Exercise 1.1

Question 1:

Using appropriate properties find:

(i) $-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$ (i) $\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$

Answer:

(i)
$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6} = -\frac{2}{3} \times \frac{3}{5} - \frac{3}{5} \times \frac{1}{6} + \frac{5}{2}$$

(Using commutativity of rational numbers)

$$= \left(-\frac{3}{5}\right) \times \left(\frac{2}{3} + \frac{1}{6}\right) + \frac{5}{2} \qquad \text{(Distributivity)}$$

$$= \left(-\frac{3}{5}\right) \times \left(\frac{2 \times 2 + 1}{6}\right) + \frac{5}{2} = \left(-\frac{3}{5}\right) \times \left(\frac{5}{6}\right) + \frac{5}{2}$$

$$= \left(-\frac{3}{6}\right) + \frac{5}{2} = \left(\frac{-3 + 5 \times 3}{6}\right) = \left(\frac{-3 + 15}{6}\right)$$

$$= \frac{12}{6} = 2$$
(ii)
$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5} = \frac{2}{5} \times \left(-\frac{3}{7}\right) + \frac{1}{14} \times \frac{2}{5} - \frac{1}{6} \times \frac{3}{2} \qquad \text{(By commutativity)}$$

$$= \frac{2}{5} \times \left(-\frac{3}{7} + \frac{1}{14} \right) - \frac{1}{4}$$
 (By distributivity)
$$= \frac{2}{5} \times \left(\frac{-3 \times 2 + 1}{14} \right) - \frac{1}{4}$$

$$= \frac{2}{5} \times \left(\frac{-5}{14} \right) - \frac{1}{4}$$

$$= -\frac{1}{7} - \frac{1}{4}$$

$$= \frac{-4 - 7}{28} = \frac{-11}{28}$$

Question 2:

Write the additive inverse of each of the following:

 $\frac{2}{8} \frac{-5}{9} \frac{-6}{(10)} \frac{2}{-9} \frac{19}{(10)} \frac{19}{-6}$ Answer: (i) $\frac{2}{8}$ Additive inverse = $-\frac{2}{8}$ (ii) $-\frac{5}{9}$ Additive inverse = $\frac{5}{9}$ (iii) $\frac{-6}{-5} = \frac{6}{5}$ Additive inverse = $\frac{-6}{5}$

$$(iv) \frac{2}{-9} = \frac{-2}{9}$$

 $=\frac{2}{9}$ Additive inverse $\frac{19}{-6} = \frac{-19}{6}$ Additive inverse $=\frac{19}{6}$ **Question 3:** Verify that -(-x) = x for. (i) $x = \frac{11}{15}$ (ii) $x = -\frac{13}{17}$ Answer: (i) $x = \frac{11}{15}$ The additive inverse of $x = \frac{11}{15}$ is $-x = -\frac{11}{15}$ as $\frac{11}{15} + \left(-\frac{11}{15}\right) = 0$ This equality $\frac{11}{15} + \left(-\frac{11}{15}\right) = 0$ represents that the additive inverse of $-\frac{11}{15}$ is $\frac{11}{15}$ or it can be said that $-\left(-\frac{11}{15}\right) = \frac{11}{15}$ i.e., -(-x) = x(ii) $x = -\frac{13}{17}$ The additive inverse of $x = -\frac{13}{17}$ is $-x = \frac{13}{17}$ as $-\frac{13}{17} + \frac{13}{17} = 0$ This equality $-\frac{13}{17} + \frac{13}{17} = 0$ represents that the additive inverse of $\frac{13}{17}$ is $-\frac{13}{17}$ i.e., -(-x) = x**Question 4:** Find the multiplicative inverse of the following.

(i)
$$-13$$
 (ii) $\frac{-13}{19}$ (iii) $\frac{1}{5}$
(iv) $\frac{-5}{8} \times \frac{-3}{7}$ (v) $-1 \times \frac{-2}{5}$ (vi) -1
Answer:
(i) -13
Multiplicative inverse = $-\frac{1}{13}$
(ii) $-\frac{13}{19}$
Multiplicative inverse = $-\frac{19}{13}$
(iii) $\frac{1}{5}$
Multiplicative inverse = 5
(iv) $-\frac{5}{8} \times -\frac{3}{7} = \frac{15}{56}$
Multiplicative inverse = $\frac{56}{15}$
(v) $-1 \times -\frac{2}{5} = \frac{2}{5}$
Multiplicative inverse = -1
Question 5:
Name the property under multiplication used in each of the following:

$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$$

$$\frac{-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}}{\frac{-19}{29} \times \frac{29}{-19} = 1}$$
(iii) $\frac{-19}{29} \times \frac{29}{-19} = 1$

Answer:

(i) $-\frac{4}{5} \times 1 = 1 \times -\frac{4}{5} = -\frac{4}{5}$

1 is the multiplicative identity.

(ii) Commutativity

(iii) Multiplicative inverse

Question 6:

Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.

Answer:

$$\frac{6}{13} \times \left(\text{Reciprocal of } -\frac{7}{16} \right) = \frac{6}{13} \times -\frac{16}{7} = -\frac{96}{91}$$

Question 7:

Tell what property allows you to compute $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) \operatorname{as} \left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$.

Answer:

Associativity

Question 8:

Is $\frac{8}{9}$ the multiplicative inverse of $-1\frac{1}{8}$? Why or why not?

Answer:

If it is the multiplicative inverse, then the product should be 1.

However, here, the product is not 1 as

$$\frac{8}{9} \times \left(-1\frac{1}{8}\right) = \frac{8}{9} \times \left(-\frac{9}{8}\right) = -1 \neq 1$$

Question 9:

Is 0.3 the multiplicative inverse of $3\frac{1}{3}$? Why or why not? Answer:

$$3\frac{1}{3} = \frac{10}{3}$$

0.3 × $3\frac{1}{3} = 0.3 \times \frac{10}{3} = \frac{3}{10} \times \frac{10}{3} = 1$

Here, the product is 1. Hence, 0.3 is the multiplicative inverse of $3\frac{1}{3}$.

Question 10:

Write:

(i) The rational number that does not have a reciprocal.

(ii) The rational numbers that are equal to their reciprocals.

(iii) The rational number that is equal to its negative.

Answer:

(i) 0 is a rational number but its reciprocal is not defined.

(ii) 1 and -1 are the rational numbers that are equal to their reciprocals.

(iii) 0 is the rational number that is equal to its negative.

Question 11:

Fill in the blanks.

(i) Zero has _____ reciprocal.

1

(ii) The numbers ______ and _____ are their own reciprocals

(iii) The reciprocal of – 5 is ______.

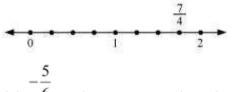
(iv) Reciprocal of x , where $x \neq 0$ is _____.

(v) The product of two rational numbers is always a ______.

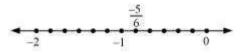
(vi) The reciprocal of a positive rational number is ______.

Class VIII	Chapter 1 – Rational Numbers	Maths
Answer:		
(i) No		
(ii) 1, −1		
(1) 1, -1		
$\frac{-1}{5}$		
()		
(iv) <i>x</i>		
(v) Rational numb		
(vi) Positive ration	al number	

Exercise 1.2


Question 1:

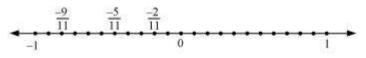
Represent these numbers on the number line.


$$\frac{7}{4}$$
 $\frac{-5}{6}$

Answer:

(i) 4 can be represented on the number line as follows.

(ii) 6 can be represented on the number line as follows.


Ouestion 2:

$$-2, -5, -9$$

Represent 11'11'11 on the number line.

Answer:

 $\frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11}$ can be represented on the number line as follows.

Question 3:

Write five rational numbers which are smaller than 2. Answer:

2 can be represented as
$$\frac{14}{7}$$

Therefore, five rational numbers smaller than 2 are

 $\frac{13}{7}, \frac{12}{7}, \frac{11}{7}, \frac{10}{7}, \frac{9}{7}$

Question 4:

Find ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$.

Answer:

 $\frac{-2}{5}$ and $\frac{1}{2}$ can be represented as $-\frac{8}{20}$ and $\frac{10}{20}$ respectively.

Therefore, ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$ are

$$-\frac{7}{20}, -\frac{6}{20}, -\frac{5}{20}, -\frac{4}{20}, -\frac{3}{20}, -\frac{2}{20}, -\frac{1}{20}, 0, \frac{1}{20}, \frac{2}{20}$$

Question 5:

Find five rational numbers between

(i)
$$\frac{2}{3}$$
 and $\frac{4}{5}$
(ii) $\frac{-3}{2}$ and $\frac{5}{3}$
(iii) $\frac{1}{4}$ and $\frac{1}{2}$
Answer:
(i) $\frac{2}{3}$ and $\frac{4}{5}$ can be represented as $\frac{30}{45}$ and $\frac{36}{45}$ respectively.
Therefore, five rational numbers between $\frac{2}{3}$ and $\frac{4}{5}$ are
 $\frac{31}{45}, \frac{32}{45}, \frac{33}{45}, \frac{34}{45}, \frac{35}{45}$

Class VIII Chapter 1 – Rational Numbers Maths (ii) $-\frac{3}{2}$ and $\frac{5}{3}$ can be represented as $-\frac{9}{6}$ and $\frac{10}{6}$ respectively. Therefore, five rational numbers between $-\frac{3}{2}$ and $\frac{5}{3}$ are $-\frac{8}{6}, -\frac{7}{6}, -1, -\frac{5}{6}, -\frac{4}{6}$ (iii) $\frac{1}{4}$ and $\frac{1}{2}$ can be represented as $\frac{8}{32}$ and $\frac{16}{32}$ respectively. Therefore, five rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$ are 9 10 11 12 13 $\overline{32}$, $\overline{32}$, $\overline{32}$, $\overline{32}$, $\overline{32}$, $\overline{32}$, $\overline{32}$ **Question 6:** Write five rational numbers greater than -2. Answer: 14 -2 can be represented as $-\frac{14}{7}$. Therefore, five rational numbers greater than -2 are $-\frac{13}{7}, -\frac{12}{7}, -\frac{11}{7}, -\frac{10}{7}, -\frac{9}{7}$ **Question 7:** Find ten rational numbers between $\frac{3}{5} \frac{3}{4}$ Answer: $\frac{3}{5} \frac{3}{4}$ and $\frac{3}{4}$ can be represented as $\frac{48}{80}$ and $\frac{60}{80}$ respectively. Therefore, ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$ are

 $\frac{49}{80}, \frac{50}{80}, \frac{51}{80}, \frac{52}{80}, \frac{53}{80}, \frac{54}{80}, \frac{55}{80}, \frac{56}{80}, \frac{57}{80}, \frac{58}{80}$