Mathematics

(Chapter – 8) (Introduction to Trigonometry)
(Class X)

Exercise 8.1

Question 1:

In $\triangle ABC$ right angled at B, AB = 24 cm, BC = 7 m. Determine

- (i) sin A, cos A
- (ii) sin C, cos C

Answer 1:

Applying Pythagoras theorem for $\Delta ABC,$ we obtain

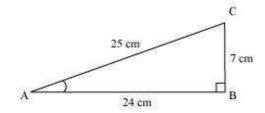
$$AC^2 = AB^2 + BC^2$$

$$= (24 \text{ cm})^2 + (7 \text{ cm})^2$$

$$= (576 + 49) \text{ cm}^2$$

$$= 625 \text{ cm}^2$$

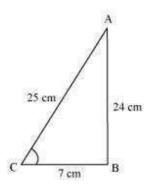
$$\therefore$$
 AC = $\sqrt{625}$ cm = 25 cm



(i)
$$\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{7}{25}$$

$$\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{24}{25}$$

(ii)

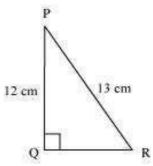


$$\sin C = \frac{\text{Side opposite to } \angle C}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{24}{25}$$

$$\cos C = \frac{\text{Side adjacent to } \angle C}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{7}{25}$$

Question 2:

In the given figure find tan P - cot R



Answer 2:

Applying Pythagoras theorem for ΔPQR , we obtain

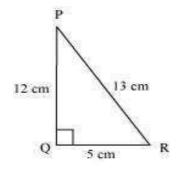
$$PR^2 = PQ^2 + QR^2$$

$$(13 \text{ cm})^2 = (12 \text{ cm})^2 + QR^2$$

$$169 \text{ cm}^2 = 144 \text{ cm}^2 + \text{QR}^2$$

$$25 \text{ cm}^2 = QR^2$$

$$QR = 5 cm$$



$$\tan P = \frac{\text{Side opposite to } \angle P}{\text{Side adjacent to } \angle P} = \frac{QR}{PQ}$$

$$= \frac{5}{12}$$

$$\cot R = \frac{\text{Side adjacent to } \angle R}{\text{Side opposite to } \angle R} = \frac{QR}{PQ}$$

$$= \frac{5}{12}$$

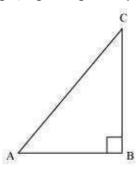
$$\tan P - \cot R = \frac{5}{12} - \frac{5}{12} = 0$$

Question 3:

If $\sin A = \frac{3}{4}$ calculate $\cos A$ and $\tan A$.

Answer 3:

Let \triangle ABC be a right-angled triangle, right-angled at point B.



Given that,

$$\sin A = \frac{3}{4}$$

$$\frac{BC}{AC} = \frac{3}{4}$$

Let BC be 3k. Therefore, AC will be 4k, where k is a positive integer.

Applying Pythagoras theorem in $\triangle ABC$, we obtain

$$AC^2 = AB^2 + BC^2$$

$$(4k)^2 = AB^2 + (3k)^2$$

$$16k^2 - 9k^2 = AB^2$$

$$7k^2 = AB^2$$

AB =
$$\sqrt{7}k$$

 $\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}}$

$$= \frac{AB}{AC} = \frac{\sqrt{7}k}{4k} = \frac{\sqrt{7}}{4}$$
 $\tan A = \frac{\text{Side opposite to } \angle A}{\text{Side adjacent to } \angle A}$

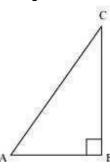
$$= \frac{BC}{AB} = \frac{3k}{\sqrt{7}k} = \frac{3}{\sqrt{7}}$$

Question 4:

Given 15 $\cot A = 8$. Find $\sin A$ and $\sec A$

Answer 4:

Consider a right-angled triangle, right-angled at B.



$$\cot A = \frac{\text{Side adjacent to } \angle A}{\text{Side opposite to } \angle A}$$
$$= \frac{AB}{BC}$$

It is given that,

$$\cot A = \frac{8}{15}$$

$$\frac{AB}{BC} = \frac{8}{15}$$

Let AB be 8k. Therefore, BC will be 15k, where k is a positive integer.

Applying Pythagoras theorem in $\triangle ABC$, we obtain

$$AC^2 = AB^2 + BC^2 = (8k)^2 + (15k)^2$$

$$= 64k^2 + 225k^2$$

$$= 289k^2$$

AC = 17k

$$\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}}$$

$$= \frac{15k}{17k} = \frac{15}{17}$$

$$\sec A = \frac{\text{Hypotenuse}}{\text{Side adjacent to } \angle A}$$

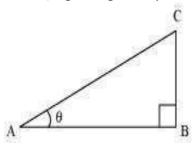
$$= \frac{AC}{AB} = \frac{17}{8}$$

Question 5:

Given sec $\theta = \frac{13}{12}$, calculate all other trigonometric ratios.

Answer 5:

Consider a right-angle triangle ΔABC , right-angled at point B.



$$sec\theta = \frac{Hypotenuse}{Side adjacent to \angle \theta}$$

$$\frac{13}{12} = \frac{AC}{AB}$$

If AC is 13k, AB will be 12k, where k is a positive integer.

Applying Pythagoras theorem in ΔABC, we obtain

$$(AC)^2 = (AB)^2 + (BC)^2$$

$$(13k)^2 = (12k)^2 + (BC)^2$$

$$169k^2 = 144k^2 + BC^2$$

$$25k^2 = BC^2$$

$$BC = 5k$$

$$\sin \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{5k}{13k} = \frac{5}{13}$$

$$\cos \theta = \frac{\text{Side adjacent to } \angle \theta}{\text{Hypotenuse}} = \frac{\text{AB}}{\text{AC}} = \frac{12k}{13k} = \frac{12}{13}$$

$$\tan \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Side adjacent to } \angle \theta} = \frac{\text{BC}}{\text{AB}} = \frac{5k}{12k} = \frac{5}{12}$$

$$\cot \theta = \frac{\text{Side adjacent to } \angle \theta}{\text{Side opposite to } \angle \theta} = \frac{\text{AB}}{\text{BC}} = \frac{12k}{5k} = \frac{12}{5}$$

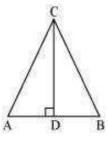
$$\cos ec \ \theta = \frac{\text{Hypotenuse}}{\text{Side opposite to } \angle \theta} = \frac{\text{AC}}{\text{BC}} = \frac{13k}{5k} = \frac{13}{5}$$

Question 6:

If $\angle A$ and $\angle B$ are acute angles such that $\cos A = \cos B$, then show that $\angle A = \angle B$.

Answer 6:

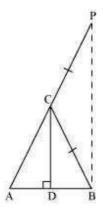
Let us consider a triangle ABC in which CD \perp AB.



It is given that $\cos A = \cos B$

$$\Rightarrow \frac{AD}{AC} = \frac{BD}{BC}$$
(1)

We have to prove $\angle A = \angle B$. To prove this, let us extend AC to P such that BC = CP.



From equation (1), we obtain

$$\frac{AD}{BD} = \frac{AC}{BC}$$

$$\Rightarrow \frac{AD}{BD} = \frac{AC}{CP}$$

(By construction, we have BC = CP) ... (2)

By using the converse of B.P.T,

CD||BP

 \Rightarrow \angle ACD = \angle CPB (Corresponding angles) ... (3) And,

 $\angle BCD = \angle CBP$ (Alternate interior angles) ... (4)

By construction, we have BC = CP.

 \therefore \angle CBP = \angle CPB (Angle opposite to equal sides of a triangle) ... (5)

From equations (3), (4), and (5), we obtain

$$\angle ACD = \angle BCD \dots (6)$$

In $\triangle CAD$ and $\triangle CBD$,

 $\angle ACD = \angle BCD$ [Using equation (6)]

 \angle CDA = \angle CDB [Both 90°]

Therefore, the remaining angles should be equal.

$$\Rightarrow \angle A = \angle B$$

Alternatively,

Let us consider a triangle ABC in which CD \perp AB.

It is given that,

 $\cos A = \cos B$

$$\Rightarrow \frac{AD}{AC} = \frac{BD}{BC}$$

$$\Rightarrow \frac{AD}{BD} = \frac{AC}{BC}$$

Let
$$\frac{AD}{BD} = \frac{AC}{BC} = k$$

$$\Rightarrow AD = k BD \dots (1)$$

And,
$$AC = k BC \dots (2)$$

Using Pythagoras theorem for triangles CAD and CBD, we obtain

$$CD^2 = AC^2 - AD^2 ... (3)$$

And,
$$CD^2 = BC^2 - BD^2 ... (4)$$

From equations (3) and (4), we obtain

$$AC^2 - AD^2 = BC^2 - BD^2$$

$$\Rightarrow (k BC)^2 - (k BD)^2 = BC^2 - BD^2$$

$$\Rightarrow k^2 (BC^2 - BD^2) = BC^2 - BD^2$$

$$\Rightarrow k^2 = 1$$

$$\Rightarrow k = 1$$

Putting this value in equation (2), we obtain

$$AC = BC$$

 $\Rightarrow \angle A = \angle B(Angles opposite to equal sides of a triangle)$

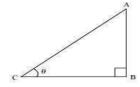
Question 7:

If
$$\cot \theta = \frac{7}{8}$$
, evaluate

(i)
$$\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}$$

Answer 7:

Let us consider a right triangle ABC, right-angled at point B.



$$\cot \theta = \frac{\text{Side adjacent to } \angle \theta}{\text{Side opposite to } \angle \theta} = \frac{BC}{AB}$$
$$= \frac{7}{8}$$

If BC is 7k, then AB will be 8k, where k is a positive integer.

Applying Pythagoras theorem in $\triangle ABC$, we obtain

$$AC^2 = AB^2 + BC^2$$

= $(8k)^2 + (7k)^2$

$$= 64k^2 + 49k^2$$

$$AC = \sqrt{113}k$$

 $= 113k^2$

$$\sin \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Hypotenuse}} = \frac{\text{AB}}{\text{AC}}$$

$$= \frac{8k}{\sqrt{113}k} = \frac{8}{\sqrt{113}}$$

$$cos θ = {Side adjacent to ∠θ \over Hypotenuse} = {BC \over AC}$$

$$=\frac{7k}{\sqrt{113}k}=\frac{7}{\sqrt{113}}$$

(i)
$$\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)} = \frac{(1-\sin^2\theta)}{(1-\cos^2\theta)}$$

$$=\frac{1-\left(\frac{8}{\sqrt{113}}\right)^2}{1-\left(\frac{7}{\sqrt{113}}\right)^2}=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}$$

$$=\frac{\frac{49}{113}}{\frac{64}{113}} = \frac{49}{64}$$

(ii)
$$\cot^2 \theta = (\cot \theta)^2 = \left(\frac{7}{8}\right)^2 = \frac{49}{64}$$

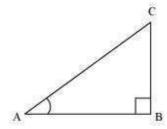
Question 8:

If 3 cot A = 4, Check whether
$$\frac{1-\tan^2 A}{1+\tan^2 A} = \cos^2 A - \sin^2 A$$
 or not. **Answer 8:**

It is given that $3\cot A = 4$

Or,
$$\cot A = \frac{4}{3}$$

Consider a right triangle ABC, right-angled at point B.



$$\cot A = \frac{\text{Side adjacent to } \angle A}{\text{Side opposite to } \angle A}$$

$$\frac{AB}{BC} = \frac{4}{3}$$

If AB is 4k, then BC will be 3k, where k is a positive integer.

In ΔABC,

AC = 5k

$$(AC)^2 = (AB)^2 + (BC)^2$$

= $(4k)^2 + (3k)^2$
= $16k^2 + 9k^2$
= $25k^2$

$$\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}} = \frac{AB}{AC}$$

$$= \frac{4k}{5k} = \frac{4}{5}$$

$$\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AC}$$

$$= \frac{3k}{5k} = \frac{3}{5}$$

$$\tan A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AB}$$

$$= \frac{3k}{4k} = \frac{3}{4}$$

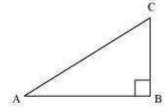
$$\frac{1-\tan^2 A}{1+\tan^2 A} = \frac{1-\left(\frac{3}{4}\right)^2}{1+\left(\frac{3}{4}\right)^2} = \frac{1-\frac{9}{16}}{1+\frac{9}{16}}$$
$$= \frac{\frac{7}{16}}{\frac{25}{16}} = \frac{7}{25}$$
$$\cos^2 A - \sin^2 A = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2$$
$$= \frac{16}{25} - \frac{9}{25} = \frac{7}{25}$$
$$\frac{1-\tan^2 A}{1+\tan^2 A} = \cos^2 A - \sin^2 A$$

Question 9:

In $\triangle ABC$, right angled at B. If $\tan A = \frac{1}{\sqrt{3}}$ find the value of

- (i) sin A cos C + cos A sin C
- (ii) cos A cos C sin A sin C

Answer 9:



$$\tan A = \frac{1}{\sqrt{3}}$$

$$\frac{BC}{AB} = \frac{1}{\sqrt{3}}$$

If BC is k, then AB will be $\sqrt{3}k$, where k is a positive integer. In ΔABC ,

$$AC^2 = AB^2 + BC^2$$

$$= \left(\sqrt{3}k\right)^2 + \left(k\right)^2$$

$$= 3k^2 + k^2 = 4k^2$$

$$AC = 2k$$

$$\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{k}{2k} = \frac{1}{2}$$

$$\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$$

$$\sin C = \frac{\text{Side opposite to } \angle C}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$$

$$\cos C = \frac{\text{Side adjacent to } \angle C}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{k}{2k} = \frac{1}{2}$$

(i) sin A cos C + cos A sin C

$$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) + \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{1}{4} + \frac{3}{4}$$

$$=\frac{4}{4}=1$$

(ii) cos A cos C - sin A sin C

$$=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$$

Question 10:

In $\triangle PQR$, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

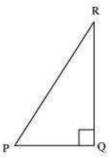
Answer 10:

Given that, PR + QR = 25

$$PQ = 5$$

Let PR be x.

Therefore, QR = 25 - x



Applying Pythagoras theorem in Δ PQR, we obtain

$$PR^2 = PQ^2 + QR^2$$

$$x^2 = (5)^2 + (25 - x)^2$$

$$x^2 = 25 + 625 + x^2 - 50x$$

$$50x = 650$$

$$x = 13$$

Therefore, PR = 13 cm

$$QR = (25 - 13) cm = 12 cm$$

$$\sin P = \frac{\text{Side opposite to } \angle P}{\text{Hypotenuse}} = \frac{QR}{PR} = \frac{12}{13}$$

$$\cos P = \frac{\text{Side adjacent to } \angle P}{\text{Hypotenuse}} = \frac{PQ}{PR} = \frac{5}{13}$$

$$\tan P = \frac{\text{Side opposite to } \angle P}{\text{Side adjacent to } \angle P} = \frac{QR}{PQ} = \frac{12}{5}$$

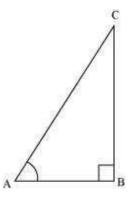
Question 11:

State whether the following are true or false. Justify your answer.

- (i) The value of tan A is always less than 1.
- (ii) $\sec A = \frac{12}{5}$ for some value of angle A.
- (iii) cos A is the abbreviation used for the cosecant of angle A.
- (iv) cot A is the product of cot and A
- (v) $\sin \theta = \frac{4}{3}$, for some angle θ

Answer 11:

(i) Consider a ΔABC, right-angled at B.



$$\tan A = \frac{\text{Side opposite to } \angle A}{\text{Side adjacent to } \angle A}$$
$$= \frac{12}{5}$$

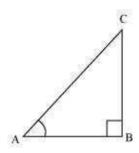
But
$$\frac{12}{5} > 1$$

 $\therefore \tan A > 1$

So, tan A < 1 is not always true.

Hence, the given statement is false.

(ii)
$$\sec A = \frac{12}{5}$$



$$\frac{\text{Hypotenuse}}{\text{Side adjacent to } \angle A} = \frac{12}{5}$$

$$\frac{AC}{AB} = \frac{12}{5}$$

Let AC be 12k, AB will be 5k, where k is a positive integer.

Applying Pythagoras theorem in ΔABC , we obtain

$$AC^2 = AB^2 + BC^2$$

$$(12k)^2 = (5k)^2 + BC^2$$

$$144k^2 = 25k^2 + BC^2$$

$$BC^2 = 119k^2$$

$$BC = 10.9k$$

It can be observed that for given two sides AC = 12k and AB = 5k,

BC should be such that,

$$AC - AB < BC < AC + AB$$

$$12k - 5k < BC < 12k + 5k$$

However, BC = 10.9k. Clearly, such a triangle is possible and hence, such value of sec A is possible.

Hence, the given statement is true.

(iii) Abbreviation used for cosecant of angle A is cosec A. And cos A is the abbreviation used for cosine of angle A.

Hence, the given statement is false.

(iv) cot A is not the product of cot and A. It is the cotangent of $\angle A$.

Hence, the given statement is false.

(v)
$$\sin \theta = \frac{4}{3}$$

We know that in a right-angled triangle,

$$\sin \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Hypotenuse}}$$

In a right-angled triangle, hypotenuse is always greater than the remaining two sides.

Therefore, such value of $\sin \theta$ is not possible.

Hence, the given statement is false

Mathematics

(Chapter – 8) (Introduction to Trigonometry)
(Class X)

Exercise 8.2

Question 1:

Evaluate the following

- (i) $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$
- (ii) $2\tan^2 45^\circ + \cos^2 30^\circ \sin^2 60^\circ$

(iii)
$$\frac{\cos 45^{\circ}}{\sec 30^{\circ} + \csc 30^{\circ}}$$

(iv)
$$\frac{\sin 30^{\circ} + \tan 45^{\circ} - \csc 60^{\circ}}{\sec 30^{\circ} + \cos 60^{\circ} + \cot 45^{\circ}}$$

(v)
$$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$$

Answer 1:

$$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$$
$$= \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1$$

(ii)
$$2\tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ$$

$$= 2(1)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2} - \left(\frac{\sqrt{3}}{2}\right)^{2}$$
$$= 2 + \frac{3}{4} - \frac{3}{4} = 2$$

(iii)
$$\frac{\cos 45^{\circ}}{\sec 30^{\circ} + \csc 30^{\circ}}$$

$$= \frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}} + 2} = \frac{\frac{1}{\sqrt{2}}}{\frac{2 + 2\sqrt{3}}{\sqrt{3}}}$$

$$= \frac{\sqrt{3}}{\sqrt{2}(2 + 2\sqrt{3})} = \frac{\sqrt{3}}{2\sqrt{2} + 2\sqrt{6}}$$

$$= \frac{\sqrt{3}(2\sqrt{6} - 2\sqrt{2})}{(2\sqrt{6} + 2\sqrt{2})(2\sqrt{6} - 2\sqrt{2})}$$

$$= \frac{2\sqrt{3}(\sqrt{6} - \sqrt{2})}{(2\sqrt{6})^2 - (2\sqrt{2})^2} = \frac{2\sqrt{3}(\sqrt{6} - \sqrt{2})}{24 - 8} = \frac{2\sqrt{3}(\sqrt{6} - \sqrt{2})}{16}$$

$$= \frac{\sqrt{18} - \sqrt{6}}{8} = \frac{3\sqrt{2} - \sqrt{6}}{8}$$

(iv)
$$\frac{\sin 30^{\circ} + \tan 45^{\circ} - \csc 60^{\circ}}{\sec 30^{\circ} + \cos 60^{\circ} + \cot 45^{\circ}}$$
$$= \frac{\frac{1}{2} + 1 - \frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}} + \frac{1}{2} + 1} = \frac{\frac{3}{2} - \frac{2}{\sqrt{3}}}{\frac{3}{2} + \frac{2}{\sqrt{3}}}$$

$$=\frac{\frac{3\sqrt{3}-4}{2\sqrt{3}}}{\frac{3\sqrt{3}+4}{2\sqrt{3}}} = \frac{\left(3\sqrt{3}-4\right)}{\left(3\sqrt{3}+4\right)}$$

$$= \frac{\left(3\sqrt{3} - 4\right)\left(3\sqrt{3} - 4\right)}{\left(3\sqrt{3} + 4\right)\left(3\sqrt{3} - 4\right)} = \frac{\left(3\sqrt{3} - 4\right)^2}{\left(3\sqrt{3}\right)^2 - \left(4\right)^2}$$

$$=\frac{27+16-24\sqrt{3}}{27-16}=\frac{43-24\sqrt{3}}{11}$$

(v)
$$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$$

$$= \frac{5\left(\frac{1}{2}\right)^2 + 4\left(\frac{2}{\sqrt{3}}\right)^2 - (1)^2}{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$=\frac{5\left(\frac{1}{4}\right) + \left(\frac{16}{3}\right) - 1}{\frac{1}{4} + \frac{3}{4}}$$

$$=\frac{\frac{15+64-12}{12}}{\frac{4}{4}}=\frac{67}{12}$$

Question 2:

Choose the correct option and justify your choice.

(i)
$$\frac{2 \tan 30^{\circ}}{1 + \tan^2 30^{\circ}} =$$

- (A). sin60°
- (B). cos60°
- (C). tan60°
- (D). sin30°

(ii)
$$\frac{1-\tan^2 45^{\circ}}{1+\tan^2 45^{\circ}} =$$

- (A). tan90°
- (B). 1
- (C). sin45°
- (D). 0

(iii)
$$sin2A = 2sinA$$
 is true when $A =$

- (A). 0°
- (B). 30°
- (C). 45°
- (D). 60°

(iv)
$$\frac{2 \tan 30^{\circ}}{1 - \tan^2 30^{\circ}} =$$

(A). cos60°

(B). sin60°

(C). tan60°

(D). sin30°

Answer 2:

(i)
$$\frac{2 \tan 30^{\circ}}{1 + \tan^2 30^{\circ}}$$

$$= \frac{2\left(\frac{1}{\sqrt{3}}\right)}{1 + \left(\frac{1}{\sqrt{3}}\right)^2} = \frac{\frac{2}{\sqrt{3}}}{1 + \frac{1}{3}} = \frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}}$$

$$6 \qquad \sqrt{3}$$

$$=\frac{6}{4\sqrt{3}}=\frac{\sqrt{3}}{2}$$

Out of the given alternatives, only $\sin 60^\circ = \frac{\sqrt{3}}{2}$ Hence, (A) is correct.

(ii)
$$\frac{1-\tan^2 45^\circ}{1+\tan^2 45^\circ} = \frac{1-(1)^2}{1+(1)^2} = \frac{1-1}{1+1} = \frac{0}{2} = 0$$

Hence, (D) is correct.

(iii)Out of the given alternatives, only $A = 0^{\circ}$ is correct.

As $\sin 2A = \sin 0^{\circ} = 0$

$$2 \sin A = 2 \sin 0^{\circ} = 2(0) = 0$$

Hence, (A) is correct.

(iv)
$$\frac{2 \tan 30^{\circ}}{1 - \tan^2 30^{\circ}}$$

$$= \frac{2\left(\frac{1}{\sqrt{3}}\right)}{1 - \left(\frac{1}{\sqrt{3}}\right)^2} = \frac{\frac{2}{\sqrt{3}}}{1 - \frac{1}{3}} = \frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}} = \sqrt{3}$$

Out of the given alternatives, only tan $60^{\circ} = \sqrt{3}$ Hence, (C) is correct.

Question 3:

If
$$tan(A+B) = \sqrt{3}$$
 and $tan(A-B) = \frac{1}{\sqrt{3}}$
0° < A + B ≤ 90°, A > B find A and B.

Answer 3:

$$\tan\left(\mathbf{A} + \mathbf{B}\right) = \sqrt{3}$$

$$\tan(A+B) = \tan 60$$

$$\Rightarrow A + B = 60 \dots (1)$$

$$\tan\left(A-B\right) = \frac{1}{\sqrt{3}}$$

$$\Rightarrow$$
tan (A - B) = tan30

$$\Rightarrow A - B = 30 \dots (2)$$

On adding both equations, we obtain

$$2A = 90$$

$$\Rightarrow A = 45$$

From equation (1), we obtain

$$45 + B = 60$$

$$B = 15$$

Therefore, $\angle A = 45^{\circ}$ and $\angle B = 15^{\circ}$

Question 4:

State whether the following are true or false. Justify your answer.

- (i) $\sin (A + B) = \sin A + \sin B$
- (ii) The value of $sin\theta$ increases as θ increases
- (iii) The value of $\cos \theta$ increases as θ increases
- (iv) $\sin\theta = \cos\theta$ for all values of θ
- (v) cot A is not defined for $A = 0^{\circ}$

Answer 4:

(i) $\sin (A + B) = \sin A + \sin B \text{ Let } A = 30^{\circ} \text{ and } B = 60^{\circ}$

$$sin (A + B) = sin (30^{\circ} + 60^{\circ})$$

$$= \sin 90^{\circ} = 1$$

And $\sin A + \sin B = \sin 30^{\circ} + \sin 60^{\circ}$

$$=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}$$

Clearly, $sin (A + B) \neq sin A + sin B$

Hence, the given statement is false.

(ii) The value of sin θ increases as θ increases in the interval of 0^{o} < θ < 90^{o} as sin

$$0^{\circ} = 0$$

$$\sin 30^\circ = \frac{1}{2} = 0.5$$

$$\sin 45^\circ = \frac{1}{\sqrt{2}} = 0.707$$

$$\sin 60^\circ = \frac{\sqrt{3}}{2} = 0.866$$

$$\sin 90^{\circ} = 1$$

Hence, the given statement is true.

(iii)
$$\cos 0^{\circ} = 1$$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2} = 0.866$$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}} = 0.707$$

$$\cos 60^\circ = \frac{1}{2} = 0.5$$

$$cos90^{\circ} = 0$$

It can be observed that the value of $\cos \theta$ does not increase in the interval of $0^{\circ} < \theta < 90^{\circ}$.

Hence, the given statement is false.

(iv) $\sin \theta = \cos \theta$ for all values of θ .

This is true when $\theta = 45^{\circ}$

As
$$\sin 45^\circ = \frac{1}{\sqrt{2}}$$

$$\cos 45^\circ = \frac{1}{\sqrt{2}}$$

It is not true for all other values of θ .

As
$$\sin 30^{\circ} = \frac{1}{2}$$
 and $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$

Hence, the given statement is false.

(v) cot A is not defined for $A = 0^{\circ}$

As
$$\cot A = \frac{\cos A}{\sin A'}$$

$$\cot 0^{\circ} = \frac{\cos 0^{\circ}}{\sin 0^{\circ}} = \frac{1}{0} = \text{undefined}$$

Hence, the given statement is true.

Mathematics

(Chapter – 8) (Introduction to Trigonometry)
(Class X)

EXERCISE 8.3

Question 1:

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Answer 1:

We know that,

$$cosec2 A = 1 + cot2 A$$

$$\frac{1}{cosec2 A} = \frac{1}{1 + cot2 A}$$

$$sin2 A = \frac{1}{1 + cot2 A}$$

$$sin A = \pm \frac{1}{\sqrt{1 + cot2 A}}$$

Therefore,
$$\sin A = \frac{1}{\sqrt{1+\cot^2 A}}$$

We know that,
$$\tan A = \frac{\sin A}{\cos A}$$

However,
$$\cot A = \frac{\cos A}{\sin A}$$

Therefore,
$$\tan A = \frac{1}{\cot A}$$

Also,
$$\sec^2 A = 1 + \tan^2 A$$

$$=1+\frac{1}{\cot^2 A}$$
$$=\frac{\cot^2 A+1}{\cot^2 A}$$

$$\sec A = \frac{\sqrt{\cot^2 A + 1}}{\cot A}$$

Question 2:

Write all the other trigonometric ratios of $\angle A$ in terms of sec A.

Answer 2:

We know that,

$$\cos A = \frac{1}{\sec A}$$

Also, $\sin^2 A + \cos^2 A = 1$

$$\sin^2 A = 1 - \cos^2 A$$

$$\sin A = \sqrt{1 - \left(\frac{1}{\sec A}\right)^2}$$

$$= \sqrt{\frac{\sec^2 A - 1}{\sec^2 A}} = \frac{\sqrt{\sec^2 A - 1}}{\sec A}$$

 $tan^2A + 1 = sec^2A$

$$tan^2A = sec^2A - 1$$

$$\tan A = \sqrt{\sec^2 A - 1}$$

$$\cot A = \frac{\cos A}{\sin A} = \frac{\frac{1}{\sec A}}{\frac{\sqrt{\sec^2 A - 1}}{\sec A}}$$
$$= \frac{1}{\sqrt{\sec^2 A - 1}}$$

$$\sqrt{\sec^2 A - 1}$$

 $\csc A = \frac{1}{\sin A} = \frac{\sec A}{\sqrt{\sec^2 A - 1}}$

Question 3:

Choose the correct option. Justify your choice.

(i)
$$9 \sec^2 A - 9 \tan^2 A =$$

(ii)
$$(1 + \tan \theta + \sec \theta) (1 + \cot \theta - \csc \theta)$$

$$(D) -1$$

(iii) (secA + tanA)
$$(1 - sinA) =$$

(iv)
$$\frac{1 + \tan^2 A}{1 + \cot^2 A}$$

$$(B) -1$$

Answer 3:

(i)
$$9 \sec^2 A - 9 \tan^2 A$$

= 9 (
$$sec^2A - tan^2A$$
)

$$= 9 (1) [As sec^2 A - tan^2 A = 1]$$

Hence, alternative (B) is correct.

(ii)
$$(1 + \tan \theta + \sec \theta) (1 + \cot \theta - \csc \theta)$$

$$= \left(1 + \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta}\right) \left(1 + \frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta}\right)$$

$$= \left(\frac{\cos \theta + \sin \theta + 1}{\cos \theta}\right) \left(\frac{\sin \theta + \cos \theta - 1}{\sin \theta}\right)$$

$$= \frac{\left(\sin \theta + \cos \theta\right)^2 - \left(1\right)^2}{\sin \theta \cos \theta}$$

$$= \frac{\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta - 1}{\sin \theta \cos \theta}$$

$$= \frac{1 + 2\sin \theta \cos \theta - 1}{\sin \theta \cos \theta}$$

$$= \frac{2\sin \theta \cos \theta}{\sin \theta \cos \theta} = 2$$

Hence, alternative (C) is correct.

(iii) (secA + tanA) (1 - sinA)

$$= \left(\frac{1}{\cos A} + \frac{\sin A}{\cos A}\right) (1 - \sin A)$$

$$= \left(\frac{1 + \sin A}{\cos A}\right) (1 - \sin A)$$

$$= \frac{1 - \sin^2 A}{\cos A} = \frac{\cos^2 A}{\cos A}$$

$$= \cos A$$

Hence, alternative (D) is correct.

(iv)
$$\frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{1 + \frac{\sin^2 A}{\cos^2 A}}{1 + \frac{\cos^2 A}{\sin^2 A}} = \frac{\frac{\cos^2 A + \sin^2 A}{\cos^2 A}}{\frac{\sin^2 A + \cos^2 A}{\sin^2 A}} = \frac{\frac{1}{\cos^2 A}}{\frac{1}{\sin^2 A}}$$
$$= \frac{\sin^2 A}{\cos^2 A} = \tan^2 A$$

Hence, alternative (D) is correct.

Question 4:

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

Answer 4:

(i)
$$(\csc\theta - \cot\theta)^2 = \frac{1 - \cos\theta}{1 + \cos\theta}$$

L.H.S.= $(\csc\theta - \cot\theta)^2$

$$= \left(\frac{1}{\sin\theta} - \frac{\cos\theta}{\sin\theta}\right)^2$$

$$= \frac{(1 - \cos\theta)^2}{(\sin\theta)^2} = \frac{(1 - \cos\theta)^2}{\sin^2\theta}$$

$$= \frac{(1 - \cos\theta)^2}{1 - \cos^2\theta} = \frac{(1 - \cos\theta)^2}{(1 - \cos\theta)(1 + \cos\theta)} = \frac{1 - \cos\theta}{1 + \cos\theta}$$

=R.H.S.

(ii)
$$\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A} = 2\sec A$$

L.H.S. =
$$\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A}$$

= $\frac{\cos^2 A + (1+\sin A)^2}{(1+\sin A)(\cos A)}$
= $\frac{\cos^2 A + 1+\sin^2 A + 2\sin A}{(1+\sin A)(\cos A)}$
= $\frac{\sin^2 A + \cos^2 A + 1 + 2\sin A}{(1+\sin A)(\cos A)}$
= $\frac{1+1+2\sin A}{(1+\sin A)(\cos A)} = \frac{2+2\sin A}{(1+\sin A)(\cos A)}$
= $\frac{2(1+\sin A)}{(1+\sin A)(\cos A)} = \frac{2}{\cos A} = 2 \sec A$
= R.H.S.

(iii)
$$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \csc \theta$$

$$\begin{aligned} \text{L.H.S.} &= \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} \\ &= \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} \\ &= \frac{\cos \theta}{1 - \frac{\cos \theta}{\sin \theta}} + \frac{\sin \theta}{1 - \frac{\sin \theta}{\cos \theta}} \\ &= \frac{\sin \theta}{\sin \theta - \cos \theta} + \frac{\cos \theta}{\cos \theta - \sin \theta} \\ &= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos^2 \theta}{\sin \theta (\sin \theta - \cos \theta)} \\ &= \frac{1}{(\sin \theta - \cos \theta)} \left[\frac{\sin^2 \theta}{\cos \theta} - \frac{\cos^2 \theta}{\sin \theta} \right] \\ &= \left(\frac{1}{\sin \theta - \cos \theta} \right) \left[\frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta \cos \theta} \right] \\ &= \left(\frac{1}{\sin \theta - \cos \theta} \right) \left[\frac{(\sin \theta - \cos \theta)(\sin^2 \theta + \cos^2 \theta + \sin \theta \cos \theta)}{\sin \theta \cos \theta} \right] \\ &= \frac{(1 + \sin \theta - \cos \theta)}{(\sin \theta - \cos \theta)} \end{aligned}$$

= $\sec\theta$ $\csc\theta$ + 1 = R.H.S.

(iv)
$$\frac{1+\sec A}{\sec A} = \frac{\sin^2 A}{1-\cos A}$$

L.H.S. $= \frac{1+\sec A}{\sec A} = \frac{1+\frac{1}{\cos A}}{\frac{1}{\cos A}}$
 $= \frac{\frac{\cos A+1}{\cos A}}{\frac{1}{\cos A}} = (\cos A+1)$
 $= \frac{(1-\cos A)(1+\cos A)}{(1-\cos A)}$
 $= \frac{1-\cos^2 A}{1-\cos A} = \frac{\sin^2 A}{1-\cos A} = \text{R.H.S}$

(v)
$$\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \csc A + \cot A$$

Using the identity $\csc^2 A = 1 + \cot^2 A$

L.H.S = $\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1}$

= $\frac{\cos A}{\sin A} - \frac{\sin A}{\sin A} + \frac{1}{\sin A}$
= $\frac{\cos A - \sin A}{\sin A} + \frac{1}{\sin A}$
= $\frac{\cot A - 1 + \csc A}{\cot A + 1 - \csc A}$
= $\frac{\{(\cot A) - (1 - \csc A)\}\{(\cot A) - (1 - \csc A)\}}{\{(\cot A) + (1 - \csc A)\}\{(\cot A) - (1 - \csc A)\}}$
= $\frac{\cot A - 1 + \csc A}{(\cot A)^2 - (1 - \csc A)^2}$
= $\frac{\cot^2 A - 1 + \csc^2 A - 2 \cot A - 2 \csc A + 2 \cot A \csc A}{\cot^2 A - (1 + \csc^2 A - 2 \cot A - 2 \csc A)}$
= $\frac{\cot^2 A + 1 + \csc^2 A - 2 \cot A - 2 \csc A}{\cot^2 A - 1 - \csc^2 A + 2 \csc A}$
= $\frac{2 \csc^2 A + 2 \cot A \csc A - 2 \cot A - 2 \csc A}{\cot^2 A - 1 - \csc^2 A + 2 \csc A}$
= $\frac{2 \csc A (\csc A + \cot A) - 2(\cot A + \csc A)}{\cot^2 A - \csc^2 A - 1 + 2 \csc A}$
= $\frac{(\csc A + \cot A)(2 \csc A - 2)}{-1 - 1 + 2 \csc A}$
= $\frac{(\csc A + \cot A)(2 \csc A - 2)}{(2 \csc A - 2)}$
= $\frac{(\csc A + \cot A)(2 \csc A - 2)}{(2 \csc A - 2)}$

(vi)
$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$$

= R.H.S

L.H.S. =
$$\sqrt{\frac{1+\sin A}{1-\sin A}}$$

= $\sqrt{\frac{(1+\sin A)(1+\sin A)}{(1-\sin A)(1+\sin A)}}$
= $\frac{(1+\sin A)}{\sqrt{1-\sin^2 A}}$ = $\frac{1+\sin A}{\sqrt{\cos^2 A}}$
= $\frac{1+\sin A}{\cos A}$ = $\sec A + \tan A$
= R.H.S.
(vii) $\frac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta - \cos \theta} = \tan \theta$
L.H.S. = $\frac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta - \cos \theta}$
= $\frac{\sin \theta (1-2\sin^2 \theta)}{\cos \theta (2\cos^2 \theta - 1)}$
= $\frac{\sin \theta \times (1-2\sin^2 \theta)}{\cos \theta \times (2(1-\sin^2 \theta) - 1)}$
= $\frac{\sin \theta \times (1-2\sin^2 \theta)}{\cos \theta \times (1-2\sin^2 \theta)}$
= $\tan \theta = R.H.S$
(viii) $(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$
L.H.S = $(\sin A + \csc A)^2 + (\cos A + \sec A)^2$
= $\sin^2 A + \csc^2 A + 2\sin A \csc A + \csc^2 A + 2\cos A \sec A$
= $(\sin^2 A + \cos^2 A) + (\csc^2 A + \sec^2 A) + 2\sin A \left(\frac{1}{\sin A}\right) + 2\cos A \left(\frac{1}{\cos A}\right)$
= $(1) + (1 + \cot^2 A + 1 + \tan^2 A) + (2) + (2)$
= $7 + \tan^2 A + \cot^2 A$

= R.H.S

(ix)
$$(\operatorname{cosecA} - \sin A)(\operatorname{sec} A - \cos A) = \frac{1}{\tan A + \cot A}$$

L.H.S = $(\operatorname{cosecA} - \sin A)(\operatorname{sec} A - \cos A)$
= $(\frac{1}{\sin A} - \sin A)(\frac{1}{\cos A} - \cos A)$
= $(\frac{1 - \sin^2 A}{\sin A})(\frac{1 - \cos^2 A}{\cos A})$
= $(\frac{\cos^2 A)(\sin^2 A)}{\sin A \cos A}$
= $\sin A \cos A$
R.H.S = $\frac{1}{\tan A + \cot A}$
= $\frac{1}{\sin A} + \frac{\cos A}{\sin A} = \frac{1}{\sin^2 A + \cos^2 A}$
= $\frac{\sin A \cos A}{\sin^2 A + \cos^2 A} = \sin A \cos A$

Hence, L.H.S = R.H.S

(x)
$$\left(\frac{1+\tan^2 A}{1+\cot^2 A}\right) = \left(\frac{1-\tan A}{1-\cot A}\right)^2 = \tan^2 A$$

$$\frac{1+\tan^2 A}{1+\cot^2 A} = \frac{1+\frac{\sin^2 A}{\cos^2 A}}{1+\frac{\cos^2 A}{\sin^2 A}} = \frac{\frac{\cos^2 A + \sin^2 A}{\cos^2 A}}{\frac{\sin^2 A + \cos^2 A}{\sin^2 A}}$$

$$= \frac{\frac{1}{\cos^2 A}}{\frac{1}{\sin^2 A}} = \frac{\sin^2 A}{\cos^2 A}$$

$$= \tan^2 A$$

$$\left(\frac{1-\tan A}{1-\cot A}\right)^{2} = \frac{1+\tan^{2} A - 2\tan A}{1+\cot^{2} A - 2\cot A}$$

$$= \frac{\sec^{2} A - 2\tan A}{\cos e^{2} A - 2\cot A}$$

$$= \frac{\frac{1}{\cos^{2} A} - \frac{2\sin A}{\cos A}}{\frac{1}{\sin^{2} A} - \frac{2\cos A}{\sin A}} = \frac{\frac{1-2\sin A\cos A}{\cos^{2} A}}{\frac{1-2\sin A\cos A}{\sin^{2} A}}$$

$$= \frac{\sin^{2} A}{\cos^{2} A} = \tan^{2} A$$