x)n or (1 + nx) as a second approximation.

Three / Four consecutive terms or Coefficients

(1) If consecutive coefficients are given: In this case divide consecutive coefficients pair wise. We 
get equations and then solve them. 

General term :

Some important expansions



Some important points

(1) Pascal’s Triangle 

 

Pascal’s triangle gives the direct binomial coefficients. 
Example : (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

(2) Method for finding terms free from radicals or rational terms in the expansion of (a1/p + 
b1/q)N ∀ a, b ∈ prime numbers:

Find the general term 

Putting the values of 0 ≤ r ≤ N, when indices of a and b are integers. 
Number of irrational terms = Total terms – Number of rational terms.


