Class 11

Important Formulas

Sets

- 1. A set is a well defined collection of objects.
- 2. A set is described either in set builder form or tabular form.
- A set consisting of no element is called the null set and is denoted by \$\$
- 4. A set consisting of a single element is called a singleton set.
- A set consisting of a definite number of elements is called a finite set, otherwise the set is called an infinite set.
- The number of elements in a finite set A is called its cardinal number or order and is denoted by n(A).
- 7. Two sets A and B are equal if they have exactly the same elements.
- 8. A set A is said to be a subset of a set B, if every element of A is also an element of B.
- 9. If *a*, *b* are real numbers such that *a* < *b*, then the set
 - (i) $\{x : x \in R \text{ and } a \le x \le b\}$ is called the closed interval [a, b]
 - (ii) $\{x : x \in R \text{ and } a < x < b\}$ is called the open interval (a, b)
 - (iii) $\{x : x \in R \text{ and } a \le x < b\}$ is called the semi-open or semi-closed interval [a, b].
 - (iv) $\{x : x \in R \text{ and } a < x \le b\}$ is called the semi-open or semi-closed interval (a, b].
- 10. The total number of subsets of a finite set consisting of n elements is 2^n .
- 11. The collection of all subsets of a set A is called the power set of A and is denoted by P (A).
- 12. The union of two sets A and B is the set of all those elements which are either in A or in B or in both and is denoted by A ∪ B. Thus, A ∪ B = {x : x ∈ A or x ∈ B}
- 13. The intersection of two sets *A* and *B* is the set of all those elements which are common to both *A* and *B* and is denoted by $A \cap B$. Thus, $A \cap B = \{x : x \in A \text{ and } x \in B\}$.
- 14. The difference A B of two sets A and B is the set of all those elements of A which do not belong to B i.e. A B = {x : x ∈ A and x ∉ B}. Similarly, B A = {x : x ∈ B and x ∉ A}.
- 15. The symmetric difference of two sets *A* and *B* is the set $(A B) \cup (B A)$ and is denoted by $A \Delta B$.
- 16. The complement of a subset *A* of universal set *U* is the set of all those elements of *U* which are not the elements of *A*. The complement of *A* is denoted by *A'* or *A^c*.
- 17. For any three sets A, B and C, we have

(i) $A \cup A = A$ and $A \cap A = A$	(Idempotent laws)
(ii) $A \cup \phi = A$ and $A \cap U = A$	(Identity laws)
(iii) $A \cup B = B \cup A$ and $A \cap B = B \cap A$	(Commutative laws)
(iv) $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$	(Associative laws)
(v) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B)$	$\cup (A \cap C)$
(vi) $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$	(Distributive laws)
	(De' Morgan's laws)

- 18. If *A*, *B* and *C* are finite sets and *U* be the finite universal set, then (i) $n(A \cup B) = n(A) + n(B) - n(A \cap B)$
 - (ii) $n(A \cup B) = n(A) + n(B) \Leftrightarrow A, B$ are disjoint non-void sets
 - (iii) $n(A B) = n(A) n(A \cap B)$ i.e., $n(A B) + n(A \cap B) = n(A)$
 - (iv) $n(A \Delta B) = n(A B) + n(B A) = n(A) + n(B) 2n(A \cap B)$
 - (v) $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap C) n(C \cap A) + n(A \cap B \cap C)$
- (vi) Number of elements in exactly two of sets A, B and C = $n(A \cap B) + n(B \cap C) + n(C \cap A) - 3n(A \cap B \cap C)$
- (vii) Number of elements in exactly one of sets A, B and C= $n(A) + n(B) + n(C) - 2n(A \cap B) - 2n(B \cap C) - 2n(A \cap C) + 3n(A \cap B \cap C)$.