Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

1. For a matrix A , $AI = A$ and $AA^T = I$ is	rue
--	-----

- (a) If A is a square matrix
- (c) If A is a symmetric matrix

- (b) If A is a non-singular matrix
- (d) If A is any matrix

2. Let
$$\Delta = \begin{vmatrix} Ax & x^2 & 1 \\ By & y^2 & 1 \\ Cz & z^2 & 1 \end{vmatrix}$$
 and $\Delta_1 = \begin{vmatrix} A & B & C \\ x & y & z \\ zy & zx & xy \end{vmatrix}$ then

(a)
$$\Delta_1 = -\Delta$$

(b)
$$\Delta \neq \Delta_1$$

(c)
$$\Delta - \Delta_1 = 0$$

(d) None of these

3. If A and B are square matrix then (AB)⁻¹ is

4. If $y = 2^x$ then $\frac{d^2y}{dx^2}$ is equal to

(a)
$$2^{x}(\log_{e} 2)^{2}$$

(b)
$$2^x \log_e 2$$

(d) None of these

5. Slope of tangent to the curve $y = x^2 - x$ at the point where the line y = 2 cuts the curve in the first quadrant is

$$(c) - 3$$

(d) None of these

6. The value of $\int \frac{dx}{\sqrt{5x^2 - 2x}}$ is

(a)
$$\frac{1}{5}\log \left| x - \frac{1}{5} + \sqrt{x^2 - \frac{2x}{5}} \right| + C$$

(c)
$$\frac{1}{2\sqrt{5}}\log\left|\left(x+\frac{1}{5}\right)+\sqrt{x^2-\frac{x}{5}}\right|+C$$

(b)
$$\frac{1}{\sqrt{5}} \log \left| \left(x - \frac{1}{5} \right) + \sqrt{x^2 - \frac{2x}{5}} \right| + C$$

7. The value of $\int \frac{dx}{\sqrt{x^2 - 2x + 3}}$ equals

(a)
$$\sin^{-1}\left(\frac{x-1}{\sqrt{2}}\right) + C$$

(c)
$$\frac{1}{2}\log|(x-1)+\sqrt{x^2-2x+3}|+C$$

(b)
$$\log |(x-1) + \sqrt{x^2 - 2x + 3}| + C$$

(d)
$$\log |(x-1) - \sqrt{x^2 - 2x + 3}| + C$$

8.	The value of $\int_{-1}^{1} \frac{x^3 + x + 1}{x^2 + 2 x + 1} dx$ is equal to						
	(a) log 2	(b) 2 log 2		(c) $\frac{1}{2}\log 2$	(d) 4 log	2	
9.	If f and g are continue is equal to	If f and g are continuous functions in [0, 1] satisfying $f(x) = f(a-x)$ and $g(x) + g(a-x) = a$, then $\int_{0}^{a} f(x) \cdot g(x) dx$ is equal to					
	(a) $\frac{a}{2}$	(b) $\frac{a}{2}\int_{0}^{a}f(x)$	dx	(c) $\int_{0}^{a} f(x) dx$	(d) $a\int_{0}^{a} f$	(x)dx	
10.	The area of the region bounded by the curve $y = \sin x$ between the ordinates $x = 0$, $x = \frac{\pi}{2}$ and the x -a						
	(a) 2 sq. units	(b) 4 sq. uni		(c) 3 sq. units	(d) 1 sq. t		
11.	11. $y = ae^{mx} + be^{-mx}$ satisfies the differential equation						
	$(a) \frac{dy}{dx} + my = 0$	(b) $\frac{dy}{dx} - m$	y = 0	$(c) \frac{d^2y}{dx^2} - m^2y = 0$	(d) $\frac{d^2y}{dx^2}$	$+m^2y=0$	
12.	2. The order and degree of differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right] = \frac{d^2y}{dx^2}$ are						
	(a) $2, \frac{3}{2}$	(b) 2, 3		(c) 2, 1	(d) 3, 4		
13.	3. The maximum value of $Z = x + 3y$ such that $2x + y \le 20$, $x + 2y \le 20$, $x \ge 0$, $y \ge 0$ is						
	(a) 10	(b) 30		(c) 60	(d) $\frac{80}{3}$		
14.	For the following dis	stribution :					
	X	-4	-3	-2	-1	0	
	P(X)	0.1	0.2	0.3	0.2	0.2	
	E(X) is equal to (a) - 1	(b) -3		(c) -2	(d) - 1.8		
15.	If the probability that					f 5 persons 4 are	
	swimmers is						
	(a) ${}^{5}C_{4}(0.7)^{4}(0.3)$	(b) ${}^{5}C_{1}$ (0.7)	(0.3)4	(c) ${}^{5}C_{4}(0.7)(0.3)^{4}$	(d) (0.7) ⁴	(0.3)	
			Section-B	(B1)			
16.	The maximum numb	-	relations on th	e set $A = \{1, 2, 3\}$ ar			
	(a) 1	(b) 2		(c) 3	(d) 5		
17.	7. If $f: N \to S$ and given by $f(x) = 2x^2 - 4x + 7$ is an invertible function then $f^{-1}(x)$ is equal to						
	(a) $\sqrt{\frac{x+5}{2}} + 1, x \ge 5$, 3		, ,		of these	
18.	. If $f: R \to R$ defined by $f(x) = \frac{3x+5}{2}$ is an invertible function, then $f^{-1}(1)$ is equal to						
	(a) -1	(b) 1		(c) 2	$(d) \pm 1$		
19.	If * is a binary operation on \mathbb{R} given by $a * b = a^b$ then 2 * 3 is equal to						
	(a) 8	(b) 9		(c) 2 ⁶	(d) None	of these	
20.	If $Y = \{n^2 : n \in N\} \subset N$.	Consider $f: N \to$	Y as $f(x) = x^2$ the	en inverse of f is eq	qual to		
	(a) \sqrt{y}	(b) y	($(c) (y)^{3/2}$	(d) None	of these	

21.	The value of tan	$\left(\frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}\right)$	is
-----	------------------	---	----

(a)
$$2 + \sqrt{5}$$

(b)
$$\sqrt{5} - 2$$

(c)
$$\frac{\sqrt{5}+2}{2}$$

(d)
$$5 + \sqrt{2}$$

22. The principal value of $\sin^{-1}\frac{1}{2}$ is

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{5\pi}{6}$$

(c)
$$\frac{-\pi}{6}$$

(c) $\frac{-\pi}{6}$ (d) Both (a) & (b)

23. The value of $\sin^{-1}\left[-\left(\frac{1}{2}\right)\right] + \cos^{-1}\left[-\left(\frac{1}{2}\right)\right] + \cot^{-1}\left(-\sqrt{3}\right) + \csc^{-1}\left(\sqrt{2}\right) + \tan^{-1}\left(-1\right) + \sec^{-1}\left(\sqrt{2}\right)$ equals

(a)
$$\frac{9\pi}{4}$$

(b)
$$\frac{19\pi}{12}$$

(c)
$$\frac{3\pi}{2}$$

24. The value of $\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right)$ is equal to

(a)
$$\frac{\pi}{2}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{4}$$

(d)
$$\frac{\pi}{4}$$
 or $\left(\frac{-3\pi}{4}\right)$

25. If A is a skew - symmetric matrix of order n, and C is a column matrix of order n x 1, then C'AC is

(a) An identity matrix of order n

(b) A unit matrix of order one

(c) A zero matrix of order one

(d) None of these

26. For the matrix $A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$, value of x and y so that $A^2 + xI = yA$ are

(d) None of these

27. If $x,y \in R$, then the determinant $\Delta = \begin{vmatrix} \cos x & -\sin x & 1 \\ \sin x & \cos x & 1 \\ \cos(x+y) & -\sin(x+y) & 0 \end{vmatrix}$ lies in the interval

(a)
$$[-\sqrt{2}, \sqrt{2}]$$

(c)
$$[-\sqrt{2}, 1]$$

(d)
$$[-1, -\sqrt{2}]$$

28. If $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ then the value of A^{-1} is

$$(a) A^3$$

29. If f(x) is everywhere differentiable, then the values of a and b if $f(x) = \begin{cases} x^2 + 3x + a & \text{for } x \le 1 \\ bx + 2 & \text{for } x > 1 \end{cases}$ is

(a)
$$a = 3, b = 5$$

(b)
$$a = 0, b = 5$$

(c)
$$a = 0, b = 3$$

(d)
$$a = 3, b = 3$$

30. If $x\sqrt{1+y} + y\sqrt{1+x} = 0$ and $x \neq y$, then the value of $\frac{dy}{dx}$ is

(a)
$$\frac{-1}{(1+x)^2}$$

(b)
$$\frac{1}{(1+x)^2}$$

(c)
$$\frac{1}{(1-x)^2}$$

(d)
$$\frac{-1}{(1-x)^2}$$

31. If $x = a \sec^3 \theta$ and $y = a \tan^3 \theta$, then $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$ is

(a)
$$\frac{2}{\sqrt{3}}$$

(b)
$$\frac{1}{\sqrt{3}}$$

(d)
$$\frac{\sqrt{3}}{2}$$

32. The function $f(x) = \frac{4 - x^2}{4x - x^3}$ is

(a) discontinuous at only one point

- (b) discontinuous at exactly two points
- (c) discontinuous at exactly three points
- (d) none of these

	(a) $(-\infty, \infty)$	(b) [-1, 1]	(c) (-∞, -1)	(d) none of these			
34.	The value of $\int \frac{\cos^2 x - \cos 2x}{1 - \cos x} dx$ equals						
			$(c) - x + 2\cos x + C$	$(d) x - 2\cos x + C$			
35.	If $x = \int_0^y \frac{dt}{\sqrt{1+9t^2}}$ and $\frac{dt}{dt}$	$\frac{^2y}{x^2}$ = ay , then a is equal to					
	(a) 3	(b) 6	(c) 9	(d) 1			
36.	The integral of $\int \frac{x}{\sqrt{x}+1}$	dx is equal to					
	(a) $2\left[\frac{x\sqrt{x}}{3} - \frac{x}{2} + \sqrt{x} - \log \frac{x}{3}\right]$	$\left \left(\sqrt{x} + 1 \right) \right + C$	(b) $\frac{x\sqrt{x}}{3} + \frac{x}{2} - \sqrt{x} + \log(\sqrt{x})$	(+1)+C			
	(c) $\sqrt{x} - \log(\sqrt{x} + 1) + C$		(d) None of these				
37.	The area of the region bo	bounded by the circle $x^2 + y^2$	= 1 is				
	(a) 2π sq. units	(b) π sq. units	(c) 3π sq. units	(d) 4π sq. units			
38.		differential equation $\frac{dy}{dx} = 0$					
	(a) $y = Ce^{\frac{-x^2}{2}}$	$(b) y = Ce^{\frac{x^2}{2}}$	(c) $y = (x + C)e^{\frac{x^2}{2}}$	(d) $y = (C - x)e^{\frac{x^2}{2}}$			
39.	The general solution of	$\frac{dy}{dx} + y \tan x = \sec x \text{ is}$					
	(a) $y \sec x = \tan x + C$		(b) $y \tan x = \sec x + C$				
	(c) $\tan x = y \tan x + C$		(d) $x \sec x = \tan y + C$				
40.	If the points P , Q , R , S has	ave position vector \vec{p} , \vec{q} , \vec{r} , \vec{s}	respectively such that \vec{p} –	$\vec{q} = 2(\vec{r} - \vec{s})$, then			
	(a) PQ and RS bisect each	other	(b) PQ and RS trisect each	other			
	(c) PS and QR trisect each	other	(d) QS and PR bisect each of	other			
41.	The two vectors $\hat{j} + \hat{k}$ and of the median through A	-	two sides AB and AC, respe	ectively of $\triangle ABC$. The length			
	(a) $\sqrt{34}/2$	(b) √21	(c) $\sqrt{48}/2$	(d) 4			
42.	If $ \vec{a} = 8$, $ \vec{b} = 3$ and $ \vec{a} \times 1$	$ \vec{b} = 12$, then value of $ \vec{a} \cdot \vec{b} $	is				
	(a) $\sqrt{3}$	(b) 12√3	(c) 6√3	(d) None of these			
43.	Vector in the direction of $\vec{a} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ that has magnitude $\frac{\sqrt{2}}{5}$ units is						
	(a) $\frac{3\hat{i} + 4\hat{j} - 5\hat{k}}{25}$	(b) $\frac{3\hat{i} - 4\hat{j} + 5\hat{k}}{25}$	(c) $\frac{-3\hat{i} + 4\hat{j} + 5\hat{k}}{25}$	(d) $\frac{3\hat{i} - 4\hat{j} - 5\hat{k}}{25}$			
44.			0) and (0, 0, 4), the equation	of plane is			
	(a) $6x + 4y + 3z = 12$		(c) $4x + 6y + 3z = 12$	(d) none of these			
45.	The direction cosines of	the vector $(2\hat{i} + 2\hat{j} - \hat{k})$ are					
	3 3 3	3 3 3	(c) $\frac{-1}{3}$, $\frac{-1}{3}$, $\frac{2}{3}$	(d) none of these			
46.		ne line through the points (
	(a) $\vec{r} = 3\hat{i} + 4\hat{j} - 7\hat{k} + \lambda (3\hat{i} + 3\hat{k} $	(i + 7i + 2k)	(b) $\vec{r} = (3\hat{i} + 4\hat{j} - 7\hat{k}) + \lambda(-1)$	2i - 5i + 13k			
	,	, , ,	() () () ()	-,			
	(a) $\vec{r} = 3\hat{i} + 4\hat{j} = 7\hat{k} + \lambda (3\hat{i} + 4\hat{j} - 3\hat{i} + 4\hat{j} + \lambda (3\hat{i} + 4\hat{j} - 3\hat{i} + 4\hat{j} + 3\hat{i} + 3$, , ,	(d) $\vec{r} = (3\hat{i} + 4\hat{j} - 7\hat{k}) + \lambda(2$	-,			

33. The values of a for which the function $f(x) = \sin x - ax + b$ increases on R are

- 47. The cartesian equation of the plane $\vec{r} \cdot (\hat{i} + \hat{j} \hat{k}) = 2$ is
 - (a) x + y + z = 0
- (b) x + y z = 2
- (c) x y z = 7
- (d) x y + z = 0
- 48. The probability of guessing correctly atleast 8 out of 10 answers on a true false type examination is
 - (a) $\frac{7}{64}$

(b) $\frac{7}{128}$

(c) $\frac{145}{1024}$

- (d) $\frac{17}{41}$
- 49. In a college, 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in Physics, if she has failed in Mathematics is
 - (a) $\frac{3}{10}$

(b) $\frac{2}{5}$

(c) $\frac{7}{90}$

- (d) $\frac{1}{3}$
- 50. 10% of the bulbs produced in a factory are of red colour and 2% are red and defective. If one bulb is picked up at random, the probability of its being defective, if it is red is
 - (a) $\frac{1}{7}$

(b) $\frac{20}{27}$

(c) $\frac{1}{5}$

(d) $\frac{2}{5}$

