OBJECTIVE - I

1. A positively charged particle projected towards east os deflected towards north by a magnetic field. The field may be -

(A) towards west (B) towards south

(C) upward

(D*) downward

Sol. A

 $F = q \left(\vec{V} \times \vec{B} \right)$

$$j = q(\hat{i} \times \vec{B}) \implies B \otimes$$

- \Rightarrow The magnetic field may be down ward direction.
- A charged particle is whirled in a horizontal circle on a frictionless table by attaching it to a string fixed at one point. If a magnetic field is switched on in the vertical direction, the tension in the string.
 (A) will increase
 (B) will decrease
 (C) will remain the same
 (D*) may increase or decrease

Sol. D

B=B₀j

The tension is the strong may increases or decreases.

3. Which of the following particles will describe the smallest circle when projected with the same velocity perpendicular to a magnetic field ?

(A) electron (B) proton (C) He⁺ (D⁺) Li⁺ Sol. D |F| = |qVB|charge of Li⁺⁺ > charge of (He⁺, proton, electron)

4. Which of the following particles will have minimum frequency of revolution when projected with the same velocity perpendicular to a magnetic field ?

 $(A^*) electron \qquad (B) proton \qquad (C) He^+ \qquad (D) Li^+$

Sol. A

$$F = qVB = \frac{mv^2}{r}$$
$$r = \frac{mV}{aB}$$

charge electron = charge of proton = charge of He⁺ = charge of Li⁺ But mass of electron is

Page 2

Lowest.

- \therefore (the electron so smallest + circle made by)
- 5. Which of the following particles will have minimum frequency of revolution when projected with the same velocity perpendicular to a magnetic field ?

(A) electron (B) proton (C) He⁺ (D*) Li+ Sol. D $T = \frac{2\pi r}{v \perp}$(i) $r=\frac{mv_1}{qB}$ $\frac{r}{v \perp} = \frac{m}{qB}$ (ii) from eq. (i) & (ii) we get $T = \frac{2\pi m}{qB}$ $f = \frac{1}{T} = \frac{qB}{2\pi m}$ Charge of all these particles are same but mass of Li⁺ is Highest. \therefore mass \uparrow , f \downarrow

6. A circular loop of area 1 cm², carrying a current of 10 A, is placed in a magnetic field of 0.1 T perpendicular to the plane of the loop. The torgue on the loop due to the magnetic field is

(C) 10² N-m

Sol.

(A*) zero

Α

 $B \square = 0.1 T$ Area = 1 cm^2 Net torque on the loop due to the uniform magnetic field is always zero.

(B) 10⁻⁴ N-m

- 7. A beam consisting of protons and electrons moving at the same speed goes through a thin region in which there is a magnetic field perpandicular to the beam. The protons and the electrons (A) will go undeviated
 - (B) will be deviated by the same angle will not separate
 - (C*) will be deviated by different angles and hence separate
 - (D) will be deviated by the same angle but will separate.

Sol. С

 $\vec{F} = q(V \times B)$ Charge proton is poritive = e $F_{p} = evB$ Charge of electron is negative = -e $F_e = -evB$ They will be deviated by different angles and Hence separate.

A charged particle moves in a uniform magnetic field. The velocity of the particle at some instant makes an acute angle with the magnetic field. The path of the particle will be. (A) a straight line (B) a circle (C*) a helix with uniform pitch (D) a helix with nonuniform pitch.

Sol. С

8.

 $\vec{F} = q(\vec{V} \times \vec{B}) = qvB\sin\theta \otimes$

Megnetic force doesn't change the speed of the particle. It change the direction of the velocity of the particle.

 $V\cos\theta$ provide the displacement of the particle in Horizontal direction & force is provide the centripetal acceleration of the particle.

So the path of the particle will be ahelix with uniform pitch.

A particle moves in a region having a uniform magnetic field and a parallel, uniform electric field. At some instant, the velocity of the particle is perpendiculars to the field direction. The path of the particle will be (A) a straight line
 (B) a circle

(C) a helix with uniform pitch

(D^{*}) a helix with nonuniform pitch.

Sol. D

$$F = q\vec{E} + q(\vec{V} + \vec{B})$$

 $F=q\vec{E}\,$ provides the acceleration in 'x' direction.

 $F_2 = q(\vec{V} \times \vec{B}) \otimes$ provides the centripetal Force.

The path of the particle will be ahelix with nonuniform pitch.

10. An electric current i enters and leaves a uniform circular wire of radius a through diametrically opposite points. A charged particle q moving along the axis of the circular wire passes through its centre at speed υ. The magnetic force acting on the particle when it passes through the centre has a magnitude

(A)
$$qv \frac{\mu_0 i}{2a}$$
 (B) $qv \frac{\mu_0 i}{2\pi a}$ (C) $qv \frac{\mu_0 i}{a}$ (D*) zero

Zero

Sol. D

OBJECTIVE - II

 If a charged particle at rest experieces no electromagnetic force, (A*) the electric field must be zero
 (B) the magnetic field must be zero
 (C) the electric field may or may not be zero
 (D*) the magnetic field may or may not be zero

Sol. AD

- \Rightarrow The electric field must be zero.
- \Rightarrow The Magnetic field may or may not be zero.
- If a charged particle kept at list expreiences an electromagnetic force, (A*) the electric field must not be zero
 (B) the magnetic field must not be zero
 (C) the electric field may or may not be zero
 (D*) the magnetic field may no may not be zero
 Sol. AD
 - \Rightarrow The electric field must not be zero.
 - \Rightarrow The Magnetic field may or may not be zero.
- If a charged particle projected in a gravity-free room deflects,
 (A) there must be an electric field
 (C*) both field cannot be zero
 (D*) both fields can be nonzero
- **4.** A charged particle moves in a gravity-free space without change in veloicty. Which of the following is/are possible ?

 $(A^*) E = 0, B = 0 (B^*) E = 0, B \neq 0 (C) E \neq 0, B = 0 (D^*) E \neq 0, B \neq 0$

Sol. ABD

 \Rightarrow Particle move with constant velocity in ay direction.

So B = 0, E = 0

 \Rightarrow Particle move in a circle with constant speed.

Magnetic force is provide the centripetal force that causes particle is move in a circle. \Rightarrow If qE = qvB and Magnetic & Electric force in opposite direction in this case particle also move with uniform speed.

5. A charged particle moves alonh a circle under the action of possible constant electric and magnetic fields. Which of the following are possible ?

(A) E = 0, B = 0 (B*) $E = 0, B \neq 0$ (C) $E \neq 0, B = 0$ (D) $E \neq 0, B \neq 0$ B

Sol.

A charged particle moves along a circle that mean Magnetic force is provides centripetal force that causes particle is move in a circle.

So, E = 0, $B \neq 0$

6. A charged particle goes undelflected in a region containing electric and magnetic field. It is possible that

$(A^*) \vec{E} \mid \mid \vec{B}, \vec{\upsilon} \mid \mid \vec{E}$	(B*) $ \vec{\mathrm{E}}$ is not parallel to $ \vec{\mathrm{B}}$
(C) $ec{\mathrm{\upsilon}} \mid \mid ec{\mathrm{B}}$ but $ec{\mathrm{E}}$ is not parallel to $ec{\mathrm{B}}$	(D) $ec{ extbf{E}} \mid \mid ec{ extbf{B}}$ but $ec{ec{ extbf{v}}}$ is not parallel to $ec{ extbf{E}}$

Sol. AB

 $\Rightarrow \quad \vec{V} \square \vec{E} , \vec{B} \parallel \vec{E}$

In this case Magnetic force on the particle is zero & $_{\vec{V}}$ is paralle to $_{\vec{E}}.$ So charged particle goes undeflected in a region.

 \vec{E} is not parallel to \vec{B} , But \vec{V} is parallel to \vec{E} .

- 7. If a charged particle goes unacceleration in a region containing electric and magnetic fields,
 - (A*) \vec{E} must be perpeaddicular to \vec{B} (B*) $\vec{\upsilon}$ must be perpendicular to \vec{E}
 - (C) $\vec{\upsilon}$ must be perpendicular to \vec{B} (D) E must be equila to υB .

Sol. AB

 $\Rightarrow \qquad \mathsf{E} \bot \vec{\mathsf{B}} \quad \& \quad \vec{\mathsf{V}} \bot \vec{\mathsf{E}}$

8. Two ions have equla masses but one is singly-ionized and other is douly-ionized. The are project from the same place in a uniform magnetic field with the same veloicty perpendicular to the field.

(A) Both ions will go along circles of equal radii.

 (B^*) The circle described by the single-ionized charge will have a radius double that of the other circle

(C) The two circles do not touch each other

(D*) The two circles touch each other

Sol. BD

 $r = \frac{mv}{aB}$

qB If charge of singly ionized = e Then charge of doubly ionized = ze The circle described by the singly - ionized charge will have a radius double that of the other circle. The two circle touch each other because brojected from the same place.

9. An electron is moving along the positive X-axis. You want to apply a magnetic field for a short time so that the electron may reverse its direction and move parallel to the negative X-axis. This can be done by applying the

magentic field along.

(A*) Y-axis	(B*) Z-axis	(C) Y-axis only	(D) Z-axis only
-------------	-------------	-----------------	-----------------

Sol. AB

 $F = q(\vec{V} \times \vec{B})$

This can be done by applying the Magnetic field along y axis or z axis.

10. Let \vec{E} and \vec{B} denote electric and magnetic fields in a frames S and \vec{E} ' and \vec{B} ' in another frame S' moving with respect to S at a velocity $\vec{\upsilon}$. Two of the following equations are wrong. Identify them.

(A) $B_{y}^{1} + B_{y} + \frac{\upsilon E_{2}}{c^{2}}$ (B*) $E_{y}^{1} + E_{y} + \frac{\upsilon B_{2}}{c^{2}}$ (C*) $B_{y}^{1} + B_{y} + \upsilon E_{2}$ (D) $B_{y}^{1} + B_{y} + \upsilon B_{2}$

Sol. BC

qE = qvB $\Rightarrow e = vB \qquad By dimensionally b & c are wrong.$ $\Rightarrow vE = v^{2}B$ $\Rightarrow B = \frac{vE}{v^{2}}$