Short Answer Type Questions – II [3 MARKS]

Que 1. For what value of x will the lines l and m be parallel to each other? [Fig. 6.11].

Sol. $l \parallel m$ only when a pair of corresponding angles is equal.

$$\therefore \qquad 7x - 20 = 3x + 20$$

$$7x - 3x = 20 + 20$$

$$\Rightarrow$$
 $4x = 40$

$$\Rightarrow \qquad x = \frac{40^0}{4} = 10^0$$

Que 2. In Fig. 6.12, $\angle AOC$ and $\angle BOC$ form a linear pair. If $a-b=20^{\circ}$, find the values of a and b.

Sol.
$$a + b = 180^{\circ}$$

(Linear pair)

...(i)

$$a - b = 20^{\circ}$$

(Given)

...(ii)

Adding (i) and (ii), we get

$$2a = 200^{\circ} \Rightarrow a = \frac{200^{\circ}}{2} \ a = 100^{\circ}$$

Putting the value of a in equation (i), we get

$$100^{0} + b = 180^{0} \Rightarrow b = 80^{0}$$

Que 3. In Fig. 6.13, OD is the bisector of $\angle AOC$, OE is the bisector of $\angle BOC$ and $OD \perp OE$. Show that the points A, O and B are collinear.

Sol. Since OD and OE are the bisectors of angles $\angle AOC$ and $\angle BOC$ respectively

$$\angle AOD = \angle COD \text{ and } \angle BOE = \angle COE$$
Also
$$\angle DOE = 90^{\circ}$$
Now,
$$\angle AOC + \angle BOC = \angle AOD + \angle COD + \angle BOE + \angle COE$$

$$= \angle COD + \angle COD + \angle COE + \angle COE$$

$$\Rightarrow \angle AOC + \angle BOC = 2\angle COD + 2\angle COE = 2(\angle COD + \angle COE)$$

$$= 2\angle DOE = 2 \times 90^{\circ} = 180^{\circ}$$

Hence, points A, O and B are collinear.

Que 4. In Fig. 6.14, if x + y = w + z, then prove that AOB is a line.

Sol. As sum of all the angles about a point is equal to 360°

Therefore,
$$x + y + z + w = 360^{\circ}$$

$$\Rightarrow \qquad (x+y) + (z+q) = 360^0$$

Also,
$$z + w = x + y$$
 (Given)

$$\therefore$$
 $(x + y) + (x + y) = 360^{\circ} \Rightarrow 2x + 2y = 360^{\circ}$

$$\Rightarrow \qquad 2(x+y) = 360^0 \quad \Rightarrow \quad (x+y) = 180^0$$

 \therefore AOB is a straight line.

Que 5. In Fig. 6.15, lines XY and MN intersect at O. If $\angle POY = 90^0$ and a:b=2:3, find c.

Sol.
$$\angle POX + \angle POY = 180^{\circ}$$

$$\Rightarrow \qquad \angle POX + 90^0 = 180^0$$

$$\therefore \qquad \angle POX = 90^{\circ}$$

Let a = 2x and b = 3x

$$\therefore 2x + 3x = 90^{\circ}$$

$$\Rightarrow 5x = 90^{0}$$

$$a = 2 \times 18^{0} = 36^{0}$$
 and $b = 3 \times 18^{0} = 54^{0}$

Since, XO stands on MN

$$\therefore \qquad b+c=180^0 \qquad \Rightarrow \qquad 54^0+c=180^0$$

$$\Rightarrow c = 180^0 - 54^0 = 126^0$$

Que 6. In Fig. 6.16, if $OP \parallel RS, \angle OPQ = 110^0$ and $\angle QRS = 130^0$, then determine $\angle PQR$.

Produce OP TO intersect RQ at point N. Sol.

Now, $OP \parallel RS$ and transversal RN intersects them at N and R respectively

$$\therefore \qquad \angle RNP = \angle SRN$$

(Alternate interior angles)

$$\Rightarrow$$
 $\angle RNP = 130^{\circ}$

$$\therefore \qquad \angle PNQ = 180^{0} - 130^{0} = 50^{0}$$

(Linear pair)

$$\angle OPQ = \angle PNQ + \angle PQN$$
 (Exterior angle property)

$$\Rightarrow 110^0 = 50^0 + \angle PQN$$

$$\Rightarrow \angle PQN = 110^{0} - 50^{0} = 60^{0} = \angle PQR$$

Que 7. In Fig. 6.17, $AB \parallel CD$. Find the value of x.

Sol. Through O, draw a line POQ parallel to AB, [Fig. 6.18]

Now $PQ \parallel AB$ and $CD \parallel AB$

So, *CD* || *PQ*

 $AB \parallel PQ$ and AO is a transversal

We have,

$$\angle AOQ + \angle OAB = 180^{\circ}$$
 (Cointerior angles are supplementary)

$$\Rightarrow \qquad \angle AOQ + 130^0 = 180^0$$

$$\Rightarrow$$
 $\angle AOQ = 180^{\circ} - 120^{\circ} = 60^{\circ}$

$$\therefore$$
 $\angle AOC = \angle AOQ + \angle QOC = 50^{\circ} + 60^{\circ} = 110^{\circ}$

Que 8. In Fig. 6.19, $AB \parallel CD$. Determine x.

Sol. Through O,draw a line l parallel to both AB and CD.

Then,
$$\angle 1 = \angle ABO = 30^{\circ}$$
 (Alternate interior angles)

And
$$\angle 2 = \angle DCO = 45^{\circ}$$
 (Alternate interior angles)

Now,
$$\angle BOC = \angle 1 + \angle 2 \implies \angle BOC = 30^{\circ} + 45^{\circ} = 75^{\circ}$$

So,
$$x = 360^{\circ} - \angle BOC = 360^{\circ} - 75^{\circ} = 285^{\circ}$$

Hence,
$$x = 285^{\circ}$$

Que 9. In Fig. 6.20, find x if $AB \parallel CD \parallel EF$.

Sol. As $EF \parallel CD$ and EC is the transversal

$$\angle DCE + \angle FEC = 180^{0}$$
 (Cointerior angles are supplementary)
$$\angle DCE + 140^{0} = 180^{0}$$

$$\angle DCE = 180^{0} - 140^{0} = 40^{0}$$
 (Alternate interior angles)
$$\angle BCD = \angle ABC$$
 (Alternate interior angles)
$$\angle BCD = 60^{0} \Rightarrow X + \angle DCE = 60^{0}$$

$$\Rightarrow x = 60^{0} - 40^{0} = 20^{0}$$

Que 10. The angles of a triangle are in the ratio 3: 7: 8. Find the angles of the triangle.

Sol. Let the three angles of the triangle be 3x, 7x and 8x.

Then,
$$3x + 7x + 8x = 180^{\circ}$$
 (By angle sum property of Δ)
$$\Rightarrow 18x = 180^{\circ} \text{ or } x = 10^{\circ}$$

$$\therefore \text{ The angles of triangle are}$$

$$3 \times 10^{\circ} = 30^{\circ}, 7 \times 10^{\circ} = 70^{\circ}, 8 \times 10^{\circ} = 80^{\circ}$$

Hence, the angles of triangle are $30^{\rm o}$, $70^{\rm o}$ and $80^{\rm o}$

Que 11. In Fig. 6.21, if $AB \parallel CD$, $\angle APQ = 50^{\circ}$ and $\angle PRD = 127^{\circ}$, find x and y.

Sol. As $AB \parallel CD$ and PQ is a transversal.

$$\angle APQ = \angle PQR$$
 (Alternate interior angles)
$$\Rightarrow 50^{0} = x$$
 Also $\angle APR = \angle PRD$ (Alternate interior angles)
$$\Rightarrow 50^{0} + \angle QPR = 127^{0}$$

$$\Rightarrow 50^{0} + y = 127^{0}$$
 Or
$$y = 127^{0} - 50^{0} = 77^{0}$$
 Hence,
$$x = 50^{0}, y = 77^{0}$$

Que 12. In Fig. 6.22, POQ is a line. Ray OR is perpendicular to line PQ.OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2} \ (\angle QOS - \angle POS)$.

Sol. As
$$RO \perp PQ$$

$$\angle POR = \angle QOR = 90^{0}$$
Now, $\angle QOS = \angle QOR + \angle ROS$

$$\Rightarrow \angle QOS = 90^{0} + \angle ROS$$
Since $\angle POR = 90^{0} \Rightarrow \angle POS + \angle ROS = 90^{0}$

$$\angle POS = 90^{0} - \angle ROS$$

Subtracting (ii) from (i), we get

$$\angle QOS - \angle POS = 90^{0} + \angle ROS - (90^{0} - \angle ROS)$$

$$\angle QOS - \angle POS = 2 \angle ROS$$

$$\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$$

Que 13. In Fig. 6.23, if $AB \parallel DE \angle BAC = 35^{\circ}$ and $\angle CDE = 50^{\circ}$, find $\angle DCE$.

Sol. Since $AB \parallel DE$

$$\therefore$$
 $\angle AED = \angle BAE = 35^{\circ}$ (Alternate interior angles)

In Δ *CDE*

$$\angle CED + \angle EDC + \angle DCE = 180^{\circ}$$
$$35^{\circ} + 50^{\circ} + \angle DCE = 180^{\circ}$$

 $85^{\circ} + \angle DCE = 180^{\circ}$

$$\angle DCE = 180^{\circ} - 85^{\circ}$$

$$\therefore \angle DCE = 95^{\circ}$$

Que 14. In Fig. 6.24, $AB \parallel DC$ AND $AD \parallel BC$. Prove that $\angle DAB = \angle DCB$.

Sol. As $AB \parallel DC$ and BC is a transversal intersecting them at B and C respectively.

$$\therefore \qquad \angle ABC + \angle DCB = 180^0 \qquad \dots (i)$$

Also $AD \parallel BC$ and AB is a transversal intersecting them at A and B respectively.

$$\therefore \qquad \angle DAB + \angle ABC = 180^{0} \qquad \qquad \dots (ii)$$

From (i) and (ii), we get

$$\angle ABC + \angle DCB = \angle DAB + \angle ABC$$

$$\Rightarrow \qquad \angle DCB = \angle DAB$$

Hence,
$$\angle DAB = \angle DCB$$

Que 15. In Fig. 6.25, if $PQ \perp PS, PQ \parallel SR, \ \angle SQR = 28^0$ and $\angle QRT = 65^0$, then find the values of x and y.

Sol. As $PQ \parallel SR$ AND QR IS A TRANSVERSAL

$$\therefore \qquad \angle PQR = \angle QRT$$

(Alternate interior angles)

$$\Rightarrow x + 28^0 = 65^0$$

$$\Rightarrow \qquad x = 65^0 - 28^0$$

$$\therefore \qquad \qquad x = 37^0$$

Now, in ΔPQS , we have

$$\angle QPS + \angle PQS + \angle PSQ = 180^{\circ}$$

$$\Rightarrow 90^0 + 37^0 + y = 180^0$$

$$\Rightarrow 127^0 + y = 180^0$$

$$\Rightarrow \qquad \qquad y = 180^0 - 127^0$$

$$\therefore \qquad \qquad y = 53^0$$

