SI.No.

18 (E) (MARCH, 2024)

Time: 3 Hours

[Maximum Marks: 80]

Instructions:

- 1) Write in a clear legible handwriting.
- This question paper has four Sections A, B, C & D and Question Numbers from 1 to 54.
- 3) All Sections are compulsory. Internal options are given.
- 4) The numbers to the right represent the marks of the question.
- 5) Draw neat diagrams wherever necessary.
- 6) New sections should be written in a new page. Write the answers in numerical order.
- 7) Calculator, digital watch or smart watch is not allowed.

SECTION-A

- Answer the following as per instruction given (Questions: 1 to 24) (1 mark each).
 [24]
- Choose the correct option from the question given below (Questions: 1 to 6). (1 mark each).
 - 1) For a given pair of linear equations in two variables, if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ then equation has solution.
 - (A) One

(B) Two

(C) Three

(D) No solution

2)	If the two roots of quadratic equation $ax^2 + bx + c = 0$ ($a \ne 0$) are real and equal		
	then	,	[1]
	(A) $b^2 - 4ac < 0$	$(B) b^2 - 4ac = 0$	
	(C) $b^2 - 4ac > 0$,	(D) $b^2 - 4ac \neq 0$	
3)	For the AP: 4, 10, 16, 22, con (A) 8 (C) 6 ·	nmon difference (d) is (B) 5	[1]
4.		(D) 12	
4)	The distance between the points (0	0, 5) and (-5, 0) is	[1]
	(A) 5	(B) $5\sqrt{2}$	(-)
	(C) $2\sqrt{5}$	(D) 10	
5)	$\sec^2\theta - \tan^2\theta = \underline{\hspace{1cm}}.$		
	(A) 0	(B) 1	[1]
	(C) -1	(D) 2	
6)	For any data $\overline{X} = 25$ and $Z = 25$	then M =	
	(A) 25	(B) -25	[1]
	(C) 5	(D) -5	
Fill (Qu	in the blanks with correct optic lestions : 7 to 12). (1 mark each)	on as to make the given statement con	rrect :
7)	$3 + 2\sqrt{5}$ is a/an number	. (rational, irrational, negative integer)	[1]
8)	The sum of zeroes of quadratic po	olynomial $4x^2-3x-7$ is $\left(\frac{3}{4}, \frac{3}{4}\right)$	$\left(\frac{4}{3}, \frac{7}{3}\right)$
9)	When a coin is tossed three to is (4, 6, 8)	times, the total number of possible ou	

10)
$$\tan \theta \cdot \cot \theta =$$
_____. (-1, 0, 1) [1]

11) A circle can have _____ parallel tangents at the most. (1, 2, 3) [1]

State True or False for statements given below: (Questions: 13 to 16). (1 mark each).

14) Number of zeroes of y = p(x) is 2 from figure given below. [1]

15) If the pair of linear equations in two variables are 2x + 3y = 12 and 3x + 2y = 18then x + y = 5.

16) The probability of an impossible event is zero (0). [1]

Answer the following in one scatence or one word or number (Questions 17 to 20).
 (I mark each).

18) How many tangents can be drawn to a circle passing through a point lying inside the circle?

19) A die is thrown once. What is the probability of not getting number 6?

20) Find the mean of First 11 Natural Numbers.

■ Match the pairs : (Questions : 21 to 24). (1 mark each). [4]

	A	В
21)	Base area of hemisphere	(a) 2πrh
22)	Volume of a 5 rupee coin	(b) πr^2
		(c) $\pi r^2 h$

	A		В
23)	Length of an arc of a sector of angle θ	(a)	πd
24)	Circumference of a circle	(b)	πr
		(c)	$\frac{\pi r \theta}{180}$

SECTION-B

- Answer the following briefly with calculation: (Any 9) (Questions: 25 to 37) (2 marks each).
 - 25) Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$. [2]
 - 26) Find a quadratic polynomial whose sum and product of its zeroes are $-\frac{1}{4}$ and $\frac{1}{4}$ respectively. [2]
 - 27) Find the roots of the quadratic equation $x^2 3x 10 = 0$ by factorisation method. [2]
 - 28) Find the 10th term of the AP: 2, 7, 12, [2]
 - 29) Find the sum of the first 1,000 positive integers. [2]
 - 30) Find the distance between the points (2, 3) and (4, 1) using distance formula. [2]
 - 31) Find the values of y for which the distance between the points P(2, -3) and Q(10, y) is 10 units. [2]
 - 32) If $\sin \theta = \frac{4}{5}$, calculate $\cos \theta$ and $\tan \theta$. [2]
 - 33) Evaluate: [2] $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$

- 34) A tower stands vertically on the ground. From a point on the ground, which is 15 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.
 121
- 35)/ 2 cubes each of volume 125 cm³ are joined end to end. Find the volume of the resulting cuboid.
 [2]
- 36) A juice seller was serving his customers using glasses as shown in the figure. The inner diameter of the cylindrical glass was 5 cm, but the bottom of the glass had a hemispherical raised portion which reduced the capacity of the glass. If the height of a glass was 10 cm. Find the apparent capacity of the glass. (Use $\pi = 3.14$).[2]

37) Find Median for the classical distribution data when n = 53, l = 60, cf = 22, f = 7 and h = 10.

SECTION-C

- Answer the following questions any 6 from 38 to 46. (9 questions). (3 marks each).
 - 38) Solve the following pair of linear equations by the substitution method. [3] 2x + 3y = 11

$$2x + 3y = 11$$
$$2x - 4y = -24$$

39) Solve the following pair of linear equations by elimination method. [3] 3x - 5y - 4 = 09x = 2y + 7

- 40) Find the sum of the first 40 positive integers divisible by 7. [3]
- 41) Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, -3) and B(1, 4).
- 42) Find the coordinates of the points of trisection of the line segment joining (4, -1) and (-2, -3).
- 43) Prove that "The lengths of tangents drawn from an external point to a circle are equal.

 [3]
- 44) Two concentric circles are of radii 41 cm and 40 cm. Find the length of the chord of the larger circle which touches the smaller circle. [3]

45) The following table shows the ages of the patients admitted in a hospital during a year:

[3]

Age (in years)	5-15	15-25	25-35	35-45	45-55	55-65
Number of patients	6	11	21	23	14	5

Find the mode of the data given above.

- 46) A Piggy bank contains hundred 50 p coins, fifty ₹1 coins, twenty ₹2 coins and ten ₹5 coins. If it is equally likely that one of the coins will fall out when the bank is turned upside down, what is the probability that the coin:
 - i) Will be a 50 p coin?
 - ii) Will not be a ₹ 5 coin?
 - iii) Will be a ₹ 1 coin?

SECTION - D

- Answer the following questions any 5 from 47 to 54 (8 Questions) with calculation: (4 marks each).
 - 47) State Basic proportionality theorem and prove it.

 [4]
 - 48) A girl of height 90 cm is walking away from the base of a lamp-post at a speed of 1.2 m/s. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.
 - 49) The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.[4]

- 50) A manufacturer of TV sets produced 600 sets in the third year and 700 sets in the seventh year. Assuming that the production increases uniformly by a fixed number every year, find:
 [4]
 - the production in the 1st year.
 - ii) the production in the 10th year.
 - iii) the total production in first 7 years.

51) The table below shows the daily Expenditure on food of 25 households in a locality. [4]

Daily Expenditure	100-150	150-200	200-250	250-300	300-350
(in ₹)					
Number of	4	5	12	2	2
Households					

Find the mean daily Expenditure on food by a suitable method.

52) If the median of the distribution given below is 28.5, find the values of x and y. [4]

Class Interval	Frequency
0 - 10	5
10 - 20	x
20 - 30	20
30 - 40	15
40 - 50	у
50 - 60	5
Total	60

- 53) One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting:
 [4]
 - i) A red face card.
 - ii) The jack of hearts.
 - iii) An ace of black colour
 - iv) Not an ace
- 54) A game of chance consists of spinning an arrow which comes to rest pointing at one of the numbers 1, 2, 3, 4, 5, 6, 7, 8 (see the Figure) and these are equally likely outcomes. What is the probability that it will point at
 [4]
 - i) 8?
 - ii) an odd number?
 - iii) a number greater than 2?
 - iv) a number less than 9?

