

Solution of Quadratic equations

(d) 4

[AMU 1999]

[MNR 1983]

Basic Level

(c) 3

A real root of the equation $\log_4 \{ \log_2(\sqrt{x+8} - \sqrt{x}) \} = 0$ is

(b) 2

The solution of the equation $x + \frac{1}{x} = 2$ will be

14.

		n e		
2.	The roots of the equatio	n $7^{\log_7(x^2-4x+5)} = x-1$ are		
	(a) 4, 5	(b) 2, - 3	(c) 2, 3	(d) 3, 5
3.	The solution set of the e	equation $\log_x 2 \cdot \log_{2x} 2 = \log_{4x} 2$ is		
	(a) $\left\{2^{-\sqrt{2}}, 2^{\sqrt{2}}\right\}$	(b) $\left\{\frac{1}{2}, 2\right\}$	(c) $\left\{\frac{1}{4}, 2^2\right\}$	(d) None of these
4.	The solution of the equa	tion $3^{\log_a x} + 3x^{\log_a 3} = 2$ is given by	ру	
	(a) $3^{\log_2 a}$	(b) $3^{-\log_2 a}$	(c) $2^{\log_3 a}$	(d) $2^{-\log_3 a}$
5.	If $3^{x+1} = 6^{\log_2 3}$, then <i>x</i> is			
	(a) 3	(b) 2	(c) $\log_3 2$	(d) $\log_2 3$
6.	The solution of $ x /(x-1)$	$ + x = x^2 / x - 1 $ is		
	(a) $x \ge 0$	(b) $x > 0$	(c) $x \in (1, \alpha)$	(d) None of these
7.	If $2\log(x+1) - \log(x^2 - 1) =$	$\log 2$, then x equals		
	(a) 1	(b) O	(c) 2	(d) 3
8.		uation $x^2 + 5 x + 4 = 0$ are	•	[MNR 1993]
	(a) $\{-1, -4\}$	(b) {1,4}	(c) {-4,4}	(d) None of these
9.	If $ x^2 - x - 6 = x + 2$, then	the values of <i>x</i> are	ſR	oorkee 1982; Rajasthan PET 1992]
		(b) −2, 2, 4	(c) 3,2,-2	(d) 4,4,3
10.	$\{x \in R : x-2 = x^2\} =$			[EAMCET 2000]
	(a) {-1,2}	(b) {1,2}	(c) $\{-1, -2\}$	(d) $\{1,-2\}$
11.	If $ax^2 + bx + c = 0$, then x			[MP PET 1995]
			•	[121 1995]
	(a) $\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$	(b) $\frac{-b \pm \sqrt{b^2 - ac}}{2a}$	(c) $\frac{2c}{-h + \sqrt{h^2 - 4ac}}$	(d) None of these
	-c 2/3 - 1/3 to 0 1	24	$-b \pm \sqrt{b^2 - 4ac}$	
12.	If $x^{2/3} - 7x^{1/3} + 10 = 0$, th			[BIT Ranchi 1992]
	(a) {125}	(b) {8}	(c) φ	(d) {125,8}
13.	The roots of the given e	quation $(p-q)x^2 + (q-r)x + (r-p) =$	0 are [R	ajasthan PET 1986; MP PET 1999]
	(a) $\frac{p-q}{r-p}$,1	(b) $\frac{q-r}{p-q}, 1$	(c) $\frac{r-p}{r}$,1	(d) $1, \frac{q-r}{p-q}$
	r-p	p-q	p-q	p-q

	(a) 2, -1	(b) $0,-1,-\frac{1}{5}$	(c) $-1, -\frac{1}{5}$	(d)	None of these
15.	One root of the following	g given equation $2x^5 - 14x^4 + 31x^4$	$x^3 - 64x^2 + 19x + 130 = 0$ is		[MP PET 1985]
.	(a) 1	(b) 3	(c) 5	(d)	
16.	The roots of the equation	n $x^4 - 4x^3 + 6x^2 - 4x + 1 = 0$ are			[MP PET 1986]
	(a) 1, 1, 1, 1	(b) 2, 2, 2, 2	(c) 3, 1, 3, 1	(d)	1, 2, 1, 2
17.	One root of the equation	(x+1)(x+3)(x+2)(x+4) = 120 is			[T.S. Rajendra 1991]
	(a) -1	(b) 2	(c) 1	(d)	0
18.	If $9^x - 4 \times 3^{x+2} + 3^5 = 0$, th	en the solution pair is			
	(a) (1, 2)	(b) (2, 3)	(c) (2, 4)	(d)	(1, 3)
19.	In the equation $4^{x+2} = 2^2$	2x+3+48, the value of x will be			
	(a) $-\frac{3}{2}$	(b) - 2	(c) - 3	(d)	1
20.	The roots of the equation	$4^x - 3.2^{x+3} + 128 = 0$ are			[AMU 1985]
	(a) 1 and 2	(b) 2 and 3	(c) 3 and 4	(d)	4 and 5
21.	The root of the equation	$\sqrt{2x-2} + \sqrt{x-3} = 2$ is			[Roorkee 1979]
	(a) 3	(b) 19	(c) 3, 19	(d)	3, -19
22.	The solution of the equa	tion $\sqrt{x+1} + \sqrt{x-1} = 0$ is			[IIT 1978]
	(a) 1	(b) - 1	(c) 5/4	(d)	None of these
23.	If $x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots + \cos 6}}}$	= then			[Pb.CET 1999]
23.	(a) x is an irrational number $\frac{1}{x} = \frac{1}{x} = $		2 < <i>x</i> < 3	(6)	
				(0)	$x = 3 \tag{d}$
24.	The real values of x whi	ch satisfy the equation $(5+2\sqrt{6})^2$			oos. Warratala CDE 1000l
	(-) 0	(b) $\pm \sqrt{2}$	(c) $\pm 2, \pm \sqrt{2}$		995; Karnataka CET 1993]
	(a) ± 2			(a)	$2,\sqrt{2}$
25.	If one root of the equation	on $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$	is 1 then, its other roots is		[Rajasthan PET 1986]
	(a) $\frac{a(b-c)}{b(c-a)}$	(b) $\frac{c(a-b)}{a(b-c)}$	(c) $\frac{b(c-a)}{a(b-c)}$	(d)	None of these
			()		
26.	The imaginary roots of t	be equation $(x^2 + 2)^2 + 9x^2 - 6x(x)$	(2 ± 2) are		[Roorkee 1986]
27.	(a) $1\pm i$	(b) $2\pm i$	(c) $-1 \pm i$	(d)	None of these
-/.	GM of the roots of the ed	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is	(c) $-1\pm i$		None of these [Rajasthan PET 1997]
-,.	GM of the roots of the ed (a) 6	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3	(c) $-1 \pm i$ (c) -3		None of these
28.	GM of the roots of the ed (a) 6	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3 quation $(x+1)^2 + [x-1]^2 = (x-1)^2 - 1$	(c) $-1 \pm i$ (c) -3		None of these [Rajasthan PET 1997]
	GM of the roots of the ed (a) 6	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3	(c) $-1 \pm i$ (c) -3	(d)	None of these [Rajasthan PET 1997]
28.	GM of the roots of the ed (a) 6 The solution set of the e	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3 quation $(x+1)^2 + [x-1]^2 = (x-1)^2 - 1$ (b) $x \in N$	(c) $-1 \pm i$ (c) -3 $+[x+1]^2$ is	(d)	None of these [Rajasthan PET 1997] ±3
28.	GM of the roots of the ed (a) 6 The solution set of the ed (a) $x \in R$ $\left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right]$ (a) 49	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3 quation $(x+1)^2 + [x-1]^2 = (x-1)^2 - (x-1)^2 + 10 = 0$ (b) $x \in N$ - + 10 = 0 (c) $- 10 = 0$ (d) $- 10 = 0$ (e) $- 10 = 0$ (f) $- 10 = 0$ (f) $- 10 = 0$ (g) $- 10 = 0$ (h) $- 10 = 0$ (e) $- 10 = 0$ (f) $- 10 = 0$ (f) $- 10 = 0$ (g) $- 10 = 0$ (h) $- 10 = 0$ (e) $- 10 = 0$ (f) $- 10 = 0$ (f) $- 10 = 0$ (g) $- 10 = 0$ (h) $- 10$	(c) $-1 \pm i$ (c) -3 $+[x+1]^2$ is	(d)	None of these [Rajasthan PET 1997] ±3
28.	GM of the roots of the ed (a) 6 The solution set of the ed (a) $x \in R$ $\left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right]$ (a) 49	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3 quation $(x+1)^2 + [x-1]^2 = (x-1)^2 - (x-1)^2 + 10 = 0$ (b) $x \in N$ - + 10 = 0 (c) $- 10 = 0$ (d) $- 10 = 0$ (e) $- 10 = 0$ (f) $- 10 = 0$ (f) $- 10 = 0$ (g) $- 10 = 0$ (h) $- 10 = 0$ (e) $- 10 = 0$ (f) $- 10 = 0$ (f) $- 10 = 0$ (g) $- 10 = 0$ (h) $- 10 = 0$ (e) $- 10 = 0$ (f) $- 10 = 0$ (f) $- 10 = 0$ (g) $- 10 = 0$ (h) $- 10$	(c) $-1 \pm i$ (c) -3 $+[x+1]^2$ is (c) $x \in I$	(d)	None of these [Rajasthan PET 1997] ± 3 $x \in Q$
28. 29.	GM of the roots of the ed (a) 6 The solution set of the ed (a) $x \in R$ $\left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right]$ (a) 49	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3 quation $(x+1)^2 + [x-1]^2 = (x-1)^2 - (x-1)^2 + 10 = 0$ (b) $x \in N$ - + 10 = 0 (c) $- 10 = 0$ (d) $- 10 = 0$ (e) $- 10 = 0$ (f) $- 10 = 0$ (f) $- 10 = 0$ (g) $- 10 = 0$ (h) $- 10 = 0$ (e) $- 10 = 0$ (f) $- 10 = 0$ (f) $- 10 = 0$ (g) $- 10 = 0$ (h) $- 10 = 0$ (e) $- 10 = 0$ (f) $- 10 = 0$ (f) $- 10 = 0$ (g) $- 10 = 0$ (h) $- 10$	(c) $-1 \pm i$ (c) -3 $+[x+1]^2$ is (c) $x \in I$	(d)	None of these [Rajasthan PET 1997] ± 3 $x \in Q$ None of these [Karnataka CET 2001]
28. 29.	GM of the roots of the ed (a) 6 The solution set of the ed (a) $x \in R$ $\left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right]$ (a) 49 The value of $x = \sqrt{2 + \sqrt{2}}$	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3 quation $(x+1)^2 + [x-1]^2 = (x-1)^2 - (x-1)^2 + \dots = \left[\frac{1}{4} + \frac{199}{200}\right]$ is (b) $50 = \frac{1}{\sqrt{2 + \dots}}$ is (b) 1	(c) $-1 \pm i$ (c) -3 $+[x+1]^2$ is (c) $x \in I$ (c) 51	(d) (d)	None of these [Rajasthan PET 1997] ± 3 $x \in Q$ None of these [Karnataka CET 2001]
28. 29. 30.	GM of the roots of the ed (a) 6 The solution set of the ed (a) $x \in R$ $\left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right]$ (a) 49 The value of $x = \sqrt{2 + \sqrt{2}}$ (a) -1	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3 quation $(x+1)^2 + [x-1]^2 = (x-1)^2 - (x-1)^2 + \dots = \left[\frac{1}{4} + \frac{199}{200}\right]$ is (b) $50 = \frac{1}{\sqrt{2 + \dots}}$ is (b) 1	(c) $-1 \pm i$ (c) -3 $+[x+1]^2$ is (c) $x \in I$ (c) 51	(d) (d)	None of these [Rajasthan PET 1997] ± 3 $x \in Q$ None of these [Karnataka CET 2001] 3 [DCE 1995]
28. 29. 30.	GM of the roots of the ed (a) 6 The solution set of the ed (a) $x \in R$ $\left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right]$ (a) 49 The value of $x = \sqrt{2 + \sqrt{2}}$ (a) -1 If $x^2 - x + 1 = 0$, then value (a) -1,1	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3 quation $(x+1)^2 + [x-1]^2 = (x-1)^2 - (x-1)^2 + \dots + \left[\frac{1}{4} + \frac{199}{200}\right]$ is (b) 50 $+ \sqrt{2 + \dots}$ is (b) 1 the of x^{3n} is	(c) $-1 \pm i$ (c) -3 $+[x+1]^2$ is (c) $x \in I$ (c) 51 (c) 2 (c) -1	(d) (d) (d)	None of these [Rajasthan PET 1997] ± 3 $x \in Q$ None of these [Karnataka CET 2001] 3 [DCE 1995]
28. 29. 30.	GM of the roots of the ed (a) 6 The solution set of the ed (a) $x \in R$ $\left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right]$ (a) 49 The value of $x = \sqrt{2 + \sqrt{2}}$ (a) -1 If $x^2 - x + 1 = 0$, then value (a) -1,1	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3 quation $(x+1)^2 + [x-1]^2 = (x-1)^2 - (x-1)^2 + \dots = \left[\frac{1}{4} + \frac{199}{200}\right]$ is (b) 50 $\frac{1}{\sqrt{2 + \dots}}$ is (b) 1 all of x^{3n} is (b) 1	(c) $-1 \pm i$ (c) -3 $+[x+1]^2$ is (c) $x \in I$ (c) 51 (c) 2 (c) -1	(d) (d) (d) (d)	None of these [Rajasthan PET 1997] ± 3 $x \in Q$ None of these [Karnataka CET 2001] 3 [DCE 1995]
28. 29. 30.	GM of the roots of the ed (a) 6 The solution set of the ed (a) $x \in R$ $ \left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right] $ (a) 49 The value of $x = \sqrt{2 + \sqrt{2 - 4}}$ (a) -1 If $x^2 - x + 1 = 0$, then value (a) -1,1 For what value of a the (a) 0	(b) $2 \pm i$ quation $x^2 - 18x + 9 = 0$ is (b) 3 quation $(x+1)^2 + [x-1]^2 = (x-1)^2 - (x-1)^2 + \dots + (x-1)^2 = (x-1)^2 - (x-1)^2 = (x-1)^2 - (x-1)^2 = (x-$	(c) $-1 \pm i$ (c) -3 $+[x+1]^2$ is (c) $x \in I$ (c) 51 (c) 2 (d) -1 (e) x-axis (e) ± 10	(d) (d) (d) (d) (d)	None of these [Rajasthan PET 1997] ± 3 $x \in Q$ None of these [Karnataka CET 2001] 3 [DCE 1995] 0 None of these

	(a) 4, - 2	(b) - 4, - 2	(c) 4, 2	(d) - 4, 2
34.	If expression $e^{\{(\sin^2 x + 1)\}}$	$-\sin^4 x + \sin^6 x + \infty) \ln 2$ satisfies the eq	$quation x^2 - 9x + 8 = 0, find the$	e value of $\frac{\cos x}{\cos x + \sin x}$, $0 < x < \frac{\pi}{2}$ [IIIT]
	(a) $\frac{1}{1+\sqrt{3}}$	(b) $\frac{1}{1-\sqrt{3}}$	(c) $\frac{2}{1-\sqrt{2}}$	(d) None of these
35.	The roots of equation	on $\frac{2x+31}{9} + \frac{x^2+7}{x^2-7} = \frac{2x+47}{9}$ are		[Rajasthan PET 1994]
	(a) 3, - 3	(b) 5, - 5	(c) $\sqrt{3}, -\sqrt{3}$	(d) $\sqrt{5}, -\sqrt{5}$
36.	If $x^2 + y^2 = 25$, $xy = 12$	x, then $x = x$		[BIT Ranchi 1992]
	(a) {3, 4}	(b) {3, -3}	(c) {3, 4, -3, -4}	(d) {-3, -3}
37.	The some of all real	roots of the equation $ x-2 ^2$	+ x-2 -2=0 is	[IIT 1997; Himachal CET 2002]
	(a) 2	(b) 4	(c) 1	(d) None of these
38.	A two digit number	is four times the sum and thre	e times the product of its digi	ts. The number is [MP PET 1994]
	(a) 42	(b) 24	(c) 12	(d) 21
39.	The number of real s	solutions of the equation $ x^2 +$	4x + 3 + 2x + 5 = 0 are	[IIT 1988]
	(a) 1	(b) 2	(c) 3	(d) 4
40.	The number of the r	eal values of x for which the e	quality $ 3x^2 + 12x + 6 = 5x + 16$	holds good is [AMU 1999]
	(a) 4	(b) 3	(c) 2	(d) 1
41.	The number of real s	solutions of the equation $\sin e^x$	$=5^{x}+5^{-x}$ is	[IIT 1990, 2002]
	(a) 0	(b) 1	(c) 2	(d) Infinitely many
42.	The number of the r	eal solutions of the equation –	$-x^2 + x - 1 = \sin^4 x$ is	
	(a) 1	(b) 2	(c) O	(d) 4
43.	The number of solut	ions of $\cos x = \frac{ x }{80}$ is		
	(a) 50	(b) 52	(c) 53	(d) None of these
44.	The equation $\sqrt{(x+1)}$	$\sqrt{1-\sqrt{(x-1)}} = \sqrt{(4x-1)}$ has		[IIT 1997]
	(a) No solution	(b) One solution	(c) Two solutions	(d) More than two solution
45.	The number of real i	roots of $\sqrt{5x^2 - 6x + 8} - \sqrt{5x^2 - 6}$		[Roorkee 1984]
1 3•	(a) 1	(b) 2	(c) 3	(d) 4
46.	` '	of the quadratic equation 8 se	(-) 5	[Pb. CET 1989,94]
40.	(a) Infinite	(b) 1	(c) 2	(d) 0
47.				$-7 \sin x + 2 = 0$ is [IIT 1998, MP PET 20]
T /•	(a) 0	(b) 5	(c) 6	(d) 10
4 Q	` '	per of real roots of the equation	• •	[MP PET 2001]
48.		(b) 3	$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\$	[MP PEI 2001] (d) 2n
	(a) 2	–	• •	• •
49.	The equation $x + \frac{2}{1-}$	$\frac{1}{x} = 1 + \frac{2}{1 - x}$, has	[IIT 1983;	MNR 1998; Kurukshetra CEE 1993]
	(a) No real root	(b) One real root	(c) Two equal roots	(d) Infinitely many roots
50.	The number of real	roots of equation $(x-1)^2 + (x-2)^2$	$(x^2)^2 + (x-3)^2 = 0$ is	[IIT 1990; Karnataka CET 1998]
	(a) 2	(b) 1	(c) O	(d) 3
51.	The number of roots	s of the equation $\log(-2x) = 2\log(x)$	(x+1) are	[AMU 2001]
	(a) 3	(b) 2	(c) 1	(d) None of these
52.	Number of real roots	s of the equation $\sum_{r=1}^{10} (x-r)^3 = 0$	is	
	(a) o	(b) 1	(c) 2	(d) 3
53.	The minimum value	of $ x-3 + x-2 + x-5 $ is		
	(a) 3	(b) 7	(c) 5	(d) 9

54.	Rationalised denomina	ator of $\frac{1}{\sqrt{2} + \sqrt{3} + \sqrt{5}}$ is		
	(a) $\frac{2\sqrt{3} + 3\sqrt{2} - \sqrt{30}}{12}$	(b) $\frac{3\sqrt{2} - 2\sqrt{3} - \sqrt{30}}{15}$	(c) $\frac{2\sqrt{3} - 3\sqrt{2} + \sqrt{40}}{10}$	(d) $\frac{2\sqrt{3} + 3\sqrt{2} - \sqrt{20}}{15}$
55.	If $x = \sqrt{7 + 4\sqrt{3}}$, then $x = \sqrt{3}$	$c + \frac{1}{r} =$		[EAMCET 1994]
	(a) 4	(b) 6	(c) 3	(d) 2
56.	If $\log_2 x + \log_x 2 = \frac{10}{3} = \log_x 2$	$\log_2 y + \log_y 2$ and $x \neq y$, then x	+ <i>y</i> =	[EAMCET 1994]
57.	(a) 2 The equation $\log_e x + \log_e x$	(b) $65/8$ $g_e(1+x)=0$ can be written as	(c) 37/6 [Kuru	(d) None of these akshetra CEE 1993; MP PET 1989]
	• •	3 5	(c) $x^2 + x + 1 = 0$	
58.	If $f(x) = 2x^3 + mx^2 - 13x$		equation $f(x) = 0$, then the value	e of m and n are [Roorkee 1990]
	(a) - 5, - 30	(b) - 5, 30	(c) 5, 30	(d) None of these
59.	(a) 1	utions of the equation $e^x = x$ (b) 2	(c) 0	(d) None of these
60.	The sum of the real roo	ots of the equation $x^2 + x - 6$	=0 is	
	(a) 4	(b) 0	(c) - 1	(d) None of these
61.			$(a^2 - 5a + 6)x + a^2 - 4 = 0$ is an ide	
_	(a) 0	(b) 2	(c) 1	(d) 3
62.		_	$(x+1)^2 + b(x^2 - 3x - 2) + x + 1 = 0$ is	•
_	(a) 0	(b) 1	(c) 2	(d) Infinite
63.		then the number of values		(1)
	(a) 2	(b) 4	(c) 1	(d) None of these
64.	The number of real sol	utions of the equation $\frac{6-x}{x^2-4}$	$x = 2 + \frac{x}{x+2}$ is	
	(a) Two	(b) One	(c) Zero	(d) None of these
65.	The number of real sol	utions of $\sqrt{x^2 - 4x + 3} + \sqrt{x^2 - 9}$	$0 = \sqrt{4x^2 - 14x + 6}$ is	
• 5	(a) One	(b) Two	(c) Three	(d) None of these
		Adva	ince Level	
66.	If $-1 \le x < 0$, then solut	x = x + 1 - x	x + 3 x - 1 x - 2 = x + 2 is	[IIT 1976]
	(a) 1, 5/3	(b) 5/3	(c) 1/3	(d) None of these
67.	The real roots of $ x ^3$	$-3x^2 + 3 x - 2 = 0$ are	, -	[DCE 1997]
	(a) 0, 2	(b) ± 1	(c) ± 2	(d) 1, 2
68.	The number of real sol	utions of the equation $2^{x/2}$ +	$(\sqrt{2}+1)^x = (5+2\sqrt{2})^{x/2}$ is	
	(a) One	(b) Two	(c) Four	(d) Infinite
69.	The number of negativ	te integral solutions of $x^2.2^{x+1}$	$1 + 2^{ x-3 +2} = x^2 \cdot 2^{ x-3 +4} + 2^{x-1}$ is	[DCE 1993]
	(a) 0	(b) 1	(c) 2	(d) 4
70.	The equation $e^x - x - 1 = 0$ (a) Only one real root	x = 0 (b)	At least two real roots	[Kurukshetra CEE 1998] (c) Exactly two real roots(d)
71.		ots of the equation $e^{\sin x} - e^{-\sin x}$		[IIT 1982]
	(a) 1	(b) 2	(c) Infinite	(d) None of these
72.	It a, b, c are positive re	eal numbers, then the numbe	r of real roots of the equation	
				[DCE 1998, UPSEAT 1999]

	1	1		
	(a) 2	(b) 4	(c) 0	(d) None of these
73.	The number of real sol	utions of equation $\log_{10}[98 + \sqrt{[x^3]}]$	$\overline{(3-x^2-12x+36]}$] = 2 are	
	(a) 4	(b) 1	(c) 2	(d) 3
74.	The equation $x^{(3/4)(\log_2 x)}$	$(\log_2 x)^{-5/4} = \sqrt{2}$ has		[IIT 1989]
	(a) At least one real so		(b)	Exactly three real solutions
75.	(c) Exactly one irration The number of solution	nal solution as of $ [x]-2x =4$, where $[x]$ is	(d) the greatest integer is $\leq x$, i	All the above s
	(a) 2	(b) 4	(c) 1	(d) Infinite
76.	Let $f(x)$ be a function of	defined by $f(x) = x - [x]$, $0 \neq x \in R$	[x], where $[x]$ is the greatest in	nteger less than or equal to x .
	then the number of sol	utions of $f(x) + f\left(\frac{1}{x}\right) = 1$		
	(a) O	(b) Infinite	(c) 1	(d) 2
77.	If m be the number of i	integral solutions of equation 2	$2x^2 - 3xy - 9y^2 - 11 = 0$ and <i>n</i> be	e the number of real solutions
	of equation $x^3 - [x] - 3 =$	= 0, then $m =$		
	(a) n	(b) 2n	(c) n/2	(d) 3n
78.	The set of values of <i>c</i> fe	or which $x^3 - 6x^2 + 9x - c$ is of the	ne form $(x-\alpha)^2(x-\beta)$ (α , β re	al) is given by
	(a) {0}	(b) {4}	(c) {0, 4}	(d) Null set
79.	If $0 < a_r < 1$ for $r = 1$,	2, 3,, k and m be the number	per of real solutions of equa	ation $\sum_{r=1}^{k} (a_r)^x = 1$ and n be the
	number of real solution	n of equation $\sum_{r=1}^{k} (x - a_r)^{101} = 0$, th	nen	
	(a) $m=n$	(b) $m \le n$	(c) $m \ge n$	(d) $m > n$
3o.	Let $P_n(x) = 1 + 2x + 3x^2 + $	$\dots + (n+1)x^n$ be a polynomial	such that n is even. Then	the number of real roots of
	$P_n(x) = 0$ is			
				[DCE 1994]
	(a) 0	(b) <i>n</i>	(c) 1	(d) None of these
31.	_	sible triplets (a_1, a_2, a_3) such that		
22	(a) Zero	(b) One	(c) Three	(d) Infinite
32.		uation $2x - 2[x] = 1$, where $[x] = 1$		
	(a) $x = n + \frac{1}{2}, n \in \mathbb{N}$	(b) $x = n - \frac{1}{2}, n \in \mathbb{N}$	(c) $x = n + \frac{1}{2}, n \in \mathbb{Z}$	(d) $n < x < n+1, n \in \mathbb{Z}$
33.	The number of real sol	utions of $1 + e^x - 1 = e^x (e^x - 2)$ i	S	
	(a) o	(b) 1	(c) 2	(d) 4
34.		$\cos^2 x = x + \frac{1}{x}, 0 < x \le \frac{\pi}{2}$ has		
	(a) One real solution		(b) No real solution	
	(c) Infinitely many rea	al solutions	(d)	None of these
35.	If $y \neq 0$ then the number	er of values of the pair (x, y) su	$ \text{ ich that } x + y + \frac{x}{y} = \frac{1}{2} \text{ and } (x + y) $	$y)\frac{x}{y} = -\frac{1}{2}, \text{ is}$
	(a) 1	(b) 2	(c) O	(d) None of these
36.		utions of the equation $\log_{0.5} x =$	x is	
	(a) 1	(b) 2	(c) 0	(d) None of these
37.		solutions of the equation $(x-2)^2$		
	(a) 2	(b) - 4	(c) O	(d) None of these

88.	3. If $0 < x < 1000$ and $\left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x}{3} \right\rfloor + \left\lfloor \frac{x}{5} \right\rfloor = \frac{31}{30}x$, where [x] is the greatest integer less than or equal to x, the number of				
	possible values of <i>x</i> is (a) 34	(b) 32	(c) 33	(d) None of these	
89.		$+(x+1)^2 = 25$, where (x) is the left			
	(a) (2, 4)	(b) $(-5, -4] \cup (2, 3]$		(d) None of these	
90.		x] = the greatest integer less th			
<i>y</i> 0.	(a) $x = 2, -1$	(b) $x \in [2,3)$	(c) $x \in [-1,0)$	(d) None of these	
91.	The solution set of $\frac{x+}{x}$	$\frac{1}{ x } + x+1 = \frac{(x+1)^2}{ x }$ is			
	(a) $\{x \mid x \ge 0\}$	(b) $\{x \mid x > 0\} \cup \{-1\}$	(c) {-1, 1}	(d) $\{x \mid x \ge 1 \text{ or } x \le -1\}$	
92.	If $a.3^{\tan x} + a.3^{-\tan x} - 2 = 0$	has real solutions, $x \neq \frac{\pi}{2}, 0 \leq x$	$\leq \pi$, then the set of possible	values of the parameter a is	
	(a) [-1, 1]	(b) [-1, 0)	(c) (0, 1]	(d) (o, +∞)	
				Nature of roots	
		Basic	Loval		
		Basic I	Level		
93.	The roots of the quadra	atic equation $2x^2 + 3x + 1 = 0$, are	e	[IIT 1983]	
	(a) Irrational	(b) Rational	(c) Imaginary	(d) None of these	
94.	The roots of the equation		(a) Immetional and coupl	[Rajasthan PET 1986]	
05	(a) Real and equal	(b) Rational and equal	(c) Irrational and equal tion $(l-m)x^2 - 5(l+m)x - 2(l-m)$	(d) Irrational and unequal = 0 are[IIT 1979; Rajasthan PET 198	
95.	(a) Complex	(b) Real and distinct	(c) Real and equal	(d) None of these	
96.	-	ntegers, then the roots of the ed	-		
	(a) Rational	(b) Irrational	(c) Non-real	(d) Equal	
97.	If $k \in (-\infty, -2) \cup (2, \infty)$, the	en the roots of the equation x^2	+2kx + 4 = 0 are	[DCE 2002]	
	(a) Complex	(b) Real and unequal	(c) Real and equal	(d) One real and one	
imag	inary	-	-		
98.	Let a , b and c be real has	numbers such that $4a+2b+c=$	0 and $ab > 0$. Then the quadratic	dratic equation $ax^2 + bx + c = 0$ [IIT 1990]	
	(a) Real roots	(b) Complex roots	(c) Purely imaginary root	ts (d) Only one root	
99.		e roots of the equation $(x-a)(x-a)$		[IIT 1984]	
	(a) Real and distinct	(b) Real and equal	(c) Imaginary	(d) None of these	
100.		at least one of the equations x^2			
	(a) Real roots	(b) Purely imaginary roots	• •	(d) None of these	
	(a) All real and equal	(x + G = 0), if G and H are real and (b) All real and distinct	(c) One real and two images		
102.	The equation $(x-a)^3 + (x-a)^3 + ($	$(x-b)^3 + (x-c)^3 = 0$, has			
	(a) All the roots real(c) Three real roots na	mely x = a, x = b, x = c	(b) One real and two images(d) None of these	ginary roots	
103.	For the equation $ x^2 $ +	x - 6 = 0, the roots are		[EAMCET 1988, 93]	
	(a) One and only one r		(b) Real with sum one		
	(c) Real with sum zero		(d) Real with product zer	0	
104.		both the roots of the equation		[IIT 1980]	
	(a) Are real and negati	ive(b) Have negative real parts	(c) Are rational numbers	(d) None of these	

105.	Let one root of $ax^2 + bx + bx$	-c = 0, where a , b , c are integers	be $3 + \sqrt{5}$, then the other r	coot is [MNR 1982]
	(a) $3 - \sqrt{5}$	(p) 3	(c) $\sqrt{5}$	(d) None of these
106.		quation $x^3 - 5x^2 + 9x - 5 = 0$, then	the other roots are	[Kerala (Engg.) 2002]
		(b) -1 and $3+i$	(c) 0 and 1	(d) -1 and $i-2$
107.	If a, b, c are $abc^2x^2 + (3a^2 + b^2)cx - 6a^2 - 6a^2$	nonzero, unequal rational $-ab + 2b^2 = 0$ are	numbers then the	roots of the equation
	(a) Rational	(b) Imaginary	(c) Irrational	(d) None of these
108.	The equation $x^2 - 6x + 8$	$+\lambda(x^2-4x+3)=0$, $\lambda \in R$, has		
	(a) Real and unequal ro	ots for all λ	(b) Real roots for $\lambda < 0$ o	only
	(c) Real roots for $\lambda > 0$	only	(d)	Real and unequal roots for
$\lambda = 0$	•			
109.	-	ation $(1-a)x^2 + 3ax - 1 = 0$ are		
	(a) One positive and on	e negative	(b)	Both negative
	(c) Both positive		(d) Both nonreal complex	
110.	If the roots of the equat	ion $ax^2 + x + b = 0$ be real, then the	-	$-4\sqrt{ab} x + 1 = 0$ will be
	(a) Rational	(b) Irrational	(c) Real	(d) Imaginary
111.	If the roots of the equat	ion $x^2 - 8x + (a^2 - 6a) = 0$ are real,	then	[Rajasthan PET 1987, 97]
	(a) $-2 < a < 8$	(b) $2 < a < 8$	(c) $-2 \le a \le 8$	(d) $2 \le a \le 8$
112.	If the roots of the given	equation $(\cos p - 1)x^2 + (\cos p)x + \sin p$	$\sin p = 0$ are real, then	[IIT 1990; Rajasthan PET 1995]
	(a) $p \in (-\pi, 0)$	(b) $p \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	(c) $p \in (0, \pi)$	(d) $p \in (0, 2\pi)$
113.	The greatest value of	a non-negative real number λ	for which both the equa	ations $2x^2 + (\lambda - 1)x + 8 = 0$ and
	$x^2 - 8x + \lambda + 4 = 0$ have re		1	[AMU 1990]
	(a) 9	(b) 12	(c) 15	(d) 16
114.	, , ,	d are in A.P., then roots of the ed		
1-			_	
	(a) $\left \frac{r}{p} - 7 \right \ge 4\sqrt{3}$	' '	(c) For all values of <i>p</i> , <i>r</i>	
115.	Let $p, q \in \{1, 2, 3, 4\}$. The	number of equations of the form	$px^2 + qx + 1 = 0 \text{ having rea}$	l roots is [IIT 1994]
	(a) 15	(b) 9	(c) 7	(d) 8
116.	The least integer k which	th makes the roots of the equation		is [Kerala (Engg.) 2002]
	(a) 4	(b) 5	(c) 6	(d) 7
117.		oots α , β of the equation $ax^2 + bx$	=	
	(a) $ \alpha = \beta $	(b) $ \alpha > 1$	(c) $ \beta < 1$	(d) None of these
118.	If roots of the equation	$a(b-c)x^{2} + b(c-a)x + c(a-b) = 0$ are	e equal,, then a, b, c are in[Roorkee 1993; Rajasthan PET 2001]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
119.	If the equation $(m-n)x^2$	+(n-l)x+l-m=0 has equal roots	s, then l , m and n satisfy	[DCE 2002; EAMCET 1990]
	(a) $2l = m + n$	(b) $2m = n + l$	(c) $m=n+l$	(d) $l=m+n$
120.	The condition for the ro	ots of the equation $(c^2 - ab)x^2 - 2ab$	$(a^2 - bc)x + (b^2 - ac) = 0$ to be	equal is [TS Rajendra 1982]
	(a) $a = 0$	(b) $b = 0$	(c) $c = 0$	(d) None of these
121.	If the roots of the equat	ion $(a^2 + b^2)t^2 - 2(ac + bd)t + (c^2 + d^2)$	=0 are equal, then	[MP PET 1996]
	(a) $ab = dc$	(b) $ac = bd$	(c) $ad+bc=0$	(d) $\frac{a}{b} = \frac{c}{d}$
122.	If one root of $x^2 + px + 12$	2 = 0 is 4 and roots of the equati	on $x^2 + px + q = 0$ are equal,	, then q is equal to [Rajasthan PET
	(a) 49/4	(b) 4/49	(c) 4	(d) None of these
123.	If the roots of the equat	ion $x^2 + 2mx + m^2 - 2m + 6 = 0$ are	same, then the value of m	will be [MP PET 1986]

			Quadratic Equa	tions and Inequations 183		
	(a) 3	(b) O	(c) 2	(d) -1		
124.	If the roots of the ed	quation $x^2 - 15 - m(2x - 8) = 0$	are equal then m is equal to	[Rajasthan PET 1985]		
	(a) 3, - 5	(b) - 3, 5	(c) 3, 5	(d) - 3, - 5		
125.	For what value of k	will the equation $x^2 - (3k - 1)x$	$x + 2k^2 - 11 = 0$ have equal roots	[Karnataka CET 1998]		
	(a) 5	(b) 9	(c) Both the above	(d) o		
126.	The value of k for w	hich the quadratic equation	$kx^2 + 1 = kx + 3x - 11x^2 = 0$ has real	and equal roots are[BIT Ranchi		
	(a) -11, - 3	(b) 5, 7	(c) 5, -7	(d) None of these		
127.	If the roots of $4x^2 +$	px + 9 = 0 are equal, then absorption	olute value of <i>p</i> is	[MP PET 1995]		
	(a) 144	(b) 12	(c) - 12	(d) ± 12		
128.	The value of k for w	which $2x^2 - kx + x + 8 = 0$ has ec	ual and real roots are	[BIT Ranchi 1990]		
	(a) - 9 and - 7		(c) - 9 and 7	(d) 9 and - 7		
129.	The roots of $4x^2 + 6p$	px + 1 = 0 are equal, then the v	value of p is	[MP PET 2003]		
	(a) 4	(b) 1	(2) 2	(4) 4		
	(a) $\frac{4}{5}$	(b) $\frac{1}{3}$	(c) $\frac{2}{3}$	(d) $\frac{4}{3}$		
130.	If the equation $x^2 - 6$	$(2+m)x + (m^2 - 4m + 4) = 0$ has c	coincident roots, then	[Roorkee 1991]		
				2		
	(a) $m = 0, m = 1$	(b) $m = 0, m = 2$	(c) $m = \frac{2}{3}, m = 6$	(d) $m = \frac{2}{3}, m = 1$		
131.	If two roots of the e	quation $x^3 - 3x + 2 = 0$ are sar	ne, then the roots will be	[MP PET 1985]		
	(a) 2, 2, 3	_	(c) - 2, 3, 3	(d) - 2, - 2, 1		
132.	The equation $\ x-1\ $	+a =4 can have real solution	ons for x if a belongs to the interv	val		
	(a) $(-\infty, 4]$	(b) $(-\infty, -4]$	(c) (4, ∞)	(d) [- 4, 4]		
133.	The set of values of	m for which both roots of th	ne equation $x^2 - (m+1)x + m + 4 = 0$	are real and negative consists		
	of all <i>m</i> such that					
				[AMU 1992]		
	(a) $-3 < m \le -1$	(b) $-4 < m \le -3$	(c) $-3 \le m \le 5$	(d) $-3 \ge m$ or $m \ge 5$		
134.	Both the roots of the given equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are always					
				IIT 1980; Kurukshetra CEE 1998]		
	(a) Positive	(b) Negative	(c) Real	(d) Imaginary		
135.	If $P(x) = ax^2 + bx + c$ a	and $Q(x) = -ax^2 + dx + c$ where	$ac \neq 0$, then $P(x).Q(x) = 0$, has at	least [IIT 1985]		
	(a) Four real roots	(b) Two real roots	(c) Four imaginary root	s (d) None of these		
136.	The conditions that	the equation $ax^2 + bx + c = 0$ h	as both the roots positive is that	[SCRA 1990]		
	(a) a, b and c are of	the same sign	(b)	a and b are of the same		
sign						
	(c) b and c have the same sign opposite to that of a (d) a and c have the same sign opposite to that of b					
137.	If [x] denotes the in	ntegral part of x and $k = \sin^-$	$\frac{1+t^2}{2t} > 0$, then the integral value	ue of α for which the equation		
	$(x - [k])(x + \alpha) - 1 = 0$ h	as integral roots is				
	(a) 1	(b) 2	(c) 4	(d) None of these		
138.	If the roots of the e	quation $ax^2 + bx + c = 0$ are re	al and of the form $\frac{\alpha}{\alpha-1}$ and $\frac{\alpha+1}{\alpha}$	$\frac{+1}{a}$, then the value of $(a+b+c)^2$		
	÷a			[AMU 2000]		
	is			[AMU 2000]		

139.	Equation $\frac{a^2}{x-\alpha} + \frac{b^2}{x-\beta} + \frac{a^2}{x-\beta}$	$\frac{2}{-\gamma} = m - n^2 x$ (a, b, c, m, $n \in \mathbb{R}$	r) has necessarily			
	(a) All the roots real		(b) All the roots imaginar	ry		
	(c) Two real and two ima	iginary roots	(d) Two rational and two	irrational roots		
140.	If $\cos \theta$, $\sin \phi$, $\sin \theta$ are in	G.P. then roots of $x^2 + 2 \cot \phi$	6x + 1 = 0 are always			
	(a) Equal	(b) Real	(c) Imaginary	(d) Greater than 1		
141.	-	function and attains only	• •	= 3, then roots of equation		
	$f(1)x^2 + f(3)x + f(5) = 0$ are					
	(a) Imaginary	(b) Rational	(c) Irrational	(d) Real and equal		
142.	• •	0, where $a \neq 0$ and coefficien	nts are real, are non-real com	<u>-</u>		
•		(b) $4a+c < 2b$	(c) $4a+c=2b$	(d) None of these		
143.	The equation $(a+2)x^2 + (a-1)x^2 + (a-1)x^$	$(-3)x = 2a - 1, a \ne -2$ has roots 1	rational for			
	(a) All rational values of	a except $a = -2$	(b) All real values of a ex	a = -2		
	(c) Rational values of <i>a</i> >	_	(d)	None of these		
		_				
144.	The quadratic equation x	$^2 - 2x - \lambda = 0, \lambda \neq 0$				
	(a) Cannot have a real ro	ot if $\lambda < 1$				
	(b) Can have a rational re					
	(c) Cannot have an integr	where $n = 0, 1, 2, 3,$				
	(d) None of these					
145.	If the roots of the equation	on $x^2 + px + q = 0$ are α and β	and roots of the equation x^2	$-xr + s = 0$ are α^4 , β^4 , then the		
	roots of the equation x^2 –	$4qx + 2q^2 - r = 0 $ will be		[IIT 1989]		
	(a) Both negative		(b) Both positive			
	(c) Both real		(d) One negative and one	e positive		
146.	If equation $a(b-c)x^2 + b(c-c)x^2 + b(c-$	-a) $x + c(a - b) = 0$ has equal ro	ots, a , b , $c > 0$, $n \in N$, then			
	$(a) a^n + c^n \ge 2b^n$	(b) $a^n + c^n > 2b^n$	$(c) a^n + c^n \le 2b^n$	$(d) a^n + c^n < 2b^n$		
	$\sum_{k=1}^{k-1} x^{2r}$					
147.	If $\frac{x=0}{\sum_{r=0}^{k-1} x^r}$ is a polynomial	in x for two values of p and	q of k , then roots of equation	$x^2 + px + q = 0 $ cannot be		
	(a) Real	(b) Imaginary	(c) Rational	(d) Irrational		
148.	If for $x > 0$, $f(x) = (a - x^n)^1$	$g(x) = x^2 + px + q, p, q \in R$ a	and equation $g(x) - x = 0$ has i	imaginary roots, then number		
	of real roots of equation	of real roots of equation $g(g(x)) - f(f(x)) = 0$ is				
	(a) 0	(b) 2	(c) 4	(d) None of these		
149.	Let $p, q \in \{1, 2, 3, 4\}$. The	number of equations of the	form $px^2 + qx + 1 = 0$ having re-	eal and unequal roots is		
	(a) 15	(b) 9	(c) 7	(d) 8		
150.	If α_1, α_2 and β_1, β_2 are the	ne roots of the equations ax	$a^2 + bx + c = 0$ and $px^2 + qx + r =$	0 respectively and system of		
	equations $\alpha_1 y + \alpha_2 z = 0$ an	d $\beta_1 y + \beta_2 z = 0$ has a non-zero	solution. Then	[IIT 1987]		
	(a) $a^2qc = p^2br$	(b) $p^2br = q^2ac$	$(c) c^2ar = r^2pb$	(d) None of these		
151.	If a, b, c, d are for $(x-a)(x-c) + 2(x-b)(x-d) =$		an increasing AP then	the roots of the equation		
	(a) Real and distinct	(b) Nonreal complex	(c) Real and equal	(d) Integers		
152.	If a, b, c are three distinct	t positive real numbers then	the number of real roots of	$ax^2 + 2b x - c = 0$ is		

	(a) 4	(b) 2	(c) 0	(d) None of these
53.	If $a \in R$, $b \in R$ then t	the equation $x^2 - abx - a^2 = 0$ has		
	(a) One positive roo	t and one negative root	(b) Both roots positive	
	(c) Both roots negat	ive	(d) Non-real roots	
54.	The number of integ	gral values of a for which $x^2 - (a$	-1)x + 3 = 0 has both roots po	sitive and $x^2 + 3x + 6 - a = 0$ has
	both roots negative i	is		
	(a) 0	(b) 1	(c) 2	(d) Infinite
55.	The quadratic equat	ions $x^2 + (a^2 - 2)x - 2a^2 = 0$ and x^2	-3x + 2 = 0 have	
	(a) No common root	· · · ·	(b)	Exactly one common root
or al	$ll a \in R$			Zauctiy one common root
	(c) Two common ro	ots for some $a \in R$	(d) None of these	
56.	If $f(x) = \frac{x^2 - 1}{x^2 + 1}$ for ev	ery real number x then the mini	mum value of f	
	(a) Does not exist be	ecause f is unbounded	(b) Is not attained even	though <i>f</i> is bounded
	(c) Is equal to 1		(d) Is equal to -1	
57.	-	distinct then $f(x,y) = x^2 + 4y^2 + 9$	-	
٠,٠	(a) Non-negative	(b) Nonpositive	(c) Zero	(d) None of these
-0	•	•	` '	(d) None of these
58.		the factors of the expression $a(x)$		413.33
		nt (b) Real and identical	(c) Complex	(d) None of these
59.	If <i>a</i> , <i>b</i> , <i>c</i> are in H.P.	then the expression $a(b-c)x^2 + b(a)$	(c-a)x + c(a-b)	
	(a) Has real and dis		(b)	Is a perfect square
	(c) Has no real factor	or	(d) None of these	
60.	If a, b, c are in G.P.,	where a , c are positive, then the	e equation $ax^2 + bx + c = 0$ has	
	(a) Real roots		(b) Imaginary roots	
		1: w where w is a nonreal cube	root of unity	(d) Ratio of roots = $b : ac$
61.	The polynomial (ax^2)	$+bx+c$) (ax^2-dx-c) $ac \neq 0$, has		
	(a) Four real zeros	(b) At least two real zeros	(c) At most two real zer	os (d) No real zeros
			Palation between	veen Roots and Coefficient
			Relation betw	reen Roots and Coefficient
		Basi	c Level	
62.	If α , β are roots of the	ne equation $ax^2 + bx + c = 0$, then	the value of $\alpha^3 + \beta^3$ is	
		[Kurukshetra CE	E 1991; BIT Ranchi 1998; MP PI	ET 1994; Rajasthan PET 1989, 96
	(a) $\frac{3abc + b^3}{a^3}$	(b) $\frac{a^3 + b^3}{a^3 + b^3}$	(c) $\frac{3abc - b^3}{a^3}$	(d) $\frac{b^3-3abc}{a^3-3abc}$
	a^3	3 <i>ab</i>	a^3	a^3
63.	If α , β are roots of the	ne equation $x^2 - (1 + n^2)x + \frac{1}{2}(1 + n^2)$	$+n^4$) = 0, then $\alpha^2 + \beta^2$ is equal	l to [Rajasthan PET 1996]
	(a) 2n	(b) n^2	(c) n^3	(d) $2n^2$
64.		ots of the equation $ax^2 + bx + c = 0$) (a ≠ O: a b c being differen	(t) then $(1 + \alpha + \alpha^2)(1 + \beta + \beta^2) = \Gamma$
- 4.	(a) Zero	(b) Positive	(c) Negative	(d) None of these
			1	1
65.	If α , β are the roots of	of the equation $8x^2 - 3x + 27 = 0$,	then the value of $\left(\frac{\alpha^2}{\beta}\right)^{\frac{3}{3}} + \left(\frac{\beta^2}{\alpha}\right)^{\frac{3}{3}}$	$\frac{1}{2}$ is [AMU 1990]
	(a) $\frac{1}{3}$	(b) $\frac{1}{4}$	(c) $\frac{7}{2}$	(d) 4
	$\frac{3}{3}$	$\frac{6}{4}$	$\frac{\sqrt{2}}{2}$	(u) 4
66.	If α , β are the roots of	of the equation $x^2 + px + p^2 + q = 0$, then the value of $\alpha^2 + \alpha\beta + \beta$	$\beta^2 + q$ is equal to [AMU 1993]
	(a) O	(b) 1	(c) q	(d) 2q
	\-'/ -	\-/ -	\-/ T	(, - ₁

167.	If α , β are the roots of the	ne equation $x^2 - p(x+1) - c = 0$, the	$nen (\alpha+1)(\beta+1) = [1]$	BITS Ranchi 2000; Him. CET 2001]
	(a) c	(b) c - 1	(c) 1 - c	(d) None of these
168.	If α , β , γ are the roots of	the equation $x^3 + 4x + 1 = 0$, then	$(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1}$	$)^{-1} = $ [EAMCET 2003]
	(a) 2	(p) 3	(c) 4	(d) 5
169.	If roots of $x^2 - 7x + 6 = 0$	are α , β then $\frac{1}{\alpha} + \frac{1}{\beta} =$	[R	ajasthan PET 1990, 95; MNR 1981]
	(a) 6/7	(b) 7/6	(c) 7/10	(d) 8/9
170.	If α , β are the roots of x	$x^{2} - 2x + 4 = 0$, then $\alpha^{5} + \beta^{5}$ is equ	al to	[EAMCET 1990]
	(a) 16	(b) 32	(c) 64	(d) None of these
171.	If the roots of the equat	ion $ax^2 + bx + c = 0$ are α , β , then	the value of $\alpha \beta^2 + \alpha^2 \beta + \alpha$	will be[EAMCET 1980; AMU 1984]
	(a) $\frac{c(a-b)}{a^2}$	(b) o	(c) $-\frac{bc}{a^2}$	(d) None of these
172.	If α , β be the roots of the	e equation $2x^2 - 35x + 2 = 0$, then	the value of $(2\alpha - 35)^3$. (2)	$(\beta-35)^3$ is equal to [Bihar CEE 1994]
	(a) 1	(b) 64	(c) 8	(d) None of these
173.	If α and β are roots of α	$x^2 + 2bx + c = 0$, then $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}}$ is	equal to	[BITS Ranchi 1990]
	(a) $\frac{2b}{ac}$	(b) $\frac{2b}{\sqrt{ac}}$	(c) $-\frac{2b}{\sqrt{ac}}$	(d) $-\frac{b}{\sqrt{2}}$
174.	If α , β are the roots of the	the equation $x^2 + 2x + 4 = 0$, then	$\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is equal to	[Kerala (Engg.) 2002]
	2	(b) $\frac{1}{2}$	(c) 32	(d) $\frac{1}{4}$
175.		nation $x^3 + ax^2 + bx + c = 0$, then a	$e^{-1} + \beta^{-1} + \gamma^{-1} =$	[EAMCET 2002]
	(a) a/c	(b) -b/c	(c) b/a	(d) c/a
176.		$3x + 1 = 0$, then the value of $\alpha^3 + \beta$		[MP 1994; BIT Ranchi 1990]
100	(a) 9	(b) 18	(c) - 9	(d) -18 s 8/7, then the equation is [AMU 2001]
177.		(b) $7x^2 - 16x + 5 = 0$		(d) $3x^2 - 12x + 7 = 0$
178.		that A.M. of its roots is A and G		[HT 1968, 74]
_, -,	(a) $t^2 - 2At + G^2 = 0$			(d) None of these
179.	, ,			whose roots are sin A and tan A [Roorkee 1972]
	(a) $15x^3 - 8x + 16 = 0$	(b) $15x^2 + 8x - 16 = 0$	(c) $15x^2 - 8\sqrt{2}x + 16 = 0$	(d) $15x^2 - 8x - 16 = 0$
180.		quadratic whose roots are $a-2$	and $b-2$ where a and b	b are the roots of $x^2 - 3x + 1 = 0$,
	then			[Kerala (Engg.) 2002]
	(a) $p = 1, q = 5$	-	(c) $p = -1, q = 1$	
181.	-		=	ets are p^2q and pq^2 will be [MP PET 19
		(b) $x^2 - abx + b^3 = 0$	(c) $bx^2 + x + a = 0$	(d) $x^2 + ax + ab = 0$
182.		ts are $\frac{1}{3+\sqrt{2}}$ and $\frac{1}{3-\sqrt{2}}$ is		[MP PET 1994]
	(a) $7x^2 - 6x + 1 = 0$	(b) $6x^2 - 7x + 1 = 0$	(c) $x^2 - 6x + 7 = 0$	(d) $x^2 - 7x + 6 = 0$
183.	If α , β are the roots of the	ne equation $lx^2 + mx + n = 0$ then	the equation whose roots	s are $\alpha^3 \beta$ and $\alpha \beta^3$ is [MP PET 1997]
	(a) $l^4x^2 - nl(m^2 - 2nl)x + n^4$	$^{4} = 0$	(b) $l^4x^2 + nl(m^2 - 2nl)x + nl(m^2 -$	$u^4 = 0$
	(c) $l^4x^2 + nl(m^2 - 2nl)x - n^2$	$^{4} = 0$	(d) $l^4x^2 - nl(m^2 + 2nl)x + nl$	$n^4 = 0$

184.	If α , β are the roots of 9	$x^2 + 6x + 1 = 0$, then the equation	with the roots $\frac{1}{\alpha}, \frac{1}{\beta}$ is	[EAMCET 2000]
	(a) $2x^2 + 3x + 18 = 0$	(b) $x^2 + 6x - 9 = 0$	(c) $x^2 + 6x + 9 = 0$	(d) $x^2 - 6x + 9 = 0$
185.	If α , β are the roots of the	ne equation $ax^2 + bx + c = 0$, then	the equation whose roots ar	re $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$, is [Rajasthan PF
	(a) $acx^2 + (a+c)bx + (a+c)^2$	$^{2} = 0$	(b) $abx^2 + (a+c)bx + (a+c)^2 =$	= 0
	(c) $acx^2 + (a+b)cx + (a+c)^2$	$^{2}=0$	(d) None of these	
186.	If α , β are the roots of x	$^2 - 3x + 1 = 0$, then the equation v	whose roots are $\frac{1}{\alpha - 2}$, $\frac{1}{\beta - 2}$	is [Rajasthan PET 1999]
	(a) $x^2 + x - 1 = 0$	(b) $x^2 + x + 1 = 0$	(c) $x^2 - x - 1 = 0$	(d) None of these
187.	If α , β are the roots of a	$x^2 + bx + c = 0$, then the equation	whose roots are $2+\alpha, 2+\beta$	is [EAMCET 1994]
	(a) $ax^2 + x(4a-b) + 4a - 2b$	b + c = 0	(b) $ax^2 + x(4a-b) + 4a + 2b +$	c = 0
	(c) $ax^2 + x(b-4a) + 4a + 2b$	b + c = 0	(d) $ax^2 + x(b-4a) + 4a-2b +$	c = 0
188.	If α , β are the roots of the	ne equation $ax^2 + bx + c = 0$, then		, $1/eta$ will be CRA 1990; Rajasthan PET 1994]
		(b) $cx^2 + bx + a = 0$		(d) $x^2 + bx - a = 0$
189.	Let α, α^2 be the roots of	$x^2 + x + 1 = 0$, then the equation	whose roots are α^{31}, α^{62} is	[AMU 1999]
	, ,		(c) $x^2 + x + 1 = 0$	
190.	If α , β are roots of the ed	quation $x^2 - 2x \cos 2\theta + 1 = 0$ then	the equation with roots $\alpha^{n/2}$	$^{/2},eta^{n/2}$ will be [Rajasthan PET 1998]
	(a) $x^2 - 2nx \cos \theta + 1 = 0$	(b) $x^2 + 2nx \cos n\theta + 1 = 0$	(c) $x^2 + 2x \cos n\theta + 1 = 0$	(d) $x^2 - 2x \cos n\theta + 1 = 0$
191.	The equation whose roo	ts are reciprocal of the roots of	the equation $3x^2 - 20x + 17 =$	0 is [DCE 2002]
	(a) $3x^2 + 20x - 17 = 0$	(b) $17x^2 - 20x + 3 = 0$	(c) $17x^2 + 20x + 3 = 0$	(d) None of these
192.		a equation is 2 and sum of their	_	
	(a) $x^2 + 2x + 15 = 0$	(b) $x^2 + 15x + 2 = 0$	(c) $2x^2 - 2x + 15 = 0$	(d) $x^2 - 2x - 15 = 0$
193.		um of their reciprocals is $\frac{1}{6}$, the		[Karnataka CET 1998]
			(c) $x^2 + x + 1 = 0$	
194.	If α , β are the roots of the (a) $x^2 + \alpha x - \beta = 0$	ne quadratic equation $x^2 + bx - c =$	= 0 , then the equation whos (b) $x^2 - [(\alpha + \beta) + \alpha \beta]x - \alpha \beta (\alpha + \beta)$	the roots are b and c is [Pb. CET 1989] $(c+\beta)=0$
	(c) $x^2 + [(\alpha + \beta) + \alpha\beta]x + \alpha\beta$	$\beta(\alpha+\beta)=0$	(d) $x^2 + [\alpha\beta + (\alpha + \beta)]x - \alpha\beta(\alpha + \beta)$	$(\alpha + \beta) = 0$
195.	If α , β are roots of $x^2 - 5$	x-3=0 , then the equation with	roots $\frac{1}{2\alpha-3}$ and $\frac{1}{2\beta-3}$ is	[Rajasthan PET 1998]
	(a) $33x^2 + 4x - 1 = 0$	(b) $33x^2 - 4x + 1 = 0$	(c) $33x^2 - 4x - 1 = 0$	(d) $33x^2 + 4x + 1 = 0$
196.	Given that $tan \alpha$ and $tan \beta$	β are the roots of $x^2 - px + q = 0$,	then the value of $\sin^2(\alpha + \beta)$	= [Rajasthan PET 2000]
	(a) $\frac{p^2}{p^2 + (1-q)^2}$	(b) $\frac{p^2}{p^2 + q^2}$	(c) $\frac{q^2}{p^2 + (1-q)^2}$	(d) $\frac{p^2}{(p+q)^2}$
197.	If $2+i\sqrt{3}$ is a root of the	e equation $x^2 + px + q = 0$, then (p	(0, q) is equal to	[IIT 1982; MP 1997]
	(a) (7, - 4)	(b) (-4,7)	(c) (4, 7)	(d) (7, 4)
198.	In the equation $x^2 + px + px$	q = 0 , the coefficient of x was ta	aken as 17 in place of 13 and	l its roots were found to be –
	2 and -15. The correct re	oots of the original equation are		[Rajasthan PET 1994; IIT 1979]
	(a) -10, -3	(b) 10, 3	(c) -10, 3	(d) 10, - 3
199.		ving a quadratic equation in x ,		
	roots 3 and 2. The other correct roots are	copied the constant term and c	coefficient of x^2 correctly a	is – 6 and 1 respectively. The [EAAMCET 1991]

188	Quadratic Equations	and Inequations		
	(a) 3, - 2	(b) - 3, 2	(c) - 6, -1	(d) 6, -1
200.	If 8, 2 are the roots of	$x^{2} + a x + \beta = 0$ and 3, 3 are the ro	pots of $x^2 + \alpha x + b = 0$, then t	he roots of $x^2 + ax + b = 0$ are [EAMC]
	(a) 8, -1	(b) -9, 2	(c) - 8, - 2	(d) 9, 1
201.		decreasing each root of $ax^2 + bx$	$x + c = 0$ by 1 is $2x^2 + 8x + 2 = 0$	
	(a) $a = -b$	(b) $b = -c$	(c) $c = -a$	(d) $b=a+c$
202.	If p and q are non-zero	constants, the equation $x^2 + px$	+q=0 has roots u and v , the	In the equation $qx^2 + px + 1 = 0$
	has roots			
				[MNR 1988]
	(a) u and $\frac{1}{v}$	(b) $\frac{1}{x}$ and v	(c) $\frac{1}{u}$ and $\frac{1}{v}$	(d) None of these
202	•		,	
203.		of the equation $x^2 + px + q = 0$ is		
		(b) $p^2 + q^2 = 2q$		(d) None of these
204.		s of the equation $x^2 + px + q = 0$	is three times their differ	ence, then which one of the
	following is true			[Dhanhad Enga 1060]
	(a) $9p^2 = 2q$	(b) $2a^2 - 0\pi$	(c) $2p^2 = 9q$	[Dhanbad Engg. 1968] (d) $0.5^2 - 2.5$
	•			
205.	_	s of the quadratic equation ax	z + bx + c = 0 is equal to the	sum of the squares of their
	reciprocals, then $\frac{b^2}{ac} + \frac{b}{a}$	$\frac{c}{2} =$		[BITS Ranchi 1996]
	(a) 2	(b) - 2	(c) 1	(d) - 1
206		pots of the equation $4x^3 + 16x^2 - 9$, ,	
	(a) 1, 2, - 2	(b) $-2, \frac{2}{3}, -\frac{2}{3}$	(c) $-3, \frac{\pi}{2}, -\frac{\pi}{2}$	(d) $-4, \frac{1}{2}, -\frac{1}{2}$
207.	If the roots of the equat	tion $ax^2 + bx + c = 0$ are l and $2l$, t	then	[MP PET 1986]
				(d) $a^2 = c^2$
208.	If α , β are the roots of the	he equation $x^2 - px + 36 = 0$ and	$\alpha^2 + \beta^2 = 9$, then the value of	f <i>p</i> are [AMU 1991]
	(a) ± 3	(b) ± 6	(c) ± 8	(d) ± 9
209.	If α , β , γ are the roots of	$\int 2x^3 - 2x - 1 = 0$, then $(\sum \alpha \beta)^2 =$		[EAMCET 2002]
	(a) - 1	(b) 3	(c) 2	(d) 1
210.	If α , β be the roots of x^2	$^{2}+px+q=0$ and $\alpha+h,\beta+h$ are t	he roots of $x^2 + rx + s = 0$, the	en [AMU 2001]
	(a) $\frac{p}{r} = \frac{q}{s}$	(b) $2h = \left \frac{p}{q} + \frac{r}{s} \right $	(c) $p^2 - 4q = r^2 - 4s$	(d) $pr^2 = qs^2$
211.	The quadratic equation	with real coefficients whose on	e root is $7+5i$ will be [Kerala	a (Engg.) 2001, 02; Rajasthan PET 199
	(a) $x^2 - 14x - 74 = 0$	(b) $x^2 + 14x + 74 = 0$	(c) $x^2 + 14x - 74 = 0$	(d) $x^2 - 14x + 74 = 0$
212.	The quadratic equation	with one root as the square roo		[IIT 1995]
		(b) $x^2 - 2x + 49 = 0$		(d) $x^2 \pm 2x - 49 = 0$
213.	The quadratic equation	whose one root is $\frac{1}{2+\sqrt{5}}$ will be	oe .	[Rajasthan PET 1987]
	(a) $x^2 + 4x - 1 = 0$	(b) $x^2 - 4x - 1 = 0$	(c) $x^2 + 4x + 1 = 0$	(d) None of these
214.	The quadratic equation			[Rajasthan PET 1985]
	(a) $x^2 - 4x + 1 = 0$		(c) $x^2 + 4x + 1 = 0$	
215.		whose roots are three times the		
5.	(a) $ax^2 + bx + c = 0$		(c) $ax^2 + bx + 3c = 0$	
24.0				
216.	If α , β are the roots of β	$x^2 + px + q = 0$ then $-\frac{1}{\alpha}, -\frac{1}{\beta}$ are t	the roots of the equation	[TS Rajendra 1991]

(d) $x^2 - px + q = 0$

217.	If a root of the equation	$ax^2 + bx + c = 0$ be reciprocal of a	a root of the equation $a'x^2 + b$	b'x + c' = 0, then [IIT 1968]
	(a) $(cc'-aa')^2 = (ba'-cb')(ab')$	(b'-bc')	(b) $(bb'-aa')^2 = (ca'-bc')(ab'-bc')$	-bc')
	(c) $(cc' - aa')^2 = (ba' + cb')(aa')$	b' + bc')	(d) None of these	
218.	One root of $ax^2 + bx + c =$	0 is reciprocal of other root if		[Rajasthan PET 1985]
	(a) $a+c=0$	(b) $b+c=0$	(c) $b-c=0$	(d) $a-c=0$
219.	If the roots of the equati	$ on 5x^2 + 13x + k = 0 be reciprocal $	ls of each other, then k is eq	qual to[MNR 1980; Rajasthan PET 199
	(a) O	(b) 5	(c) 1/6	(d) 6
220.	If one root of the equation	on $x^2 = px + q$ is reciprocal of the	e other, then the correct rela	ationship is [AMU 1987, 89]
	(a) $q = -1$	(b) $q = 1$	(c) $pq = -1$	(d) $pq = 1$
221. If the roots of the quadratic equation $\frac{x-m}{mx+1} = \frac{x+n}{nx+1}$ are reciprocal to each other, then		en [MP PET 2001]		
	(a) $n = 0$	(b) $m=n$	(c) $m+n=1$	(d) $m^2 + n^2 = 1$
222.	The roots of the quadrat	ic equation $ax^2 + bx + c = 0$ will b	e reciprocal to each other if	.
	(a) $a = \frac{1}{c}$	(b) $a = c$	(c) $b = ac$	(d) $a=b$
223.	If the absolute difference	e between two roots of the equa	tion $x^2 + px + 3 = 0$ is \sqrt{p} , th	nen p equals [Bihar CEE 1998]
	(a) - 3, 4	(b) 4	(c) - 3	(d) None of these
224.	If the roots of equation	$x^2 - px + q = 0$ differ by 1, then		[MP PET 1999]
	(a) $p^2 = 4q$	(b) $p^2 = 4q + 1$	(c) $p^2 = 4q - 1$	(d) None of these
225.	The numerical difference	e of the roots of $x^2 - 7x - 9 = 0$ is		
	(a) 5	(b) $2\sqrt{85}$	(c) $9\sqrt{7}$	(d) $\sqrt{85}$
226.	If the difference of the r	oots of $x^2 - px + 8 = 0$ be 2, then	the value of <i>p</i> is	[Roorkee 1992]
	(a) ± 2	(b) ± 4	(c) \pm 6	(d) \pm 8

(c) $x^2 + px + q = 0$

(a) $qx^2 - px + 1 = 0$

(b) $qx^2 + px + 1 = 0$

(d) $b^2 + 4c - 1 = 0$

(d) None of these

[Rajasthan PET 1991]

228.	If the roots of the equations $x^2 - bx + c = 0$ and $x^2 - cx + b = 0$ differ by the same quantity, then $b + c$ is equal to [BIT Ranchi 1969; MP PET 1993]				
	(a) 4	(b) 1	(c) 0	(d) - 4	
229.	If the roots of $x^2 - bx + c =$	= 0 are two consecutive integers	s, then b^2-4c is	[Kurukshetra CEE 1998]	
	(a) 1	(b) 2	(c) 3	(d) 4	
230.	If α , β are the roots of x	$a^{2} - 3x + a = 0, a \in R \text{ and } \alpha < 1 < \beta$	then		
	(a) $a \in (-\infty, 2)$	(b) $a \in \left(-\infty, \frac{9}{4}\right)$	(c) $a \in \left(2, \frac{9}{4}\right)$	(d) None of these	
231.		$4x^2 - 16x + \lambda = 0, \lambda \in R$ such that	t $1 < \alpha < 2$ and $2 < \beta < 3$ then	hen the number of integral	
	solutions of λ is (a) 5	(b) 6	(c) 2	(d) 3	
222		eal numbers <i>p</i> for which the equ	` '		
232.	equal to	ear numbers p for which the equ	p(x+p) has its p(x+p)	Bots greater than p then x is	
	(a) $\left(-2, -\frac{1}{2}\right)$	(b) $\left(-\frac{1}{2}, \frac{1}{4}\right)$	(c) Null set	(d) (-∞, o)	
233.	If one root of the quadra	atic equation $ax^2 + bx + c = 0$ is equation	qual to the $n^{\rm th}$ power of the	other root, then the value of	
	$(ac^n)^{\frac{1}{n+1}} + (a^nc)^{\frac{1}{n+1}} =$			[IIT 1983]	
	(a) b	(b) - b		(d) $-b^{\frac{1}{n+1}}$	
234.	<u>-</u>	on $ax^2 - bx + c = 0$ is square of the		[Rajasthan PET 1998]	
	(a) $a^2c + ac^2 + 3abc - b^3 = 0$	(b) $a^2c + ac^2 - 3abc + b^3 = 0$	(c) $a^3 + b^3 = 3abc$	$ (d) (a+b)^3 = 3abc $	
235.	For the equation $3x^2 + px$	x + 3, $p > 0$ if one of the root is s	quare of the other, then p is	equal to[IIT Screening 2000]	
	(a) $\frac{1}{3}$	(b) 1	(c) 3	(d) $\frac{2}{3}$	
236.	If one root of equation <i>p</i>	$ax^2 - qx + r = 0$ is double of the ot	ther, then		
	(a) $9q^2 = 2pr$			(d) $4q^2 = 3pr$	
237.	The value of <i>k</i> for which	one of the roots of $x^2 - x + 3k =$	0 is double of one of the ro	ots of $x^2 - x + k = 0$ is [UPSEAT 200	
5,	(a) 1	(b) - 2	(c) 2	(d) None of these	
238.	The function $f(x) = ax^2 + a$	2x + 1 has one double root if		[AMU 1989]	
	(a) $a = 0$	(b) $a = -1$	(c) $a = 1$	(d) $a = 2$	
239.	If $\sin \alpha$, $\cos \alpha$ are the root	ts of the equation $ax^2 + bx + c = 0$, then	[MP PET 1993]	
	(a) $a^2 - b^2 + 2ac = 0$	(b) $(a-c)^2 = b^2 + c^2$	(c) $a^2 + b^2 - 2ac = 0$	(d) $a^2 + b^2 + 2ac = 0$	
240.	If the roots of $ax^2 +bx + c$	$c = 0$ are α, β and root of $Ax^2 + Ax^2 + Ax^2$	$Bx + c = 0$ are $\alpha - k$, $\beta - k$, then	$\frac{B^2 - 4AC}{b^2 - 4ac}$ is equal to	
				[Rajasthan PET 1999]	
	(a) $\frac{a}{A}$	(b) $\frac{A}{a}$	(c) $\left(\frac{a}{A}\right)^2$	(d) $\left(\frac{A}{a}\right)^2$	
241.	If the product of roots of	$f \text{ the equation } x^2 - 3k \ x + 2e^{2\log k} - $	1 = 0 is 7, then its roots will	l real when [Pb. CET 1990; IIT 1984]	

(c) k = 3

(c) $b^2 - 4c + 1 = 0$

227. If the difference of the roots of the equation $x^2 - bx + c = 0$ be 1, then

(b) $b^2 - 4c = 0$

(a) $b^2 - 4c - 1 = 0$

(a) k = 1

(b) k = 2

				1 .
242.		not a perfect square then the quadratic ed		
		(b) $(a^2 - b)x^2 - 2ax + 1 = 0$		(d) None of these
243.	If $\frac{1}{4-3i}$ is a root of ax^2	+bx+1=0, where a , b are real,	then	
	(a) $a = 25, b = -8$	(b) $a = 25, b = 8$	(c) $a = 5, b = 4$	(d) None of these
244.	If α , β , γ be the roots of	f the equation $x(1+x^2) + x^2(6+x)$	$0+2=0$ then the value of α	$^{-1} + \beta^{-1} + \gamma^{-1}$ is
	(a) - 3	(b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	(d) None of these
245.		+39x - 28 = 0 are in A.P. then the	eir common difference is	
	(a) ±1	(b) ±2	(c) ± 3	(d) ±4
246.	The roots of the equation (a) A.P.	n $x^3 + 14x^2 - 84x - 216 = 0$ are ir (b) G.P.	1 (c) H.P.	(d) None of these
245		roots of a cubic equation with ra		
44 /•		(b) $x^3 - 3x^2 - 4x + 12 = 0$		(d) None of these
248.		equares of roots of $x^2 - 3x + 1 = 0$		[Karnataka CET 1993]
_40.	(a) 5	(b) 7	(c) 9	(d) 10
249.	If $\alpha + \beta = 3$ and $\alpha^3 + \beta^3 =$	= 27 , then α and β are the root	ts of	
	(a) $3x^2 + 9x + 7 = 0$	(b) $9x^2 - 27x + 20 = 0$	(c) $2x^2 - 6x + 15 = 0$	(d) None of these
250.	For what value of λ the	sum of the squares of the roots	s of $x^2 + (2 + \lambda)x - \frac{1}{2}(1 + \lambda) = 0$	is minimum [AMU 1999]
	(a) 3/2	(b) 1	(c) 1/2	(d) 11/4
251.	The value of $a(a \ge 3)$ for wh	nich the sum of the cubes of the root	ts of $x^2 - (a-2)x + (a-3) = 0$,	assumes the least value is
	(2) 2	(b) 4	(a) 5	[Orissa JEE 2002]
252	(a) 3 Let α β be the roots of	(b) 4 $x^2 + (3 - \lambda)x - \lambda = 0$. The value of	(c) 5 A for which $\alpha^2 + \beta^2$ is min	(d) None of these imum, is [AMU 2000]
252.	(a) 0	(b) 1	(c) 2	(d) 3
253.	(,	the roots of the equation $x^2 - (a^2 + b^2)^2$	\'-	, , -
55				sthan PET 2000. Pb. CET 2002]
	(a) 0	(b) 2	(c) - 1	(d) 1
254.		$+Bx + C = 0$ and α^2 , β^2 are root		
	(a) $(B^2 - 2AC)/A^2$	(b) $(2AC - B^2)/A^2$	(c) $(B^2 - 4AC)/A^2$	(d) $(4AC - B^2)/A^2$
255.	If α , β are roots of the ϵ	equation $x^2 + x + 1 = 0$ and $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$	$\frac{\beta}{\alpha}$ are roots of the equation	$x^2 + px + q = 0$, then p equals
				[Rajasthan PET 1987, 93]
_	(a) -1	(b) 1	(c) -2	(d) 2
256.	If α , β are real and α^2 ,	β^2 are the roots of the equation	$a^2x^2 + x + 1 - a^2 = 0 (a > 1)$, the	hen $\beta^2 = $ [EAMCET 1999]
	(a) a^2	(b) $1 - \frac{1}{a^2}$	(c) $1-a^2$	(d) $1 + a^2$
257.	The H.M. of the roots of	the equation $x^2 - 8x + 4 = 0$ is		[Rajasthan PET 1988]
	(a) 1	(b) 2	(c) 3	(d) None of these
258.		the equation $x^2 + x\sqrt{\alpha} + \beta = 0$, the		
		(b) $\alpha = 1$ and $\beta = -2$	(c) $\alpha = 2$ and $\beta = 1$	
259.	If p and q are the roots of			[IIT 1995, AIEEE 2002]
	(a) $p = 1$	(b) $p = -2$	(c) $p = 1 \text{ or } 0$	(d) $p = -2$ or o

(d) -4 < a < 0

(d) $x^2 + x + 2 = 0$

[AMU 1998]

[SCRA 1999]

262.	-	ion $x^2 + x + 1 = 0$ are in the ratio		[Rajasthan PET 1994]
		(b) $\sqrt{m} + \sqrt{n} + 1 = 0$		
263.	If the roots of the equation	ion $lx^2 + nx + n = 0$ are in the rat	io $p:q$ then $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}}$ is eq	ual to [Rajasthan PET 1997; BIT Ranc
	(a) $\sqrt{n/l}$	(b) $\sqrt{l/n}$	(c) $\pm \sqrt{n/l}$	(d) $-\sqrt{l/n}$
264.	If the roots of the equation	ion $12x^2 - mx + 5 = 0$ are in the r	ratio 2:3, then $m =$	[Rajasthan PET 2002]
	(a) $5\sqrt{10}$	(b) $3\sqrt{10}$	(c) $2\sqrt{10}$	(d) None of these
265.	If the ratio of the roots of	of the equation $ax^2 + bx + c = 0$ by	be $p:q$, then	[Pb. CET 1994]
	(a) $pqb^2 + (P+q)^2 ac = 0$	(b) $pqb^2 - (P+q)^2 ac = 0$	(c) $pqa^2 - (P+q)^2bc = 0$	(d) None of these
266.	The two roots of an equa	ation $x^3 - 9x^2 + 14x + 24 = 0$ are	in the ratio 3:2. The roots	will be [UPSEAT 1999]
	(a) 6, 4, -1	(b) 6, 4, 1		(d) -6, -4, 1
267.		oot of the equation $ax^2 + bx + c =$		
	` '	, ,		(d) $b^2 + 3ac = 0$
268.	If the roots of the equation	ion $\frac{x^2 - bx}{ax - c} = \frac{\lambda - 1}{\lambda + 1}$ are such that	at $\alpha + \beta = 0$, then the value of	of λ is
		[Kurı	ukhestra CEE 1995; MP PET 19	96, 2002; Rajasthan PET 2001]
	(a) $\frac{a-b}{a+b}$	(b) c	(c) $\frac{1}{c}$	(d) $\frac{a+b}{a-b}$
269.	For the equation $\frac{1}{x+a}$	$\frac{1}{x+b} = \frac{1}{x+c}$, if the product of the	ne roots is zero, then the sun	n of the roots is [AMU 1992]
	(a) O	(b) $\frac{2ab}{b+c}$	(c) $\frac{2bc}{b+c}$	(d) $-\frac{2bc}{b+c}$
270.	If the sum of two of the	roots of $x^3 + px^2 + qx + r = 0$ is ze	ero, then $pq =$	[EAMCET 2003]
	(a) <i>-r</i>	(b) <i>r</i>	(c) 2r	(d) $-2r$
271.	If the roots of the equation $\frac{1}{x}$	$\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude	e but opposite in sign, then the prod	uct of the roots will be
				[IIT 1967]
	(a) $\frac{p^2 + q^2}{2}$	(b) $-\frac{(p^2+q^2)}{2}$	(c) $\frac{p^2 - q^2}{2}$	(d) $-\frac{(p^2-q^2)}{2}$
272.	The value of m for which the	ne equation $x^3 - mx^2 + 3x - 2 = 0$ h	nas two roots equal in magnitut	e but opposite in sign, is [Kurukhestra CEE 1996]
	(a) 1/2	. , , -	(c) 3/4	(d) 4/5
273.	If $ax^2 + bx + c = a(x - \alpha)(x - \alpha)$	$-\beta$), then $a(\alpha x + 1)(\beta x + 1)$ is equal	al to	[AMU 1986]
			(c) $cx^2 - bx - a$	
274.	If α , β are the roots of the	equation $ax^2 + bx + c = 0$ $(a \ne 0)$	and $\alpha + \delta$, $\beta + \delta$ are the roots of	of $Ax^{2} + Bx + C = 0$ $(A \neq 0)$ for
	some constant, then			[IIT 2000]
	(a) $\frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{A^2}$	(b) $\frac{b^2 - 2ac}{a^2} = \frac{B^2 - 2AC}{A^2}$	(c) $\frac{b^2 - 8ac}{a^2} = \frac{B^2 - 8AC}{A^2}$	(d) None of these
275.	In a triangle PQR , $\angle R = \frac{1}{2}$	$\frac{\pi}{2}$. If $\tan\left(\frac{p}{2}\right)$ and $\tan\left(\frac{Q}{2}\right)$ are the	e roots of the equation ax^2	$+bx + c = 0 \ (a \neq 0)$, then [IIT 1999]

(c) a+c=b

(d) b = c

(c) a < 8

(c) $x^2 - x + 2 = 0$

260. If roots of the equation $2x^2 - (a^2 + 8a + 1)x + a^2 - 4a = 0$ are in opposite sign, then

(b) a > 0

261. Which of the following equation has 1 and -2 as the roots

(a) $x^2 - x - 2 = 0$ (b) $x^2 + x - 2 = 0$

(a) a+b=c (b) b+c=0

(a) 0 < a < 4

276. The product of all real roots of the equation $|x|^2 - |x| - 6 = 0$ is

	111	a		[111 1976]	
_	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these	
278.		2x + A = 0 are p, q and the roots of t	the equation $x^2 - 18x + B = 0$ are	er, s. If $p < q < r < s$ are in	
	A.P., then		() () 7	[IIT 1997]	
		(b) $A = -3$, $B = 77$			
279.	If the roots of the equation	on $x^2 + bx + c = 0$ and $x^2 + qx + r$	= 0 are in the same ratio, the	nen [EAMCET 1994]	
	(a) $r^2c = qb^2$	(b) $r^2b = qc^2$	(c) $c^2 r = q^2 b$	(d) $b^2 r = q^2 c$	
280.	If one root of the equation	on $x^2 + px + q = 0$ is $2 + \sqrt{3}$, then	values of p and q are	[UPSEAT 2002]	
	(a) -4, 1	(b) 4, -1	(c) $2,\sqrt{3}$	(d) $-2, -\sqrt{3}$	
281.	If $1-i$ is a root of the eq	uation $x^2 - ax + b = 0$, then $b =$		[EAMCET 2002]	
	(a) -2	(b) -1	(c) 1	(d) 2	
		Advance L	evel		
282.	If α , β are the roots of α	$\alpha^2 + px + 1 = 0$ and γ , δ are the re	pots of $x^2 + ax + 1 = 0$, then	$n^2 - n^2 = [III 1978: DCE 2000]$	
	(a) $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \beta)$		(b) $(\alpha + \gamma)(\beta + \gamma)(\alpha - \delta)(\beta + \delta)$		
	(c) $(\alpha + \gamma)(\beta + \gamma)(\alpha + \delta)(\beta + \gamma)(\alpha + \delta)(\alpha $		(d) None of these	,	
283.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			the value of	
_0,	3. If α , β be the roots of $x^2 - px + q = 0$ and α' , β' be the roots of $x^2 - p'x + q' = 0$, then the value of $(\alpha - \alpha')^2 + (\beta - \alpha')^2 + (\beta - \beta')^2 + (\beta - \beta')^2$ is				
	. , , , , , , , , , , , , , , , , , , ,	• , ,	(h) 2(² 2		
	(a) $2\{p^2 - 2q + p'^2 - 2q' - pp\}$		(b) $2\{p^2 - 2q + p'^2 - 2q' - qq'\}$		
	(c) $2\{p^2 - 2q - p'^2 - 2q' - pp\}$	•	(d) $2\{p^2 - 2q - p'^2 - 2q' - qq'\}$		
284.	If α and β are the roots	s of the equation $x^2 - ax + b = 0$	and $A_n = \alpha^n + \beta^n$, then which	n of the following is true	
	(0) 444	(b) A LA LAA	(a) 4 4 1.4	[Karnataka CET 2000]	
		(b) $A_{n+1} = bA_n + aA_{n-1}$			
285.	If roots of an equation x	$a_{n-1} = 0$ are 1, a_1 , a_2 , a_{n-1} , the	n the value of $(1-a_1)(1-a_2)(1-a_3$		
	(-)	(1-) 2	(- N	[UPSEAT 1999]	
	(a) n	(b) n ²	(c) n ⁿ	(d) 0	
286.	If α and β are the roots	s of $6x^2 - 6x + 1 = 0$, then the val	ue of $\frac{1}{2}[a+b\alpha+c\alpha^2+d\alpha^3]+$	$\frac{1}{2}[a+b\beta+c\beta^2+d\beta^3]$ is	
				[Rajasthan PET 2000]	
	(a) $\frac{1}{4}(a+b+c+d)$	(b) $\frac{a}{1} + \frac{b}{2} + \frac{c}{3} + \frac{d}{4}$	(c) $\frac{a}{1} - \frac{b}{2} + \frac{c}{3} - \frac{d}{4}$	(d) None of these	
287.	If α_1 , α_2 are the roots of each	quation $x^2 - px + 1 = 0$ and β_1 , β_2	be those of equation $x^2 - qx +$	$1 = 0$ and vector $\alpha_1 \hat{i} + \beta_1 \hat{j}$ is	
	parallel to $\alpha_2\hat{i} + \beta_2\hat{j}$, the	en			
	(a) $p = \pm q$	(b) $p = \pm 2q$	(c) $p = 2q$	(d) None of these	
288.	If the roots of $a_1 x^2 + b_1 x + c_1$	= 0 are α_1 and β_1 and those of $a_2 x^2$	$+b_2x+c_2=0$ are α_2 and β_2 so	uch that $ lpha_1 lpha_2 = eta_1 eta_2 = 1 $,	

(a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ (b) $\frac{a_1}{c_2} = \frac{b_1}{b_2} = \frac{c_1}{a_2}$ (c) $a_1 a_2 = b_1 b_2 = c_1 c_2$

289. If the sum of the roots of the equation $qx^2 + 2x + 3q = 0$ is equal to their product, then the value of q is equal to

277. If the sum of the roots of the equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals then bc^2 , ca^2 , ab^2 are

[Roorkee 2000]

(d) 36

(d) None of these

	(a) $-\frac{2}{3}$	(b) $\frac{3}{2}$	(c) 3	(d) -6
290.	If $x = (\beta - \gamma)(\alpha - \delta)$, $y = (\gamma - \beta)$	α)($\beta - \delta$), $z = (\alpha - \beta)(\gamma - \delta)$, then the	ne value of $x^3 + y^3 + z^3 - 3xyz$	is
	(a) 0	(b) $\alpha^6 + \beta^6 + \gamma^6 + \delta^6$		(d) None of these
291.	If α , β , γ are the roots of	f the equation $x^3 + px^2 + qx + r =$	0, then $(1 - \alpha^2)(1 - \beta^2)(1 - \gamma^2)$	is equal to
	(a) $(1+q)^2 - (p+r)^2$	(b) $(1+q)^2 + (p+r)^2$	(c) $(1-q)^2 + (p-r)^2$	(d) None of these
292.	If α , β , γ are the roots of	f the equation $x^3 + ax + b = 0$, th	$en \frac{\alpha^3 + \beta^3 + \gamma^3}{\alpha^2 + \beta^2 + \gamma^2} =$	
	(a) $\frac{3b}{2a}$	(b) $\frac{-3b}{2a}$	(c) 3b	(d) 2a
293.	If α , β are the roots of 6	$s_x^2 - 2x + 1 = 0$ and $s_x = \alpha^n + \beta^n$,	then $\lim_{n\to\infty}\sum_{r=1}^n S_r$ is	
	(a) $\frac{5}{17}$	(b) o	(c) $\frac{3}{37}$	(d) None of these
294.	Let α , β be the roots of the	equation $ax^2 + bx + c = 0$ and let a	$\alpha^n + \beta^n = S_n$ for $n \ge 1$. Then the	ne value of the determinant
	$\begin{vmatrix} 3 & 1+S_1 & 1+S_2 \\ 1+S_1 & 1+S_2 & 1+S_3 \\ 1+S_2 & 1+S_3 & 1+S_4 \end{vmatrix} $ is			
	(a) $\frac{b^2 - 4ac}{a^4}$	(b) $\frac{(a+b+c)(b^2+4ac)}{a^4}$	(c) $\frac{(a+b+c)(b^2-4ac)}{a^4}$	(d) $\frac{(a+b+c)^2(b^2-4ac)}{a^4}$
295.	If α , β are roots of the e	quation $2x^2 + 6x + b = 0 (b < 0)$, the	hen $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ is less then	
	(a) 2	(b) -2	(c) 18	(d) None of these
296.	If α , β are roots of the e	quation $ax^2 + 3x + 2 = 0 \ (a < 0)$, the	hen $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is greater then	1
	(a) 0	(b) 1	(c) 2	(d) None of these
297.		f the equation $x^4 + 4x^3 - 6x^2 + 7x$	$-9 = 0$, then the value of $(1 + \epsilon)$	
	(a) 5	(b) 9	(c) 11 $\alpha^2 + \alpha^2 + \alpha^2$	(d) 13 $R^2 + 2R + 1$
298.	If α and β are the roots	s of the equation $x^2 - p(x+1) - q$	= 0, then the value of $\frac{\alpha^2 + 2}{\alpha^2 + 2}$	$\frac{2\alpha+1}{2\alpha+q} + \frac{\beta^2+2\beta+1}{\beta^2+2\beta+q}$ is
200	(a) 2	(b) 3	(c) 0	(d) 1
299.	given by	M., G.M. and H.M. of three positive num	ber a, b, c then the equation whose	roots are these frumber is
	(a) $x^3 - 3Ax^2 + G^3(3x - 1)$		(b) $x^3 - 3Ax^2 + 3(G^3/H)x -$	$G^3 = 0$
	(c) $x^3 + 3Ax^2 + 3(G^3/H)x$	$-G^3=0$	(d) $x^3 - 3Ax^2 - 3(G^3/H)x + G$	$\vec{r}^3 = 0$
300.	Let $a = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$, A	$= a + a^2 + a^4$ and $B = a^3 + a^5 + a^6$	then A and B are roots of	the equation[Rajasthan PET 2000]
	(a) $x^2 - x + 2 = 0$	(b) $x^2 - x - 2 = 0$	(c) $x^2 + x + 2 = 0$	(d) None of these
301.	If α, β are the roots of the	equation $x^2 - px + q = 0$, then the	quadratic equation whose roots	s are $(\alpha^2 - \beta^2)(\alpha^3 - \beta^3)$ and
	$\alpha^3 \beta^2 + \alpha^2 \beta^3$ is			[Roorkee 1994]
		(b) $x^2 + Sx + P = 0$ (q^2) and $P = p^2q^2(p^4 - 5p^2q + 4q^2)$		(d) None of these
302.	Let A , G and H are the A.M., G .M	I. and H.M. respectively of two unequal p	positive integers. Then the equation	$Ax^2 - G x - H = 0$
	has			
		ns (b) At least one root which root (d) At least one root which	•	

		4		
303.	Let $x^2 - px + q = 0$, when	The $p \in R$, $q \in R$, have the roots c	α , β such that $\alpha + 2\beta = 0$ then	ı
	(a) $2p^2 + q = 0$	(b) $2q^2 + p = 0$	(c) $q < o$	(d) None of these
304.	The cubic equation who	se roots are the A.M., G.M. and	H.M. of the roots of $x^2 - 2px$	$c + q^2 = 0$ is
	(a) $(x-p)(x-q)(x-p-q)$	0 = 0	(b) $(x-p)(x- q)(px-q^2)$	= 0
	(c) $x^3 - \left(p + q + \frac{q^2}{p}\right)x^2 + \frac{q^2}{p}$	$-\left(p \mid q \mid +q^{2} + \frac{\mid q \mid^{3}}{p}\right)x - q ^{3} = 0$	(d) None of these	
305.		$px + q = 0$ and also of $x^{2n} + p^n x^n +$	$q^n = 0$ and if $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ are the roots	of $x^n + 1 + (x+1)^n = 0$, then
	n is (a) An odd integer	(h) An oven integer	(a) Any integer	(d) Nana of those
306	•	$\in R$ has real solutions then	(c) Any integer	(d) None of these
300.			3	
	(a) $p \le 1$	(b) $\frac{3}{4} \le p \le 1$	(c) $p \ge \frac{3}{4}$	(d) None of these
307.	If the ratio of the roots	of $\lambda x^2 + \mu x + v = 0$ is equal to th	he ratio of the roots of $x^2 + x$	$+1 = 0$ then λ , μ , ν are in
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
308.	P, q , r and s are integers. If	f the A.M. of the roots of $x^2 - px +$	$q^2 = 0$ and G.M. of the roots of	$x^2 - rx + s^2 = 0$ are equal then
		• •	(c) <i>p</i> is an even integer	(d) s is an odd integer
309.	If the roots of $4x^2 + 5k =$	=(5k+1)x differ by unity then the	he negative value of k is	
	(a) -3	(b) $-\frac{1}{5}$	(c) $-\frac{3}{5}$	(d) None of these
310.	The harmonic mean of t	he roots of the equation $(5 + \sqrt{3})$	$(\frac{1}{2})x^2 - (4 + \sqrt{5})x + 8 + 2\sqrt{5} = 0$ i	S
0	(a) 2	(b) 4	(c) 6	(d) 8
311.		$ax^2 + c = bx$ then the equation ($(a+cy)^2 = b^2y$ in y has the roo	
	(a) α^{-1} , β^{-1}	(b) α^2 , β^2	(c) $\alpha\beta^{-1}$, $\alpha^{-1}\beta$	(d) α^{-2} , β^{-2}
312.	If the roots of $ax^2 - bx -$	c = 0 change by the same quan	tity then the expression in a	, b, c that does not change is
	12 4	(b) $\frac{b-4c}{a}$	(c) $\frac{b^2 + 4ac}{a^2}$	(d) None of these
	а	а	и	
313.	If α , β are the roots of x^2	-px + q = 0 then the product of th	e roots of the quadratic equation	n whose roots are $\alpha^2 - \beta^2$ and
	$\alpha^3 - \beta^3$ is			
	(a) $p(p^2 - q)^2$	(b) $p(p^2 - q)(p^2 - 4q)$	(c) $p(p^2 - 4q)(p^2 + q)$	(d) None of these
314.		whose roots are the A.M. and H	-	ion $x^2 + 7x - 1 = 0$ is
		• •		(d) None of these
315.	If $z_0 = \alpha + i\beta$, $i = \sqrt{-1}$, the	en the roots of the cubic equati		
	(a) $2, z_0, \bar{z}_0$	(b) $1, z_0, -z_0$	(c) $2, z_0, -\bar{z}_0$	(d) $2, -z_0, \bar{z}_0$
316.	Let a, b, c be real numbers	and $a \neq 0$. If α is a root of $a^2 x^2$	$+bx + c = 0$, β is a root of a^2x^2	$-bx-c=0$, and $0<\alpha<\beta$
	then the equation a^2x^2	$+2bx + 2c = 0$ has a root γ that a	always satisfies	
	(a) $\gamma = \frac{1}{2}(\alpha + \beta)$	(b) $\gamma = \alpha + \frac{\beta}{2}$	(c) $\gamma = \alpha$	(d) $\alpha < \gamma < \beta$
317.	If $(\lambda^2 + \lambda - 2)x^2 + (\lambda + 2)x$	< 1 for all $x \in R$, then λ belong	gs to the interval	
	(a) (-2, 1)	(b) $\left(-2, \frac{2}{5}\right)$	(c) $\left(\frac{2}{5},1\right)$	(d) None of these
318.	The least integral value	of k for which $(k-2)x^2 + 8x + k$	$+4 > 0$ for all $x \in R$, is	
	(a) 5	(b) 4	(c) 3	(d) None of these

		. 2			
	(a) $\lambda = 1$	(b) $\lambda = \frac{4a^2}{a-1}, \ a \neq 1$	(c) $\lambda = 0, \ a = 1$	(d) None of these	
334.	If α , β are the roots of t	the equation $x^2 + x + 3 = 0$ then equation	equation $3x^2 + 5x + 3 = 0$ has	a root	
	ρ	**	(c) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$	(d) None f these	
335.	If α , β are the roots of	$x^2 - 2ax + b^2 = 0$ and γ , δ are the	e roots of $x^2 - 2bx + a^2 = 0$,	then	
	(a) A.M. of α , $\beta = G.M.$ of	fγ,δ	(b)	G.M. of α , β = A.M. of γ , δ	
	(c) α , β , γ , δ are in A.P.		(d) α , β , γ , δ are in G.P.		
336.	If the roots of the equation (a) -2	$ax^{2} - 4x + a^{2} = 0$ are imaginary a (b) 4	nd the sum of the roots is equal (c) 2	to their product then <i>a</i> is (d) None of these	
			Condi	ition for common roots	
		Basic Le	evel		
337.	If equations $x^2 + bx + a =$	0 and $x^2 + ax + b = 0$ have one r	coot common and $a \neq b$, then	n	
	[Rajasthan PET 1992; IIT 1986]				
0	• •	(b) $a-b=1$	(c) $a+b=-1$	(d) $a+b=0$	
338.				nen λ is equal to [Rajasthan PET	
220	(a) 2 If $u^2 + au + 10 = 0$ and u^2	(b) $-1 + bx - 10 = 0$ have a common roo	(c) 1 at then $\pi^2 + h^2$ is equal to	(d) 3	
339.	(a) 10	+bx - 10 = 0 have a common root (b) 20	(c) 30	[Kerala (Engg.) 2002] (d) 40	
340.	• •	$c_1 = 0$ and $a_2 x^2 + b_2 x + c_2 = 0$ have	, , ,	` ' -	
340.	ii two equations $u_1 x + v_1 x$	$c_1 = 0$ and $a_2x + b_2x + c_2 = 0$ have	e a common root, then the value of	[Roorkee 1992]	
	(a) $-(a_1c_2 - a_2c_1)^2$	(b) $(a_1a_2 - c_1c_2)^2$	(c) $(a_1c_1 - a_2c_2)^2$		
241		$+c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ a		[Kurukshetra CEE 1995]	
341.	(a) $a_1 = a_2, b_1 = b_2, c_1 = c_1$		(b) $c_1 = c_2 = 0$	[Kul uksiletta CEE 1995]	
	,	2	(b) $c_1 = c_2 = 0$		
	(c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$		(d) $a_1 = b_1 = c_1$; $a_2 = b_2 = c_2$		
342.	If one root of the equation	on $(k^2 + 1)x^2 + 13x + 4k = 0$ is reci	procal of the other then k h	as the value	
	(a) $-2+\sqrt{3}$	(b) $2 - \sqrt{3}$	(c) 1	(d) None of these	
343.	If the product of the room	ts of the equation $x^2 - 5x + 4^{\log_2 x}$	$\lambda^2 = 0$ is 8 then λ is		
	(a) $\pm 2\sqrt{2}$	(b) $2\sqrt{2}$	(c) 3	(d) None of these	
344.	• •	he difference of roots of the equ			
511	(a) $p < -1$ or $p > 4$	-	(c) -1	(d) $0 \le p < 4$	
2/15	= =	$px + q = 0$ and γ , δ are the roots	• •		
343.	(a) $q+r$	(b) $q-r$		(d) $-(p+q+r)$	
246	-	•	· ·		
346.	If the equation $2x^2 + 3x - 3x = 3$	$+5\lambda = 0$ and $x^2 + 2x + 3\lambda = 0$ hav (b) -1	We a common root, then $\lambda =$ (c) 0, -1	[Rajasthan PET 1989] (d) 2, -1	
245		(b) -1 $^{2} + px + q = 0$ and $x^{2} + \alpha x + \beta = 0$			
34'/•	ii a root or the equations x	$+ px + q = 0$ and $x + \alpha x + \beta = 0$		be (where $p \neq \alpha$ and $q \neq \beta$) [1974, 76; Rajasthan PET 1997]	
	$q - \beta$	$p\beta - \alpha q$			
	(a) $\frac{q-\beta}{\alpha-p}$	(b) $\frac{p\beta - \alpha q}{q - \beta}$	(c) $\frac{q-\beta}{\alpha-p}$ or $\frac{p\beta-\alpha q}{q-\beta}$	(a) None of these	

348.	If $ax^2 + bx + c = 0$ and bx	$a^2 + cx + a = 0$ have a common room	t and $a \neq 0$, then $\frac{a^3 + b^3 + c^3}{abc}$	- = [IIT 1982; MNR 1983]
	(a) 1	(b) 2	(c) 3	(d) None of these
349.		$q = 0$ and $x^2 + qx + p = 0$, have a		
	(a) 0	(b) 1	(c) 2	(d) -1
		Advance i	Level	
350.	If every pair from amore then the product of three	ng the equation $x^2 + px + qr = 0$, e common roots is	$x^2 + qx + rp = 0 \text{and} x^2 + rx$	+pq=0 has a common root,
	(a) pqr	(b) 2 <i>pqr</i>	(c) $p^2q^2r^2$	(d) None of these
351.	If the equation $x^2 + px +$ roots are respectively	$qr = 0$ and $x^2 + qx + pr = 0$ have	a common root, then the su	m and product of their other
	(a) <i>r, pq</i>	(b) <i>-r, pq</i>	(c) <i>pq</i> , <i>r</i>	(d) -pq, r
352.	The value of 'a' for whic	h the equations $x^3 + ax + 1 = 0$ and	nd $x^4 + ax^2 + 1 = 0$ have a co	
	(a) 2	(b) -2	(c) 0	(d) None of these
353.		$c = 0$ and $cx^{2} + bx + a = 0$, $a \ne c$ ha		
	(a) 0	(b) 2	(c) 1	(d) None of these
354.	If $x^2 + ax + b = 0$ and x^2	$+bx + a = 0$, $a \neq b$, have a common	on root α then	
	(a) $a+b=1$	(b) $\alpha + 1 = 0$	(c) $\alpha = 1$	(d) $a+b+1=0$
355.	_	ation $2x(2x+1) = 1$ then the other		
		(b) $-2\alpha(\alpha+1)$		(d) None of these
356.	The common roots of the equation	ions $x^3 + 2x^2 + 2x + 1 = 0$ and $1 + x^1$	$x^{130} + x^{1988} = 0$ are (where ω is a	nonreal cube root of unity)
	(a) ω	(b) ω^2	(c) -1	(d) $\omega - \omega^2$
357.	If a, b, c are rational and	d no two of them are equal ther	the equations $(b-c)x^2 + (c-c)x^2$	$(a-a)x + a - b = 0$ and $a(b-c)x^2 + a - b = 0$
	b(c-a)x + c(a-b) = 0			
	(a) Have rational roots(c) Have exactly one root	ot common	(b) Will be such at least of(d) Have at least one root	
358.	=	$+c = 0$ and $x^3 + 3x^2 + 3x + 2 = 0$		
	(a) $a = b \neq c$	(b) $a = -b = c$	(c) $a = b = c$	(d) None of these
359.		$a = 0$ and $x^3 - 2x^2 + 2x - 1 = 0$ ha		
	(a) 1	(b) -1	(c) 0	(d) None of these
360.	If a, b, c are in G.P. then the	e equations $ax^2 + 2bx + c = 0$ and d	$dx^2 + 2ex + f = 0 \text{ have a commo}$	on root if $\frac{a}{a}$, $\frac{b}{b}$, $\frac{b}{c}$ are in
			[IIT 1	1985; Pb. CET 2000; DCE 2000]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
361.	If the equations $x^2 + ix + i$	$a = 0$, $x^2 - 2x + ia = 0$, $a \ne 0$ have	e a common root then	
	(a) a is real		(b) $a = \frac{1}{2} + i$	
	(c) $a = \frac{1}{2} - i$		(d) The other root is also	common
362.		, 2, 3 are three quadratic equations of the triplet (p_1, p_2, p_3) is	tions of which each pair h	as exactly one root common

(c) 9

363. If x, y, z are three consecutive terms of a G.P., where x > 0 and the common ratio is r, then the inequality z + 3x > 4y holds for

(d) 27

(a) 2

(b) 1

(a)
$$r \in (-\infty, 1)$$

(b)
$$r = \frac{24}{5}$$

(c)
$$r \in (3, +\infty)$$

(d)
$$r = \frac{1}{2}$$

364. If x is real, then the value of $x^2 - 6x + 13$ will not be less then

(d) 8

365. If x be real, the least value of $x^2 - 6x + 10$ is

(c) 3

[Kurukshetra CEE 1998]

366. The smallest value of $x^2 - 3x + 3$ in the interval (-3, 3/2) is

(d) 10

(c) -15

[EAMCET 1991] (d) -20

[Rajasthan PET 1986]

[MNR 1980]

[MNR 1979]

[Roorkee 1995]

[Rajasthan PET 1995; MNR 1985]

367. If $x = 2 + 2^{1/3} + 2^{2/3}$, then $x^3 - 6x^2 + 6x$ equals

(c) o

(d) 1

368. If x be real, then the minimum value of $x^2 - 8x + 17$ is

(c) 1

(d) 2

369. If x be real, then the maximum value of $5+4x-4x^2$ will be equal to

(d) 2 [Kurukshetra CEE 1995]

(a) $b^2 - 4ac > 0$

370. The expression $ax^2 + bx + c$ has the same sign as of 'a' of

(b) $b^2 - 4ac = 0$

(c) $b^2 - 4ac \le 0$

(d) b and c have the same sign as a.

371. The value of $x^2 + 2bx + c$ is positive if

(a)
$$b^2 - 4c > 0$$

(b)
$$b^2 - 4c < 0$$

(c)
$$c^2 < b$$

(d) $b^2 < c$

372. The values of 'a' for which $(a^2-1)x^2+2(a-1)x+2$ is positive for any x are

[UPSEAT 2001]

Quadratic Expressions

(b)
$$a \le 1$$

(c)
$$a > -3$$

(d)
$$a < -3$$
 or $a > 1$

Basic Level

373. If x is real, then the maximum and minimum values of the expression $\frac{x^2 - 3x + 4}{x^2 + 3x + 4}$ will be [IIT 1984]

(a) 2, 1

(b) $5, \frac{1}{5}$

(c) $7, \frac{1}{7}$

(d) None of these

374. If x is real, then the value of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not lie between

[Roorkee 1983, 89]

(a) -9 and -5

(b) -5 and 9

(c) o and 9

(d) 5 and 9

375. The adjoining figure shows the graph of $y = ax^2 + bx + c$. Then

(a) a < 0

(b) $b^2 < 4ac$

(c) c > 0

(d) a and b are of opposite signs

376. If x+2 is a common factor of $px^2 + qx + r$ and $qx^2 + px + r$, then

(a) p = q = r

(b) p = q or p + q + r = 0

(c) p = r or p + q + r = 0

(d) q = r or p + q + r = 0

377. $x^2 - 11x + a$ and $x^2 - 14x + 2a$ will have a common factor, if a =

[Roorkee 1981]

(d) o, 3

(d) None of these

[IIT 1974; MP PET 1995]

379.	If $x+1$ is a factor of x^4	$-(p-3)x^3 - (3p-5)x^2 + (2p-7)x +$	6 , then p is equal to	[IIT 1975]
	(a) - 4		(c) -1	(d) 1
380.	If $x^2 + px + 1$ is a factor of	of the expression $ax^3 + bx + c$, th	en	[IIT 1980]
		(b) $a^2 - c^2 = -ab$		(d) None of these
381.	The condition that $x^3 - 3$	3px + 2q may be divisible by a fa	actor of the form $x^2 + 2ax + a$	² is [AMU 2002]
	(a) $3p = 2q$	(b) $3p + 2q = 0$	(c) $p^3 = q^2$	(d) $27p^3 = 4q^2$
382.	If <i>x</i> be real then $\frac{(x-a)(x-a)}{x-a}$	$\frac{(b)}{b}$ will take all real values when	en [IIT 1984; Karnataka CET 2002]
	(a) $a < b < c$	(b) $a > b > c$	(c) $a < c < b$	(d) Always
383.	Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, the	n all real values of x for which y	y takes real values, are	[IIT 1980]
	(a) $-1 \le x < 2$ or $x \ge 3$	(b) $-1 \le x < 3 \text{ or } x > 2$	(c) $1 \le x < 2$ or $x \ge 3$	(d) None of these
384.	The graph of the curve x	$x^2 = 3x - y - 2$ is		
	(a) Between the lines x	$= 1$ and $x = \frac{3}{2}$	(b) Between the lines $x = \frac{1}{2}$	1 and $x=2$
	(c) Strictly below the lin	ne $4y = 1$	(d)	None of these
385.	If $x^2 + px + 1$ is a factor of	of the expression $ax^3 + bx + c$ th	en	
	(a) $a^2 + c^2 = -ab$	(b) $a^2 - c^2 = -ab$	(c) $a^2 - c^2 = ab$	(d) None of these
386.	If $x + \lambda y - 2$ and $x - \mu y + 1$	1 are factors of the expression	$6x^2 - xy - y^2 - 6x + 8y - 12$, the	hen
	(a) $\lambda = \frac{1}{3}, \ \mu = \frac{1}{2}$	(b) $\lambda = 2, \ \mu = 3$	(c) $\lambda = \frac{1}{3}, \ \mu = -\frac{1}{2}$	(d) None of these
		Advance	Level	
387.	Given that, for all real	x, the expression $\frac{x^2-2x+4}{x^2+2x+4}$	lies between $\frac{1}{3}$ and 3. The	e values between which the
		x + 2x + 4	3	
	expression $\frac{9.3^{2x} + 6.3^x + 6.3^x}{9.3^{2x} - 6.3^x + 6.3^x}$		J	[Karanataka CET 1998]
	2	$\frac{4}{4}$ lies are	(c) -1 and 1	
388.	expression $\frac{9.3^{2x} + 6.3^x + 6.3^$	$\frac{4}{4}$ lies are (b) -2 and 0	(c) -1 and 1	[Karanataka CET 1998]
388.	expression $\frac{9.3^{2x} + 6.3^{x} + $	$\frac{4}{4}$ lies are	(c) -1 and 1 2z - 3zx - 2xy is always	[Karanataka CET 1998] (d) 0 and 2
	expression $\frac{9.3^{2x} + 6.3^x + 6.3^$	$\frac{4}{4}$ lies are (b) -2 and 0 Itinct, then $u = x^2 + 4y^2 + 9z^2 - 6y$ (b) Non-positive we factors of the expression λx^3	(c) -1 and 1 $2z - 3zx - 2xy$ is always (c) Zero	[Karanataka CET 1998] (d) 0 and 2 [IIT 1979] (d) None of these
389.	expression $\frac{9.3^{2x} + 6.3^x + 6.3^$	$\frac{4}{4}$ lies are (b) -2 and 0 Intinct, then $u = x^2 + 4y^2 + 9z^2 - 6y$ (b) Non-positive we factors of the expression λx^3 (b) $y - 3x$	(c) -1 and 1 z - 3zx - 2xy is always (c) Zero $-\mu x^2 y + xy^2 + y^3$, then the to (c) $y - x$	[Karanataka CET 1998] (d) 0 and 2 [IIT 1979] (d) None of these
389.	expression $\frac{9.3^{2x} + 6.3^x + 6.3^$	$\frac{4}{4}$ lies are (b) -2 and 0 Extinct, then $u = x^2 + 4y^2 + 9z^2 - 6y$ (b) Non-positive we factors of the expression λx^3 (b) $y - 3x$ If the smallest possible value of	(c) -1 and 1 z - 3zx - 2xy is always (c) Zero $-\mu x^2 y + xy^2 + y^3$, then the to (c) $y - x$ x + y is	[Karanataka CET 1998] (d) 0 and 2 [IIT 1979] (d) None of these hird factor is (d) None of these
389. 390.	expression $\frac{9.3^{2x} + 6.3^x + 6.3^$	$\frac{4}{4}$ lies are (b) -2 and 0 Extinct, then $u = x^2 + 4y^2 + 9z^2 - 6y$ (b) Non-positive we factors of the expression λx^3 (b) $y - 3x$ a the smallest possible value of (b) 30	(c) -1 and 1 z - 3zx - 2xy is always (c) Zero $-\mu x^2 y + xy^2 + y^3$, then the the form $x + y$ is (c) $y - x$ x + y is	[Karanataka CET 1998] (d) 0 and 2 [IIT 1979] (d) None of these hird factor is (d) None of these (d) None of these
389. 390.	expression $\frac{9.3^{2x} + 6.3^x + 6.3^$	$\frac{4}{4}$ lies are (b) -2 and 0 Intinct, then $u = x^2 + 4y^2 + 9z^2 - 6y$ (b) Non-positive we factors of the expression λx^3 (b) $y - 3x$ In the smallest possible value of $y - 3x$ (c) 30 Solutions of equation $y - 3x - 3x$	(c) -1 and 1 z - 3zx - 2xy is always (c) Zero $-\mu x^2 y + xy^2 + y^3$, then the the contraction of the	[Karanataka CET 1998] (d) 0 and 2 [IIT 1979] (d) None of these hird factor is (d) None of these (d) None of these
389. 390.	expression $\frac{9.3^{2x} + 6.3^x + 6.3^$	$\frac{4}{4}$ lies are (b) -2 and 0 Intinct, then $u = x^2 + 4y^2 + 9z^2 - 6y$ (b) Non-positive we factors of the expression λx^3 (b) $y - 3x$ In the smallest possible value of x^3 (b) 30 solutions of equation $x^3 = x^3$ $x^3 + xe^x - [x]$ on the interval $x^3 = x^3$	(c) -1 and 1 $z - 3zx - 2xy \text{ is always}$ (c) Zero $-\mu x^2 y + xy^2 + y^3, \text{ then the then}$ (c) $y - x$ $x + y \text{ is}$ (c) 20 $y + y + y + y + y + y + y + y + y + y +$	[Karanataka CET 1998] (d) 0 and 2 [IIT 1979] (d) None of these hird factor is (d) None of these (d) None of these egral part of x and m be the
389. 390. 391.	expression $\frac{9.3^{2x} + 6.3^x + 6.3^$	$\frac{4}{4}$ lies are (b) -2 and 0 Intinct, then $u = x^2 + 4y^2 + 9z^2 - 6y$ (b) Non-positive we factors of the expression λx^3 (b) $y - 3x$ In the smallest possible value of x^3 (b) 30 solutions of equation $[\sin x] \neq x$ $x + xe^x - [x]$ on the interval $[-1, 1]$ (b) $\alpha < m$	(c) -1 and 1 z - 3zx - 2xy is always (c) Zero $-\mu x^2 y + xy^2 + y^3$, then the the contraction of the	[Karanataka CET 1998] (d) 0 and 2 [IIT 1979] (d) None of these hird factor is (d) None of these (d) None of these
389. 390. 391.	expression $\frac{9.3^{2x} + 6.3^x + 6.3^$	tinct, then $u = x^2 + 4y^2 + 9z^2 - 6y$ (b) Non-positive we factors of the expression λx^3 (b) $y - 3x$ the smallest possible value of (b) 30 solutions of equation $[\sin x] \neq x$ $+ xe^x - [x]$ on the interval $[-1, 1]$ (b) $\alpha < m$ then $f(x) < f(3)$ for	(c) -1 and 1 $z - 3zx - 2xy$ is always (c) Zero $-\mu x^2y + xy^2 + y^3$, then the the control of the control	[Karanataka CET 1998] (d) 0 and 2 [IIT 1979] (d) None of these hird factor is (d) None of these (d) None of these egral part of x and m be the

(c) 3, 24

(c) p = -5, q = -4

(a) 24

(a) p = 4, q = 5

(b) 0, 24

(b) p = 5, q = 4

378. If $x^2 - 3x + 2$ is a factor of $x^4 - px^2 + q$, then

393.	If $f(x) = \sum_{r=0}^{100} a_r x^r$ and $f(0)$ and $f(1)$ are odd numbers, then for any integer x				
	(a) $f(x)$ is odd or even a	ccording as x is odd or even	(b) $f(x)$ is even or odd acc	cording as x is odd or even	
	(c) $f(x)$ is even for all in	ntegral values of x	(d) $f(x)$ is odd for all integrated	gral values of x	
394.	If $x \in [2, 4]$ then for the ϵ	expression $x^2 - 6x + 5 = 0$			
	(a) The least value $=-4$	(b) The greatest value = 4	(c) The least value $= 3$	(d) The greatest value = -3	
395.	The value of 'a' for whic	h $(a^2 - 1)x^2 + 2(a - 1)x + 2$ is positi	ive for any <i>x</i> are		
	(a) $a \ge 1$	(b) $a \le 1$	(c) $a \ge -3$	(d) $a \le -3$ or $a \ge 1$	
396.	Let $f(x)$ be a quadratic e	xpression which is positive for	all real values of x , then for	all real x , $10[f(x)+f(-x)]$ is	
	(a) > 0	$(b) \geq 0$	(c) < 0	(d) ≤ 0	
397.	The constant term of the	e quadratic expression $\sum_{k=1}^{n} \left(x - \frac{1}{2}\right)^{n}$	$\frac{1}{k+1} \left(x - \frac{1}{k} \right) \text{ as } n \to \infty \text{ is}$		
	(a) -1	(b) o	(c) 1	(d) None of these	
398.	Let $f(x) = (1 + b^2)x^2 + 2bx$	+1 and let $m(b)$ be the minimum	n value of $f(x)$. As b varies,	the range of $m(b)$ is	
	(a) [0, 1]	(b) $\left[0, \frac{1}{2}\right]$	(c) $\left[\frac{1}{2}, 1\right]$	(4) (0 11	
	(a) [0, 1]	$\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$	$\left[\frac{1}{2}, 1\right]$	(d) (0, 1]	
399.	If $p(x)$ be a polynomial s	satisfying the identity $p(x^2) + 2x$	$x^2 + 10x = 2xp(x+1) + 3$, then	p(x) is given by	
	(a) $2x + 3$	(b) $3x - 4$	(c) $3x + 2$	(d) 2x - 3	
400.	Let $y = \frac{\sin x \cos 3x}{\cos x \sin 3x}$, then				
	(a) y may be equal to $\frac{1}{3}$		(b) <i>y</i> may be equal to 3		
	(c) Set of possible value	e of y is $\left(-\infty, \frac{1}{3}\right) \cup (3, \infty)$	(d) Set of possible values	of y is $\left(-\infty, \frac{1}{3}\right] \cup (3, \infty)$	
401.	If $a = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}$, and equ	eation of lines AB and CD be $3y = x$	and $y = 3x$ respectively, then	for all real x , point $P(a, a^2)$	
	_	gle between lines AB and CD		le between lines AB and CD	
angle	(c) Cannot be in the acu between lines <i>AB</i> and <i>CI</i>	te angle between lines <i>AB</i> and ()	CD (d)	Cannot lie in the obtuse	
				Position of roots	
		Basic L	evel		
402.	If a, b, c are real number	as such that $a+b+c=0$, then the	ne quadratic equation $3ax^2$ +	-2bx + c = 0 has[MNR 1992; DCE 19	
	(a) At least one root in [(b)	At least one root in [1, 2]	
	(c) At least one root in [(d)	None of these	
403.		which the equation $x^2 - 3x + k = 0$ has	[UPSEAT	2001; Kurukshetra CEET 2002]	
40.1	(a) 0 The value of k for which	(b) 2 the equation $(k-2)v^2 + 8v + k + 1$	(c) 3	(d) Infinitely many	
404.	(a) 0	the equation $(k-2)x^2 + 8x + k + k$ (b) 2	4 = 0 has both real, distinct (c) 3	and negative is [Orissa JEE 2002] (d) -4	
	(u) U		(<i>>)</i> 3	(4) 4	
		Advance	Level		

405.	Let a , b , c be real number $a \ne 0$. If α is a root of $a^2x^2 + bx + c = 0$; β is a root of $a^2x^2 - bx - c = 0$ and $0 < \alpha < \beta$ then the equation $a^2x^2 + 2bx + 2c = 0$ has a root γ which always satisfies										
	then the equation $a^2x^2 +$	$2bx + 2c = 0$ has a root γ which	aiways satisfies	[IIT 1989]							
	(a) $\gamma = \frac{\alpha + \beta}{2}$	(b) $\gamma = \alpha + \frac{\beta}{2}$	(c) $\gamma = \alpha$	(d) $\alpha < \gamma < \beta$							
406.	Let a, b, c be non-zero	real numbers such that $\int_0^1 (1 +$	$\cos^8 x)(ax^2 + bx + c) dx = \int_0^2 (1 + cc)^8 dx = \int_0^2 (1 + cc)^$	$\cos^8 x)(ax^2 + bx + c) dx$, then the							
	quadratic equation ax^2 (a) No root in (0, 2)	bx + c = 0 has (b) At least one root in (0, 1)	(c) A double root in (0, 2)	(d) Two imaginary roots							
407.	For the equation $2x^2 + 6$	$\sqrt{2}x + 1 = 0$									
	(a) Roots are rational		(b) If one root is $p + \sqrt{q}$ then	hen the other is $-p + \sqrt{q}$							
	(c) Roots are irrational		(d) If one root is $p + \sqrt{q}$ the	hen the other is $p - \sqrt{q}$							
408.	The values of a for which	h both roots of the equation $(1 -$	a^2) $x^2 + 2ax - 1 = 0$ lie between	en 0 and 1 are given by							
	(a) $a > 2$	(b) $1 < a < 2$	(c) $-\infty < a < \infty$	(d) None of these							
409.	If p , q be non-zero real	numbers and $f(x) \neq 0$ in [0, 2]	and $\int_0^1 f(x).(x^2 + px + q) dx = \int_0^2 f(x).(x^2 + px + q) dx = 0$ then								
	equation $x^2 + px + q = 0$ has										
	(a) Two imaginary roots (c) One root in (0, 1) an	S	(b) No root in $(0, 2)$ (d) One root in $(-\infty, 0)$ and other in $(2, \infty)$								
410.	If $a, b, c \in R$, $a \neq 0$ and $(b - a)$	$(-1)^2 < 4ac$, then the number of real root	ts of the system of equation (in thre	ee unknowns x_1, x_2, x_3)							
		$= x_2$, $ax_2^2 + bx_2 + c = x_3$, $ax_3^2 + bx_3$. 2 0							
	(a) O	(b) 1	(c) 2	(d) 3							
411.	If $0 < \alpha < \frac{\pi}{4}$, equation (x	$-\sin\alpha)(x-\cos\alpha)-2=0 \text{ has}$									
	(a) Both roots in $(\sin \alpha, \cos \alpha)$	$\cos \alpha$)	(b) Both roots in $(\cos \alpha, \sin \alpha)$	α)							
	(c) One root in $(-\infty, \cos a)$	α) and other in $(\sin \alpha, \infty)$	(d) One root in $(-\infty, \sin \alpha)$ and other in $(\cos \alpha, \infty)$								
412.	For equation $x^3 - 6x^2 + 9$	$\partial x + k = 0$ to have exactly one roo	ot in (1, 3), the set of values	of k is							
	(a) (-4,0)	(b) (1, 3)	(c) (0, 4)	(d) None of these							
413.	Let $f(x) = x^3 - 6x^2 + 3(1 + x^2)$	$\pi(x) + 7$, $p > q > r$, then $\frac{\{x - f(p)\}\{x\}}{x - f(p)}$	$\frac{(x-f(r))}{(q)}$ has no value in								
	(a) (p, q)	(b) (q, r)	(c) (r, ∞)	(d) None of these							
414.	If $a+b+2c = 0$, $c \ne 0$, the	en equation $ax^2 + bx + c = 0$ has									
	(a) At least one root in ((b)	At least one root in (0, 2)							
	(c) At least one root in ((d)	None of these							
415.		o distinct real roots in (0, 1), wh									
	(a) $= a^2$	(b) $< a^2$	(c) $> a^2$	$(d) \geq a^2$							
			Solution of	f Quadratic inequations							

Basic Level

416. If a < b, then the solution of $x^2 + (a+b)x + ab < 0$, is given by

(a) a < x < b

(a) -1 < x < 2

- (b) x < a or x > b
- (c) -b < x < -a
- (d) x < -b or x < -a [DCE 2000; Kurakshetra CEE 1999]

- **417.** The solution of $6 + x x^2 > 0$ is
 - (b) -2 < x < 3
- (c) -2 < x < -1
- (d) None of these

(a) x and y connot be determined

(c) x = 5, y = 1

418.	For all $x \in R$, if $mx^2 - 9a$	mx + 5m + 1 > 0, then m lies in the	e interval	[AMU 1989]
	(a) $\left(-\frac{4}{61}, 0\right)$	(b) $\left[0, \frac{4}{61}\right)$	(c) $\left(\frac{4}{61}, \frac{61}{4}\right)$	(d) $\left(-\frac{61}{4}, 0\right]$
419.	If $x^2 - 1$ is a factor of x	$^{4} + ax^{3} + 3x - b$, then		
	(a) $a = 3, b = -1$	(b) $a = -3, b = 1$	(c) $a = 3, b = 1$	(d) None of these
420.	If $(x-1)^3$ is factor of x^4	$+ax^3 + bx^2 + cx - 1$ then the other	er factor is	
	(a) $x - 3$	(b) $x + 1$	(c) $x + 2$	(d) None of these
421.	The set of values of x w	hich satisfy $5x + 2 < 3x + 8$ and $\frac{x}{x}$	$\frac{c+2}{c-1} < 4$, is	[EAMCET 1989]
	(a) (2, 3)	(b) $(-\infty, 1) \cup (2, 3)$	(c) (-∞, 1)	(d) (1, 3)
422.	The solution of the equa	ation $2x^2 + 3x - 9 \le 0$ is given by		[Kurukshetra CEE 1998]
	(a) $\frac{3}{2} \le x \le 3$	(b) $-3 \le x \le \frac{3}{2}$	(c) $-3 \le x \le 3$	(d) $\frac{3}{2} \le x \le 2$
423.	The complete solution o	of the inequation $x^2 - 4x < 12$ is		[AMU 1999]
	(a) $x < -2$ or $x > 6$	(b) $-6 < x < 2$	(c) $2 < x < 6$	(d) $-2 < x < 6$
424.	If <i>x</i> is real and satisfies			[AMU 1999]
	(a) $x < -2$	(b) $x > 0$	(c) $-3 < x < 0$	(d) $-3 < x < 4$
425.		lity $ax^2 - 2x + 4 > 0$ has the solut		[AMU 2001]
	(a) $\frac{1+\sqrt{1-4a}}{a} > x > \frac{1-x}{a}$	$\frac{\sqrt{1-4a}}{a}$	(b) $x < \frac{1 - \sqrt{1 - 4a}}{a}$	
	(c) $x < 2$		(d) $2 > x > \frac{1 + \sqrt{1 - 4a}}{a}$	
		Advance 1	Level	
426.	If x satisfies $ x-1 + x $	$ x-2 + x-3 \ge 6$, then		
	(a) $0 \le x \le 4$		(c) $x \le 0$	(d) None of these
427.	The number of positive	integral solutions of $x^2(3x-4)^3(x-4)^3(x-5)^5(2x-4)^5(x-5)^5(2x-4)^5(x-5)^5(2x-4)^5(x-5)^5(2x-4)^5(x-5)^5($	$\frac{1}{-7)^6} \le 0 1S$	
	(a) 4	(p) 3	(c) 2	(d) 1
428.	If $5^x + (2\sqrt{3})2^x \ge 13^x$, then	n the solution set for x is		
	(a) $[2, \infty)$	(b) {2}	(c) (-∞, 2]	(d) [0, 2]
429.	The inequality $ 2x-3 $	1 is valid when <i>x</i> lies in		[IIT 1993]
	(a) (3, 4)	(b) (1, 2)	(c) (-1, 2)	(d) (-4, 3)
430.	The graph of the function	$y = 16x^2 + 8(a+5)x - 7a - 5$ is strict	ly above the x-axis, then 'a' mu	st satisfy the inequality
			(c) $5 < a < 7$	(d) None of these
431.	If <i>x</i> is a real number s	uch that $x(x^2 + 1), (-1/2)x^2, 6$ ar	e three consecutive terms of	of an A.P. then the next two
	consecutive term of the			
	(a) 14, 6	(b) -2, -10	(c) 14, 22	(d) None of these
432.	If <i>x</i> , <i>y</i> are rational numl	pers such that $x + y + (x - 2y)\sqrt{2} =$	$= 2x - y + (x - y - 1)\sqrt{6}$, then	

(b) x = 2, y = 1

(d) None of these

433.	=	terger less than or equal to x , a	(x) the least integer gr	eatest than or equal to x and
	$[x]^2 + (x)^2 > 25$ then x be (a) [3, 4]	elongs to (b) $(-\infty, -4]$	(c) $[4, +\infty)$	(d) $(-\infty, -4] \cup [4, +\infty)$
434.		f x satisfying $ x-1 \le 3$ and $ x-1 \le 3$		(, 1 - [, , ,)
454.	(a) [2, 4]	(b) $(-\infty, 2] \cup [4, +\infty)$		(d) None of these
425		f x satisfying $ x-1 -1 \le 1$ is	(c) $[2,0] \cup [2,+]$	(u) None of these
435.		· · ·		(1) 27 (1)
	(a) [-1, 3]	(b) [0, 2]	(c) [-1, 1]	(d) None of these
436.	_	ers) such that $x^2 - 3x < 4$ then t	-	
	(a) 3	(b) 4	(c) 6	(d) None of these
437.	_	ying $x^2 - 6x + 5 \le 0$ and $x^2 - 2x > 0$		
	(a) 3	(b) 4	(c) 2	(d) Infinite
438.	The solution set of the i	neuation $\log_{1/3}(x^2 + x + 1) + 1 > 0$ i	S	
	(a) $(-\infty, -2) \cup (1, +\infty)$	(b) [-1, 2]	(c) (-2, 1)	(d) $(-\infty, +\infty)$
439.	If $3^{x/2} + 2^x > 25$ then the	e solution set is		
	(a) R	(b) $(2, +\infty)$	(c) $(4, +\infty)$	(d) None of these
440.	The solution set of $\frac{x^2 - x^2}{x}$	$\frac{3x+4}{x+1} > 1, x \in R$, is		
	(a) $(3, +\infty)$	(b) $(-1, 1) \cup (3, +\infty)$	(c) $[-1, 1] \cup [3, +\infty)$	(d) None of these
441.	The equation $ x+1 x-1 $	$-1 = a^2 - 2a - 3$ can have real so	lutions for x if a belongs to	
	(a) $(-\infty, -1] \cup [3, +\infty)$	(b) $[1-\sqrt{5}, 1+\sqrt{5}]$	(c) $[1-\sqrt{5}, -1] \cup [3, 1+\sqrt{5}]$	(d) None of these
			1	Miscellaneous Problems
		Basic L	evel	
112	If $x^2 + 2x + 2xy + my - 3$	has two rational factors, then th	ne value of m will be	[Rajasthan PET 1990]
442.	(a) $-6, -2$	(b) -6, 2	(c) 6, -2	(d) 6, 2
443.	,	x + 35 = 0 $(h > 0)$ has a common ro		
113.	(a) 1	(b) 2	(c) 3	(d) 4
444.	Minimum value of $(a+b)$	` '		(4) 1
	(a) 4	(b) 9	(c) 16	(d) 25
445.	Let $f(x) = ax^3 + 5x^2 - bx +$	1. If $f(x)$ when divided by $2x + 1$ le	eaves 5 as remainder, and $f'(x)$	is divisible by $3x-1$ then
	(a) $a = 26, b = 10$	(b) $a = 24, b = 11$	(c) $a = 26, b = 12$	(d) None of these
446.	$x^{3^n} + y^{3^n}$ is divisible by	x + y if		
	(a) n is any integer ≥ 0	•	(b) <i>n</i> is an odd positive in	teger
	(c) n is an even positive	_	(d) n is a rational number	
447.		of the equation $ x = \cos x$ is		
	(a) One	(b) Two	(c) Three	(d) Zero
448.	The line $y + 14 = 0$ cuts (a) Three real points	the curve whose equation is $x(x)$		(d) No real point
	(a) Thirde real points	(v) One real point	(c) At least one real point	(u) NO IEdi PUIIIL

449.	Let R =the set of real numbers, J = the set of integers, N = the set of natural numbers. If S be the solution set of
	the equation $(x)^2 + [x]^2 = (x-1)^2 + [x+1]^2$, where $(x) =$ the least integer greater then or equal to x and $[x] =$ the
	greatest integer less than or equal to x , then

(a) S = R

(b) S = R - Z

(c) S = R - N

(d) None of these

450. The number of real roots or $x^8 - x^5 + x^2 - x + 1 = 0$ is equal to

(a) c

b) 2

(c) 4

(d) 6

451. The number of positive real roots of $x^4 - 4x - 1 = 0$ is

(a) 3

(b) 2

(c) 1

(d) o

452. The number of negative real roots of $x^4 - 4x - 1 = 0$ is

(a) 2

(b) 2

(c) 1

(d) o

453. The number of complex roots of the equation $x^4 - 4x - 1 = 0$ is

(a) 3

(b) 2

(6)

(d) o

454. $x^2 - 4$ is a factor of $f(x) = (a_1 x^2 + b_1 x + c_1).(a_2 x^2 + b_2 x + c_2)$ if

(a) $b_1 = 0$, $c_1 + 4a_1 = 0$

(b) $b_2 = 0$, $c_2 + 4a_2 = 0$

(c) $4a_1 + 2b_1 + c_1 = 0$, $4a_2 + c_2 = 2b_2$

(d) $4a_1 + c_1 = 2b_1$, $4a_2 + 2b_2 + c_2 = 0$

Quadratic Equations and Assignment (Basic and Advance Level) Inequations												el)							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	С	a	d	d	С	d	d	b	d	d	d	С	d	С	a	С	b	d	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	d	С	С	b	С	d	С	b	С	b	С	a	a	b	С	b	b	b	С
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
a	C	a	a	d c-	d	C C	a	a	С	b	a	a	a	a	d	b	b	С	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
с 81	a 82	с 83	ь 84	a 85	d 86	с 87	a 88	a 89	а 90	d 91	c 92	ь 93	d 94	ь 95	ь 96	ь 97	с 98	ь 99	a 100
d	C	b	b	b	a	c	С	b	d	b	92	93 b	94 C	9 5	a	9 /	a	ээ а	a
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
С	b	С	b	a	a	a	a	С	d	С	С	b	a	С	d	b	С	b	a
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
d	a	a	С	С	С	d	d	С	С	b	b	b	С	b	d	d	a	a	b
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
a	b	a	a,c	С	b	С	a	С	b	a	b	a	d	b	d	a	a	b	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	C	b	b	b	a	C	C	b	b	a	b	C	d	b	b	a	a	b	d
181	182	183	184	185	186	187 d	188 b	189	190 d	191	192 d	193	194	195	196	197 b	198	199 d	200 d
a 201	a 202	a 203	204	a 205	206	207	208	209	210	211	212	a 213	214	a 215	a 216	217	218	219	220
b	C	C	С С	a	d	b	d	d	C	d	C	a	a	d	a	a	d	b	a
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
a	b	b	b	d	С	a	d	a	a	d	С	b	a	С	b	b	С	a	d
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
b	b	a	С	С	b	d	b	d	С	a	С	d	b	b	b	a	b	a	a
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
b	a	С	a	b	a	С	a	d	b	b	b	b	a	a	a	a	b	d	a
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
d	a	a	C	a	306	a	ь 308	a	a 210	a	a 312	b	d	b	d	d	d 318	b	C
301	302 b,c	303 a,c	304 b,c	305	306 b	307 b	308 C	309	310	311 d	312 C	313 b	314 c	315	316 d	317 b	318 a	319 d	320
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
a	d	b	a	5–3	a,c	5 _/	b	a,c	c	a,b	C	C	a	a,b	c	C	c	d	d
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
С	b	b	b	С	С	С	С	a	a	b	b	a	c,d	b,c	a,b	a,c	С	С	a
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
С	a	a,b,c,d	a	a	a	a	С	b	С	d	d	С	d	d	b	b	b	b	С
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
С	С	a	С	С	a	a	a	b	С	a	d	d	a,d	d	a	С	d	a	С
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420
d	a	a	С	d	b	b,c	a	С	a	d	a	d	a,b, c	b	С	b	b	b	b
421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440
b	b	d	b	a	С	b	С	b	a	С	b	d	a	a	a,b	a	С	С	b

Indices and Surds 205

441	442	443	444	445	446	447	448	449	450	451	452	453	454
a,c	С	d	С	С	a	b	b	b	a	С	С	b	a,b,c,d