CLASS - XII PHYSICS (042) SAMPLE QUESTION PAPER (2019-20)

Time allowed: 3 hours Max. Marks: 70

General Instructions:

- 1. All questions are compulsory. There are 37 questions in all.
- 2. This question paper has four sections: Section A, Section B, Section C and Section D.
- 3. Section A contains twenty questions of one mark each, Section B contains seven questions of two marks each, Section C contains seven questions of three marks each, and Section D contains three questions of five marks each.
- 4. There is no overall choice. However, internal choices have been provided in two questions of one mark each, two questions of two marks, one question of three marks and three questions of five marks weightage. You have to attempt only one of the choices in such questions.
- 5. You may use the following values of physical constants where ever necessary.

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

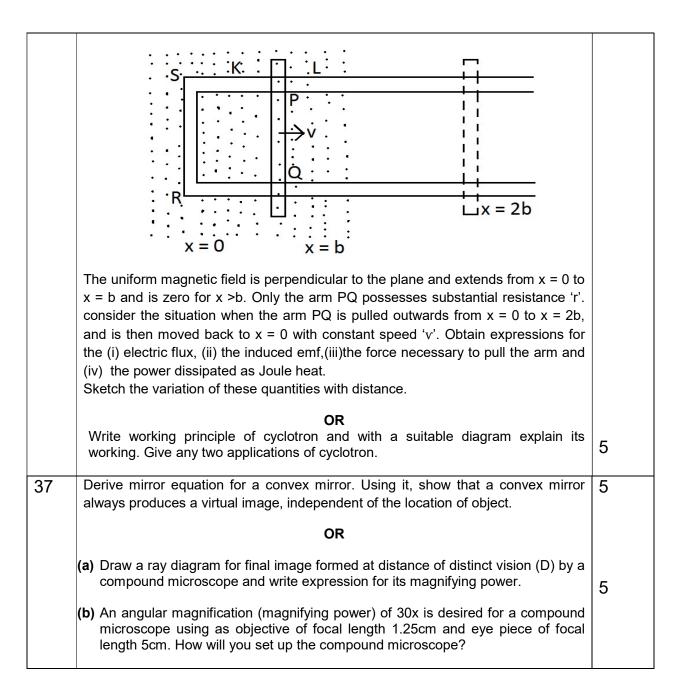
$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

$$m_e = 9.1 \times 10^{-31} \text{ kg}$$
mass of neutron = 1.675 × 10⁻²⁷ kg
mass of proton = 1.673 × 10⁻²⁷ kg
Avogadro's number = 6.023 × 10²³ per gram mole
Boltzmann constant = 1.38 × 10⁻²³ JK⁻¹

Section - A


Direc	tions (Q1-Q10) Select the most appropriate option from those given below each que	stion
1.	A charge q is placed at the point of intersection of body diagonals of a cube. The electric flux passing through any one of its face is	1
	(a) $\frac{q}{600}$ (b) $\frac{3q}{60}$ (c) $\frac{6q}{60}$ (d) $\frac{q}{360}$	
2.	The electric potential of earth is taken to be zero because earth is a good (a) Insulator (b) conductor (c) semiconductor (d) dielectric	1
3.	If the ammeter in the given circuit shown in the diagram reads 2A, the resistance R is	1
	(a) 1Ω (b) 2Ω (c) 3Ω (d) 4Ω	
	<u>2Ω</u>	
	6V	
4.	The heat produced by 100W heater in 2 minutes is equal to (a) 10.5kJ (b) 16.3kJ (c) 12.0kJ (d) 14.2kJ	1
5.	Time period of a charged particle undergoing a circular motion in a uniform magnetic field is independent of	1
	(a) speed of the particle(b) mass of the particle(c) charge of the particle(d) magnetic field	
6.	The final image formed in an astronomical refracting telescope with respect to the object is	1
	(a) Real inverted (b) Real erect (c) Virtual erect (d) Virtual inverted	
7.	The shape of the interference fringes in Young's double slit experiment when D (distance between slit and screen) is very large as compared to fringe width is nearly	1
	(a) straight line (b) parabolic (c) circular (d) hyperbolic	

8.	Unpolarized light is incident on a plane glass surface having refractive index $\sqrt{3}$. The angle of incidence at which reflected and refracted rays would become perpendicular to each other is :	1
	(a) 15° (b) 30° (c) 45° (d) 60°	
9.	Photoelectric emission from a given surface of metal can take place when the value of a 'physical quantity' is less than the energy of incident photon. The physical quantity is:	1
	(a) Threshold frequency (b) Work function of surface (c) Threshold wave length (d) Stopping Potential	
10.	A photon beam of energy 12.1eV is incident on a hydrogen atom. The orbit to which electron of H-atom be excited is	1
	(a) 2^{nd} (b) 3^{rd} (c) 4^{th} (d) 5^{th}	
Dire	ctions (Q11 –Q15) Fill in the blanks with appropriate answer.	
11	Horizontal and vertical components of earth's magnetic field at a place are equal. The angle of dip at that place is	1
	OR A free floating magnetic needle at North pole isto the surface of earth.	
12	The magnetic flux linked with a coil changes by 2×10 ⁻² Wb when the current changes by 0.01A. The self inductance of the coil is	1
13	If the angular speed of the armature of a dynamo is doubled then the amplitude of the induced e.m.f will become	1
14	An electron is accelerated through a potential difference of 100 V , then de-Broglie wavelength associated with it is approximatelyA°	1
15	An equilateral prism is made up of material of refractive index $\sqrt{3}$. The angle of	1
	minimum deviation of light passing through the prism is	
Dire	ctions (Q16 –Q20) Answer the following	
16.	Which physical quantity in a nuclear reaction is considered equivalent to the Q-value of the reaction?	1
17.	Zener diode is used in reverse bias. When its reverse bias is increased, how does the thickness of the depletion layer change?	1
18	The initial concentration of a radioactive substance is N_{\circ} and its half life is 12 hours. What will be its concentration after 36 hours?	1
19.	Work function of Sodium is 2.75eV. What will be KE of emitted electron when photon of energy 3.54eV is incident on the surface of sodium?	1

20.	From the information of energy band gaps of diodes, how do you decide which can be light emitting diodes?	1
	OR	
	Give any one advantage of LEDs over conventional incandescent low power lamps	
21	Derive the expression for drift velocity of free electron in terms of relaxation time and electric field applied across a conductor.	2
22	Find total energy stored in capacitors given in the circuit	2
	2µF 1µF 1µF 2µF	
23	An α - particle and a proton are accelerated through same potential difference. Find the ratio (v_α/v_p) of velocities acquired by two particles.	2
24	What is Brewster's angle? Derive relation between Brewster angle and refractive index of medium which produces Plane Polarized light.	2
25	The work function of Cs is 2.14eV.Find	
	(a) threshold frequency for Cs	2
	(b) Wavelength of incident light if the photo current is brought to zero by stopping potential of 0.6 V.	
26	Derive an expression for the radius of n th Bohr's orbit in Hydrogen atom.	
	OR	2
	Energy of electron in first excited state in Hydrogen atom is -3.4eV. Find KE and PE of electron in the ground state.	
27	Draw energy band diagram of p & n type semiconductors. Also write two differences between p and n type semiconductors.	2
	OR	
	Energy gap in a p – n photodiode is 2.8 eV. Can it detect a wavelength of 6000 nm? Justify your answer.	

	<u>Section – C</u>	
28	State working principle of potentiometer. Explain how the balance point shifts when value of resistor R increases in the circuit of potentiometer, given below.	3
	V R B	
	E S	
29	Using Biot-Savart's law, derive an expression for magnetic field at any point on axial line of a current carrying circular loop. Hence, find magnitude of magnetic field intensity at the centre of circular coil.	3
30	Obtain the resonant frequency and Q – factor of a series LCR circuit with L = 3H, C = $27\mu F$, R = 7.4Ω . It is desired to improve the sharpness of resonance of circuit by reducing its full width at half maximum by a factor of 2. Suggest a suitable way.	3
31	State the conditions of total internal reflection. Refractive indices of the given prism material for Red, Blue and Green colors are respectively 1.39, 1.48 and 1.42 respectively. Trace the path of rays through the prism.	3
	$G \longrightarrow A$ $B \longrightarrow A$ $A \longrightarrow $	
32	Define resolving power of an astronomical refracting telescope and write expression for it in normal adjustment. Assume that light of wave length 6000Å is coming from a star, what is the limit of resolution of a telescope whose objective has a diameter of 2.54m?	3
	OR	
	Write the basic assumptions used in the derivation of lens – maker's formula and hence derive this expression.	3
		l

33	Show that ²³⁸ U can not spontaneously emit a proton. Given:	3
	$^{238}_{92}U = 238.05079u$, $^{237}_{91}Pa = 237.05121u$ $^{1}_{1}H = 1.00783u$	
34	Suggest an idea to convert a full wave bridge rectifier to a half wave rectifier by changing the connecting wire/s. Draw the diagram and explain your answer.	3
	Section – D	
35	 (a) Using Gauss's law, derive expression for intensity of electric field at any point near the infinitely long straight uniformly charged wire. (b) The electric field components in the following figure are E_x = αx, E_y = 0, E_z= 0; in which α = 400 N/C m. Calculate (i) the electric flux through the cube, and (ii) the charge within the cube assume that a = 0.1m. 	5
	$\widehat{n_L}$ $\stackrel{\text{a}}{\underset{\text{a}}{\longrightarrow}}\widehat{n_R}$ \times	
	OR	
	a) Define electrostatic potential at a point. Write its SI unit. Three charges q_1 , q_2 and q_3 are kept respectively at points A, B and C as shown in figures. Write the expression for electrostatic potential energy of the system.	5
	r12	
	B_{q2} r23 q3C	
	 b) Depict the equipotential surfaces due to (i) an electric dipole (ii) two identical negative charges separated by a small distance. 	
36	In the following diagram, the arm PQ of the rectangular conductor is moved from x	5

Class -XII PHYSICS SQP Marking Scheme 2019-20

	Section – A	
1.	a, $\phi = \frac{q}{600}$ (for one face)	1
2.	b, Conductor	1
3.	α, 1Ω.	1
4.	c ,12.0kJ	1
5.	a, speed	1
6.	d, virtual and inverted	1
7.	a, straight line	1
8.	d, 60°	1
0.	u, 00°	1
9.	b, work function	1
10.	b, third orbit	1
11.	45° or vertical	1
12.	2 H	1
12.		1
13.	double	1
14.	1.227 A ^o	1
15.	60°	1
13.		1
16.	Difference in initial mass energy and energy associated with mass of products	1
	Or .	
	Total Kinetic energy gained in the process	
17.	Increases	1
-/-		
18.	N ₀ /8	1
19.	0.79 eV	1
20.	Diodes with band gap energy in the visible spectrum range can function as LED	1

Section – B 21. When electric field E is applied on conductor force acting on free electrons $ \vec{F} = -e \vec{E} \\ m\vec{d} = -e \vec{E} $ $ \vec{d} = \frac{-e \vec{E}}{m} $ Average thermal velocity of electron in conductor is zero $ (u_1)_{sv} = 0 $ Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $ v_d = (u_1)_{sv} + a \tau $ $ v_d = 0 + \frac{-e \vec{E}}{m} $ 1 22. $ C_2 = 2\mu F $ $ C_3 = 2\mu F $ $ C_4 = \frac{1}{m} =$			
Section – B 21. When electric field E is applied on conductor force acting on free electrons $\vec{F} = -e \vec{E}$ $m\vec{d} = -e \vec{E}$ $d = -e \vec{E}$ $m\vec{d} = -e \vec{E}$ Average thermal velocity of electron in conductor is zero $(u_1)_{nv} = 0$ Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $v_d = (u_1)_{nv} + a \tau$ $v_d = 0 + \frac{-e \vec{E}\tau}{m}$ 1 22. $C_2 = 2\mu F$ $C_3 = 2\mu F$ $C_4 = 1\mu F$ $C_5 = 2\mu F$ $C_6 = 1\mu F$ $C_6 = 1\mu F$ $C_7 = 1 + 1 = 2\mu F$ $C_8 = \frac{1}{2} + \frac{1}{2} = 1$ $C_8 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = 1$ $C_8 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = 1$ $C_9 = 1 + 1 = 2\mu F$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^6 \times 6^2$			
Section – B 21. When electric field E is applied on conductor force acting on free electrons $\overrightarrow{F} = -e \overrightarrow{E}$ $\overrightarrow{m} \overrightarrow{a} = -e \overrightarrow{E}$ $\overrightarrow{m} \overrightarrow{a} = -e \overrightarrow{E}$ $\overrightarrow{a} = \frac{-e \overrightarrow{E}}{m}$ Average thermal velocity of electron in conductor is zero $ (u_1)_{av} = 0 $ Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $ v_d = (u_1)_{av} + a \tau $ $ v_d = 0 + \frac{-e \overrightarrow{E}}{m} $ 1 22. $ C_2 = 2\mu F $ $ C_3 = 2\mu F $ $ C_5 = 2\mu F $ $ C_5 = 2\mu F $ $ C_7 = 1\mu F $ $ c' = 1 \mu f $ $ c' \otimes C_4 \text{ are in } \parallel $ $ C'' = 1 + 1 = 2\mu f $ $ C''' \otimes C_5 \text{ are in series } \frac{1}{a_{eff}} = \frac{1}{2} \cdot v_1^2 \implies e^{fff} = 1\mu f $ $ c'''' \otimes C_1 \text{ are in } \parallel $ $ C_{eq} = 1 + 1 = 2\mu f $ $ C_{eq} = 1 + 1 = 2\mu f $ Energy stored $ U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2 $			
$\vec{F} = -e \cdot \vec{E}$ $m\vec{a} = -e \cdot \vec{E}$ $\vec{a} = \frac{-e \cdot \vec{E}}{m}$ Average thermal velocity of electron in conductor is zero $(u_1)_{nr} = 0$ Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $v_d = (u_1)_{nr} + a \tau$ $v_d = 0 + \frac{-e \cdot \vec{E}\tau}{m}$ 1 22. $\vec{C}_2 = 2\mu \vec{F}$ $\vec{C}_3 = 2\mu \vec{F}$ $\vec{C}_5 = 2\mu \vec{F}$ $\vec{C}_5 = 2\mu \vec{F}$ $\vec{C}_6 = 2\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_3$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = 1\mu \vec{F}$			
$\vec{F} = -e \cdot \vec{E}$ $m\vec{a} = -e \cdot \vec{E}$ $\vec{a} = \frac{-e \cdot \vec{E}}{m}$ Average thermal velocity of electron in conductor is zero $(u_1)_{nr} = 0$ Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $v_d = (u_1)_{nr} + a \tau$ $v_d = 0 + \frac{-e \cdot \vec{E}\tau}{m}$ 1 22. $\vec{C}_2 = 2\mu \vec{F}$ $\vec{C}_3 = 2\mu \vec{F}$ $\vec{C}_5 = 2\mu \vec{F}$ $\vec{C}_5 = 2\mu \vec{F}$ $\vec{C}_6 = 2\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_3$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = \vec{C}_7 = 1\mu \vec{F}$ $\vec{C}_7 = 1\mu \vec{F} = 1\mu \vec{F}$	24		
$\vec{m}\vec{d} = -e\vec{E}$ $\vec{d} = \frac{-e\vec{E}}{m}$ Average thermal velocity of electron in conductor is zero $(u_1)_{av} = 0$ Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $v_d = (u_1)_{av} + a \tau$ $v_d = 0 + \frac{-e\vec{E}\tau}{m}$ 1 22. $C_2 = 2\mu F$ $C_3 = 2\mu F$ $C_4 = \frac{1}{e^2} + \frac{1}{2} = 1$ $e' = 1\mu f$ $e' & C_4 \text{ are in } \ $ $C'' = 1 + 1 = 2\mu f$ $C'''' & C_3 \text{ are in series}$ $\frac{1}{e'''} = \frac{1}{2} + \frac{1}{2} \Rightarrow e'''' = 1\mu f$ $e''''' & C_3 \text{ are in } \ $ $C = 1 + 1 = 2\mu f$ $C = 1 + 1 = 2\mu f$ $C = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$	21.		
$\vec{a} = \frac{-e\vec{b}}{m}$ Average thermal velocity of electron in conductor is zero $(u_t)_{av} = 0$ Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $v_d = (u_t)_{av} + a \tau$ $v_d = 0 + \frac{-e\vec{b}\tau}{m}$ 1 22. $C_2 = 2\mu F$ $C_3 = 2\mu F$ $C_4 = \frac{1}{2} + \frac{1}{2} = 1$ $c' = 1\mu f$ $c' & C_4 \text{ are in } $ $C''' = 1 + 1 = 2\mu f$ $C'''' & C_3 \text{ are in series}$ $\frac{1}{e^{if}} = \frac{1}{4} + \frac{1}{4} \Rightarrow e^{iff} = 1\mu f$ $e^{iff} & C_4 \text{ are in } $ $C'''''' & C_4 \text{ are in } $ $C''''''''''''''''''''''''''''''''''''$			
Average thermal velocity of electron in conductor is zero $ (u_t)_{av} = 0 $ Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $ v_d = (u_t)_{av} + a \tau $ $ v_d = 0 + \frac{-eE^*}{m} $ 1 22. $ C_2 = 2\mu F $ $ C_1 = 1\mu F $		_	
Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $v_d = (u_t)_{av} + a \tau \\ v_d = 0 + \frac{-eE\tau}{m}$ $\overline{v_d} = \frac{-eE\tau}{m}$ 1 22. $C_2 = 2\mu F$ $C_1 = 1\mu F \qquad 1\mu F = C_4$ $C_5 = 2\mu F$ $C_5 = 2\mu F$ $C_6 = \frac{1}{2} + \frac{1}{2} = 1$ $e' = 1\mu f$ $e' \otimes C_4 \text{ are in } \parallel$ $C'' = 1 + 1 = 2\mu f$ $C''' \otimes C_5 \text{ are in series}$ $\frac{1}{e^{gg}} = \frac{1}{2} + \frac{1}{2} \implies e^{fg} = 1\mu f$ $e'''' \otimes C_1 \text{ are in } \parallel$ $C''''' \otimes C_1 \text{ are in } \parallel$ $C'''''' \otimes C_1 \text{ are in } \parallel$ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$		271	1
Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $v_d = (u_t)_{av} + a \tau \\ v_d = 0 + \frac{-eE\tau}{m}$ 1 $C_2 = 2\mu F$ $C_3 = \frac{1}{2} + \frac{1}{2} = 1$ $e' = 1\mu F$ $C'' = 1 + 1 = 2\mu f$ $C''' & c_5 \text{ are in series}$ $\frac{1}{e^{et}} = \frac{1}{2} + \frac{1}{2} \Rightarrow e^{ftt} = 1\mu f$ $e'''' & c_5 \text{ are in } \parallel$ $C'''''' & c_7 \text{ are in } \parallel$ $C''''''''''''''''''''''''''''''''''''$			1
$ v_{d} = 0 + \frac{-sEx}{m} $ $ V_{d} = 0 + \frac{-sEx}{m} $ $ C_{2} = 2\mu F $ $ C_{1} = 1\mu F = C_{4} $ $ C_{5} = 2\mu F $ $ C_{5} = 2\mu F $ $ C_{2} = 2\mu F $ $ C_{5} = 2\mu F $ $ C_{5} = 2\mu F $ $ C_{5} = 2\mu F $ $ C_{6} = 1 + 1 = 2\mu f $ $ C''' & C_{7} = 1 + 1 = 2\mu f $ $ C'''' & C_{7} = 1 + 1 = 2\mu f $ $ C''''' & C_{7} = 1 + 1 = 2\mu f $ $ C''''''''''''''''''''''''''''''''''''$		Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity)	
22. $ C_2 = 2\mu F $ $ C_2 = 2\mu F $ $ C_2 = 2\mu F $ $ C_3 = \frac{1}{c} = \frac{1}{2} + \frac{1}{2} = 1 $ $ c' = 1 + 1 = 2\mu f $ $ C''''''''''''''''''''''''''''''''''''$		$\mathbf{v}_{\mathrm{d}} = (\mathbf{u}_{\mathrm{t}})_{\mathrm{av}} + \mathbf{a} \tau$	
22. $C_{2} = \frac{2\mu F}{m}$ $C_{1} = 1\mu F \qquad 1\mu F = C_{4}$ $C_{5} = 2\mu F$ $C_{2} \text{ and } C_{3} \text{ are in series}$ $\frac{1}{e'} = \frac{1}{2} + \frac{1}{2} = 1$ $e' = 1\mu f$ $e' \& C_{4} \text{ are in } $ $C'' = 1 + 1 = 2\mu f$ $C''' & c_{5} \text{ are in series}$ $\frac{1}{e'''} = \frac{1}{2} + \frac{1}{2} \Rightarrow e''' = 1\mu f$ $e'''' & c_{1} \text{ are in } $ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} \text{ cv}^{2} = \frac{1}{2} \times 2 \times 10^{-6} \times 6^{2}$		$V_{\rm d} = 0 + \frac{1}{200}$	1
$C_{1} = 1\mu F$ $C_{2} = 2\mu F$ $C_{2} = \frac{1}{2} + \frac{1}{2} = 1$ $C_{3} = \frac{1}{2} + \frac{1}{2} = 1$ $C_{4} = 1\mu F$ $C_{5} = 2\mu F$ $C_{5} = 2\mu F$ $C_{5} = 2\mu F$ $C_{6} = 1 + 1 = 2\mu F$ $C_{7} = 1 + 1 = 2\mu F$ $C_{7} = 1 + 1 = 2\mu F$ $C_{8} = \frac{1}{2} + \frac{1}{2} \Rightarrow c^{11} = 1\mu F$ $c^{11} = \frac{1}{2} + \frac{1}{2} \Rightarrow c^{11} = 1\mu F$ $C_{11} = 1 + 1 = 2\mu F$ $C_{12} = 1 + 1 = 2\mu F$ $C_{13} = 1 + 1 = 2\mu F$ $C_{14} = 1 + 1 = 2\mu F$ $C_{15} = 1 + 1 = 2\mu F$ C_{1		$\overrightarrow{\mathbf{v}_{\mathbf{d}}} = \frac{-s\overrightarrow{E}\mathbf{r}}{m}$	1
$C_{1} = 1\mu F$ $C_{2} = 2\mu F$ $C_{2} = \frac{1}{2} + \frac{1}{2} = 1$ $C_{3} = \frac{1}{2} + \frac{1}{2} = 1$ $C_{4} = 1\mu F$ $C_{5} = 2\mu F$ $C_{5} = 2\mu F$ $C_{5} = 2\mu F$ $C_{6} = 1 + 1 = 2\mu F$ $C_{7} = 1 + 1 = 2\mu F$ $C_{7} = 1 + 1 = 2\mu F$ $C_{8} = \frac{1}{2} + \frac{1}{2} \Rightarrow c^{11} = 1\mu F$ $c^{11} = \frac{1}{2} + \frac{1}{2} \Rightarrow c^{11} = 1\mu F$ $C_{11} = 1 + 1 = 2\mu F$ $C_{12} = 1 + 1 = 2\mu F$ $C_{13} = 1 + 1 = 2\mu F$ $C_{14} = 1 + 1 = 2\mu F$ $C_{15} = 1 + 1 = 2\mu F$ C_{1			
$C_{1} = 1\mu F$ $C_{2} = 2\mu F$ $C_{2} = \frac{1}{2} + \frac{1}{2} = 1$ $C_{3} = \frac{1}{2} + \frac{1}{2} = 1$ $C_{4} = 1\mu F$ $C_{5} = 2\mu F$ $C_{5} = 2\mu F$ $C_{5} = 2\mu F$ $C_{6} = 1 + 1 = 2\mu F$ $C_{7} = 1 + 1 = 2\mu F$ $C_{7} = 1 + 1 = 2\mu F$ $C_{8} = \frac{1}{2} + \frac{1}{2} \Rightarrow c^{11} = 1\mu F$ $c^{11} = \frac{1}{2} + \frac{1}{2} \Rightarrow c^{11} = 1\mu F$ $C_{11} = 1 + 1 = 2\mu F$ $C_{12} = 1 + 1 = 2\mu F$ $C_{13} = 1 + 1 = 2\mu F$ $C_{14} = 1 + 1 = 2\mu F$ $C_{15} = 1 + 1 = 2\mu F$ C_{1			
$C_{1} = 1\mu F$ $C_{2} = 1\mu F$ $C_{3} = 2\mu F$ $C_{2} = 1 + 1 = 2\mu f$ $C_{3} = 1 + 1 = 2\mu f$ $C_{4} = 1 + 1 = 2\mu f$ $C_{5} = 1 + 1 = 2\mu f$ $C_{7} = 1 + 1 = 2\mu f$ $C_{8} = 1 + 1 = 2\mu f$ $C_{9} = 1 + 1 = 2\mu f$ $C_{10} = 1 + 1 = 2\mu f$ $C_{11} = 1 + 1 = 2\mu f$ $C_{12} = 1 + 1 = 2\mu f$ $C_{13} = 1 + 1 = 2\mu f$ $C_{14} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^{2} = \frac{1}{2} \times 2 \times 10^{-6} \times 6^{2}$	22.	C ₂ = 2µr	
$C_{1} = 1\mu F$ $C_{2} = 1\mu F$ $C_{3} = 2\mu F$ $C_{2} = 1 + 1 = 2\mu f$ $C_{3} = 1 + 1 = 2\mu f$ $C_{4} = 1 + 1 = 2\mu f$ $C_{5} = 1 + 1 = 2\mu f$ $C_{7} = 1 + 1 = 2\mu f$ $C_{8} = 1 + 1 = 2\mu f$ $C_{9} = 1 + 1 = 2\mu f$ $C_{10} = 1 + 1 = 2\mu f$ $C_{11} = 1 + 1 = 2\mu f$ $C_{12} = 1 + 1 = 2\mu f$ $C_{13} = 1 + 1 = 2\mu f$ $C_{14} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^{2} = \frac{1}{2} \times 2 \times 10^{-6} \times 6^{2}$			
$C_{5} = 2\mu F$ $C_{2} \text{ and } C_{3} \text{ are in series}$ $\frac{1}{c'} = \frac{1}{2} + \frac{1}{2} = 1$ $c' = 1\mu f$ $c' \& C_{4} \text{ are in } $ $C'' = 1 + 1 = 2\mu f$ $C'' \& c_{5} \text{ are in series}$ $\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \implies c''' = 1\mu f$ $c''' \& c_{1} \text{ are in } $ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^{2} = \frac{1}{2} \times 2 \times 10^{-6} \times 6^{2}$		$6V \frac{\bot}{\bot} C_{1=1} \mu F \frac{\bot}{\bot}$	
$C_{5} = 2\mu F$ $C_{2} \text{ and } C_{3} \text{ are in series}$ $\frac{1}{c'} = \frac{1}{2} + \frac{1}{2} = 1$ $c' = 1\mu f$ $c' & C_{4} \text{ are in } $ $C'' = 1 + 1 = 2\mu f$ $C'' & c_{5} \text{ are in series}$ $\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \Longrightarrow c''' = 1\mu f$ $c''' & c_{1} \text{ are in } $ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^{2} = \frac{1}{2} \times 2 \times 10^{-6} \times 6^{2}$			
C ₂ and C ₃ are in series $\frac{1}{c'} = \frac{1}{2} + \frac{1}{2} = 1$ $c' = 1 \mu f$ $c' & C_4 \text{ are in } \parallel$ $C'' = 1 + 1 = 2\mu f$ $C'' & c_5 \text{ are in series}$ $\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \Rightarrow c''' = 1\mu f$ $c'''' & c_1 \text{ are in } \parallel$ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$		$2\mu F = C_3$	
C ₂ and C ₃ are in series $\frac{1}{c'} = \frac{1}{2} + \frac{1}{2} = 1$ $c' = 1 \mu f$ $c' & C_4 \text{ are in } \parallel$ $C'' = 1 + 1 = 2\mu f$ $C'' & c_5 \text{ are in series}$ $\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \Rightarrow c''' = 1\mu f$ $c'''' & c_1 \text{ are in } \parallel$ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$		$C_5 = 2\mu F$	
$\frac{1}{c'} = \frac{1}{2} + \frac{1}{2} = 1$ $c' = 1\mu f$ $C'' = 1 + 1 = 2\mu f$ $C'' & c_5 \text{ are in series}$ $\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \Longrightarrow c''' = 1\mu f$ $c''' & c_1 \text{ are in } \ $ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$			
$\frac{1}{c'} = \frac{1}{2} + \frac{1}{2} = 1$ $c' = 1\mu f$ $C'' = 1 + 1 = 2\mu f$ $C'' & c_5 \text{ are in series}$ $\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \Longrightarrow c''' = 1\mu f$ $c''' & c_1 \text{ are in } \ $ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$		C and C are in agrica	
$c' = 1\mu f$ $c' \& C_4 \text{ are in } $ $C'' = 1 + 1 = 2\mu f$ $C'' \& c_5 \text{ are in series}$ $\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \Longrightarrow c''' = 1\mu f$ $c''' \& c_1 \text{ are in } $ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$			
c' & C ₄ are in C'' = 1 + 1 = 2 μ f C'' & c ₅ are in series $\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \Longrightarrow c''' = 1 \mu$ f c''' & c ₁ are in $C_{eq} = 1 + 1 = 2\mu$ f Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$			1
$C'' = 1 + 1 = 2\mu f$ $C'' & c_5 \text{ are in series}$ $\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \Longrightarrow c''' = 1\mu f$ $c''' & c_1 \text{ are in } $ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$		·	1
C" & c ₅ are in series $\frac{1}{e^{m}} = \frac{1}{2} + \frac{1}{2} \Longrightarrow e^{m} = 1\mu f$ $e^{m} \& c_1 \text{ are in } \parallel$ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$			
$\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \Longrightarrow c''' = 1\mu f$ $c''' \& c_1 \text{ are in } $ $C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$			
$c''' \& c_1 \text{ are in } \ $ $C_{eq} = 1 + 1 = 2\mu f$ $Energy stored$ $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$			
$C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$			
Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$		c ™& c₁ are in	
Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$			1
= 36×10 ⁻⁶ J		$U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$	
		$= 36 \times 10^{-6} \text{J}$	

23.	Gain in KE of particle = Qv	
	$\frac{1}{2} \mathbf{m}_{\mathbf{p}} \mathbf{v}_{\mathbf{p}}^{2} = K_{P} = q_{p} V_{p} (i) V_{p} = V_{\alpha} = V$ $\frac{1}{2} \mathbf{m}_{\alpha} \mathbf{v}_{\alpha}^{2} = K_{\alpha} = q_{\alpha} V_{\alpha} (ii)$	1
	(ii)/(i) $ \frac{m_{x}v_{x}^{2}}{m_{p}v_{p}^{2}} = \frac{q_{x}}{q_{p}} = \frac{2}{1} $ $ \frac{v_{x}^{2}}{v_{p}^{2}} = \frac{m_{p}\times 2}{m_{\alpha}\times 1} = \frac{2m_{p}}{4m_{p}\times 1} = \frac{1}{2} $ $ v_{\alpha}: v_{p} = 1:\sqrt{2} $	1
24.	"The angle of incidence at which the reflected light is completely plane polarized, is called as Brewster's angle (i _B) Rare Denser Refracted light Refracted light	1
	At $i = i_B$, reflected beam 1 to refracted beam	1
25.	wave function	
	(a) Threshold frequency $\omega = hv_0$ $v_0 = \frac{\omega}{h} = \frac{2.14 \times 1.6 \times 10^{-19}}{6.62 \times 10^{-34}}$	1

	$= 5.17 \times 10^{14} H_z$ (b) As $k_{max} = eV_0 = 0.6eV$ Energy of photon $E = k_{max} + \omega = 0.6eV + 2.14eV$ $= 2.74eV$ Wave length of photon $\lambda = \frac{\hbar c}{E} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{-8}}{2.74 \times 1.5 \times 10^{-19}}$ $= 4530 \text{ Å}$	1	
26.	V_n electron		
	centripetal force = electrostatic attraction $\frac{mv_n^2}{r_n} = \frac{1}{4\pi\epsilon 0} \frac{\epsilon^2}{r_n^2}$ $mv_n^2 = \frac{1}{4\pi\epsilon 0} \frac{\epsilon^2}{r_n} - \cdots - (i)$ $asmv_n r_n = n \cdot \frac{h}{2n}$ $v_n = \frac{nh}{2\pi m r_n} \text{ put in (i)}$	1	
	$m \cdot \frac{n^{2} h^{2}}{4 \pi^{2} m^{2} r_{n}^{2}} = \frac{1}{4 \pi \epsilon 0} \frac{\epsilon^{2}}{r_{n}}$ $r_{n} = \frac{\epsilon 0 n^{2} h^{2}}{\pi m \epsilon^{2}}$ OR	1	
	Energy of electron in n = 2 is -3.4eV $ \therefore \text{ energy in ground state} = -13.6eV \qquad E_n = \frac{\infty}{n^2} \Rightarrow -3.4eV = \frac{\infty}{2^n} \Rightarrow \\ \text{kE} = -\text{TE} = +13.6eV \qquad \text{energy in ground state } x = -13.6eV. $	1	

	PE = 2TE = -2×13.6eV = -27.2eV	1
27.		Any 2x1 =1
	P-type semiconductor n-type semiconductor	
	1. Density of holes >> density of electron	
	2. Formed by doping trivalent impurity 2. formed by doping pentavalent impurity	
	Energy band diagram for p-type ———————————————————————————————————	
	CB CB	
	Acceptor energy level Acceptor energy level	
	VB VB	
	<u>OR</u>	
	Energy of photon E = $\frac{hc}{\lambda} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{6000 \times 10^{-9} \times 1.6 \times 10^{-19}} \text{eV} = 2.06 \text{eV}$	1
	As E <e<math>_{\rm g} (2.8eV), so photodiode cannot detect this photon.</e<math>	1
	<u>Section – C</u>	
28.	Principle of potentiometer, when a constant current flows through a wire of uniform area of cross-section, the potential drop across any length of the wire is directly proportional to the length.	
	Let resistance of wire AB be R_1 and its length be 'l' then current drawn from driving cell – $I = \frac{V}{R+R1} \text{ and hence}$	1
	P.D. across the wire AB will be	
	$V_{AB} = IR_1 = \frac{V}{R+R_1} \times \frac{e^{1\theta}}{a}$	
	Where 'a' is area of cross-section of wire AB $\therefore \frac{VAE}{\ell} = \frac{VQ}{(R+R1)M} = \text{constant} = k$	1
	Where R increases, current and potential difference across wire AB will be	1

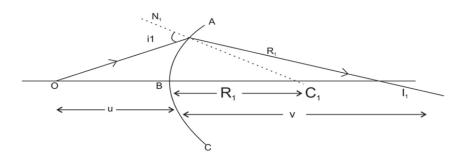
decreased and hence potential gradient 'k' will also be decreased. Thus the null point or balance point will shift to right (towards, B) side.	
Idl N d By dBx dBx M d By M d By M d By M	1
According to Biot-Savart's law, magnetic field due to a current element is given by $\overrightarrow{dB} = \frac{\mu 0}{4\pi} \frac{I \overrightarrow{dl} \times \widehat{r}}{r^2} \text{where } r = \sqrt{x^2 + a^2}$ $\therefore dB = \frac{\mu 0}{4\pi} \frac{I dl \sin \theta 0^0}{x^2 + a^2}$ And direction of \overrightarrow{dB} is \bot to the plane containing \overrightarrow{Idl} and \overrightarrow{r} .	1/2
Resolving \overrightarrow{dB} along the x – axis and y – axis.	
dB _x = dB sin ⊕	
$dB_y = dB \cos \theta$	
taking the contribution of whole current loop we get	
$B_{x} = \oint dB_{x} = \oint dB \sin \theta = \int \frac{\mu \theta}{4\pi} \frac{Idl}{x^{2} + \alpha^{2}} \frac{\alpha}{\sqrt{x^{2} + \alpha^{2}}}.$ $B_{x} = \frac{\mu \theta}{4\pi} \frac{I_{n}}{(x^{2} + \alpha^{2})^{3/2}} \oint dl = \frac{\mu \theta}{4\pi} \frac{I_{n} \times 2\pi\alpha}{(x^{2} + \alpha^{2})^{3/2}}$ $And \qquad B_{y} = \oint dB_{y} = \oint dB \cos \theta = 0$	1/2
$\therefore B_{P} = \sqrt{B_{x}^{2} + B_{y}^{2}} = B_{x} = \frac{\mu 0}{4\pi} \frac{2IA}{(x^{2} + a^{2})^{3/2}}$ $\therefore \overrightarrow{B_{P}} = \frac{\mu 0}{4\pi} \frac{2mi}{(x^{2} + a^{2})^{3/2}} (\because \overrightarrow{m}' = I\overrightarrow{A})$ For centre $x = 0$ $\therefore \overrightarrow{B_{O}} = \frac{\mu 0}{4\pi} \frac{2i\pi a^{2}}{a^{3}} = \mu_{0} \left(\frac{I}{2a}\right) \text{ in the direction of } \overrightarrow{m}$	1

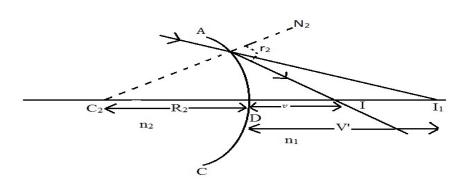
30.	"resonant frequency for LCR circuit is given by $v_0 = \frac{1}{2\pi\sqrt{LC}}$	1
	$= \frac{1}{2 \times 3.14 \sqrt{3 \times 27 \times 10^{-6}}}$ $= 17.69 \text{Hz}$ Or $\omega_0 = 2\pi v_0 = 111 \text{rad/s}$. $\therefore \text{ quality factor of resonance}$ $Q = \frac{\omega_0}{2\Delta w} = \frac{\omega_0 L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$	1
	$\therefore Q = \frac{1}{7.4} \sqrt{\frac{3}{27 \times 10^{-6}}} = 45.0$ To improve sharpness of resonance circuit by a factor 2, without reducing ω_0 ; reduce R to half of its value i.e. $R = 3.7\Omega$	1
31.	$G \longrightarrow iS$ $R \longrightarrow iS$ $iS \longrightarrow r = 39.4^{\circ}$ $iS \longrightarrow iS$ i	1
	Two conditions for T IR – (a) Light must travel from denser to rarer medium (b) $i>i_c$ $\because Sin i_c = \frac{1}{\mu}$ $\therefore (i_c)_{Red} = Sin^{-1}(\frac{1}{1.35}) = 46^{\circ}$ $(i_c)_{Green} = Sin^{-1}(\frac{1}{1.42}) = 44.8^{\circ}$ $(i_c)_{Blue} = Sin^{-1}(\frac{1}{1.48}) = 43^{\circ}$	1
	∴ Angle of incidence at face AC is 45° which is more than the critical angle for Blue and Green colours therefore they will show TIR but Red colour will refract to other medium.	1
32.	Resolving power (R.P) of an astronomical telescope is its ability to form separate images of two neighboring astronomical objects like stars etc. R.P. = $\frac{1}{dR} = \frac{D}{1.22\lambda}$ where D is diameter of objective lens and λ is wave length	1

of light used.

$$D = 100$$
inch = 2.54×100 cm = 254 cm = 2.54 m

 $= 2.9 \times 10^{-10}$


Limit of resolution
$$d\theta = \frac{1.22\lambda}{D}$$


$$= \frac{1.22 \times 6000}{2}$$

<u>OR</u>

Basic assumptions in derivation of Lens-maker's formula:

- (i) Aperture of lens should be small
- (ii) Lenses should be thin
- (iii) Object should be point sized and placed on principal axis.

Suppose we have a thin lens of material of refractive index n₂, placed in a medium of refractive index n_1 , let 0 be a_{P} :
at surface ABC we get image at I_1 , $\therefore \frac{n_2}{v^2} - \frac{n_1}{u} = \frac{n_2 - n_1}{R_1} - \dots (1)$ refractive index n_1 , let o be a point object placed on principle axis then for refraction

$$\therefore \frac{n_2}{v^2} - \frac{n_1}{v} = \frac{n_2 - n_1}{R_1} - \dots (1)$$

But the refracted ray before goes to meet at I₁ falls on surface ADC and refracts at I₂

1

1

	Gualla, hanna I anada a a sintral abiast 2nd na Guatina annia	1
	finally; hence I_1 works as a virtual object 2^{nd} refracting surface	
	$\therefore \frac{n_1}{V} - \frac{n_2}{V^1} = \frac{n_2 - n_2}{R_2} - \dots (2)$	
	Equation (1) + (2)	
	$\frac{n_1}{V} - \frac{n_2}{u} = (n_2 - n_1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$ $\therefore \frac{1}{V} - \frac{1}{u} = (n_{21} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) - \cdots - (3)$ If $u = \infty$, $v = f$ $\frac{1}{f} = (n_{21} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) - \cdots - (4)$ Which is lens maker's formula.	1
33.	$^{228}_{92}U \rightarrow ^{237}_{91}Pa + ^{1}_{1}H + Q$	
33.	$ Q = [M_U - M_{Pa} - M_H] c^2 $	1
	= $[238.05079 - 237.05121 - 1.00783] u \times c^2$ = $-0.00825u \times 931.5 \frac{MeV}{st}$	
	$= -0.00825u \times 931.5 \frac{MeV}{u}$	1
	= - 7.68MeV • Q < 0; therefore it can't proceed spontaneously. We will have to supply energy of	1
	7.68MeV to ²³⁸ 2Unucleus to make it emit proton.	
	74	
24	Cinquit Diagram	
34.	Circuit Diagram	
	A Vo Vo X X X D ₂	1
	One possible answer: Change the connection of R from point C to point B.	2
	Now No Current flowing through D_2 in the second half.	
	1 mark for any correct diagram 2 marks for correct explanation	
	2 marks for correct explanation	
		1

Section - D 35. (a) λ cm⁻¹ $\overrightarrow{ds_2}$ 1 According the Gauss's law - $\oint_{\mathbf{N}} d\vec{s} = \frac{1}{\epsilon_0} \{q\}$ $\int \overrightarrow{E} \, \overrightarrow{ds_1} + \int \overrightarrow{E} \, \overrightarrow{ds_2} + \int \overrightarrow{E} \, \overrightarrow{ds_3} = \frac{1}{\epsilon_0} (\lambda L)$ $\int Eds_1Cos0 + \int Eds_2Cos90^\circ + \int Eds_3Cos90^\circ = \frac{\lambda L}{\epsilon \eta}$ 1 $E \int ds_1 = \frac{\lambda L}{\epsilon 0}$ $E \times 2\pi r L = \frac{\lambda L}{\epsilon 0}$ 1 35. (b) $: E_x = \propto x = 400x$ $E_y = E_z = 0$ Hence flux will exist only on left and right faces of cube as $E_x \neq 0$ $\therefore \overrightarrow{E_L} \cdot a^2(n_2) + \overrightarrow{E_R} \cdot a^2 \widehat{n_R} = \frac{1}{\epsilon_0} \{qin\} = \phi$ 1 $-E_{L} \cdot a^{2}(n_{2}) + a^{2}E_{R} = \phi_{Net}$ $\phi_{Net} = -(400a)a^2 + a^2 (400 \times 2a)$ $= -400a^3 + 800a^3$ $= 400a^3$ $=400 \times (.1)^3$ $\phi_{\text{Net}} = 0.4 \text{ Nm}^2 \text{c}^{-1}$

	$ \varphi_{Net} = \frac{1}{e^{\square}} \{qin\} $ $ \therefore qin = e 0 \phi_{Net} $ $ = 8.85 \times 10^{-12} \times 0.4 $ $ = 3.540 \times 10^{-12}c $ $ \mathbf{OR} $	1
(a)	Definition of electrostatic potential – SI unit J/c of Volt. Deduction of expression of electrostatic potential energy of given system of charges – $U = \frac{1}{4\pi \epsilon 0} \left[\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right]$	2
(b)		
	(1)	1
		1
36.	For forward motion from $x = 0$ to $x = 2b$. The flux ϕ_B linked with circuit SPQR is	
	The flux φ _B linked with circuit spQk is Signature Control Control	

$$\phi_B = Blx \qquad 0 \le x < b$$

$$Blb \qquad b \le x < 2b$$

The induced emf is,

$$e = \frac{-d\phi E}{d\epsilon}$$

$$e = -Blv$$

$$= 0$$

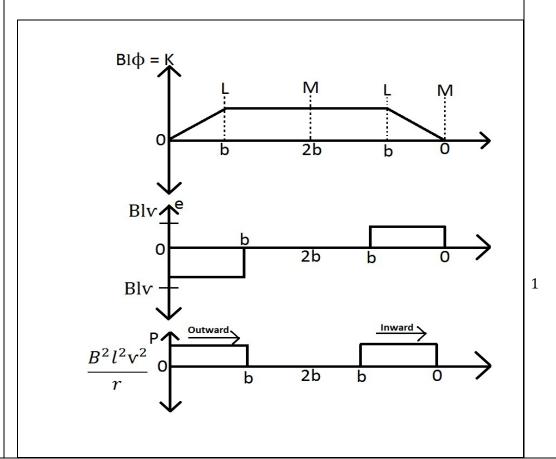
$$0 \le x < b$$

$$= 0$$

$$b \le x < 2b$$

When induced emf is non-zero, the current İ in the magnitude;

$$I = \frac{e}{r} = \frac{Blv}{r}$$

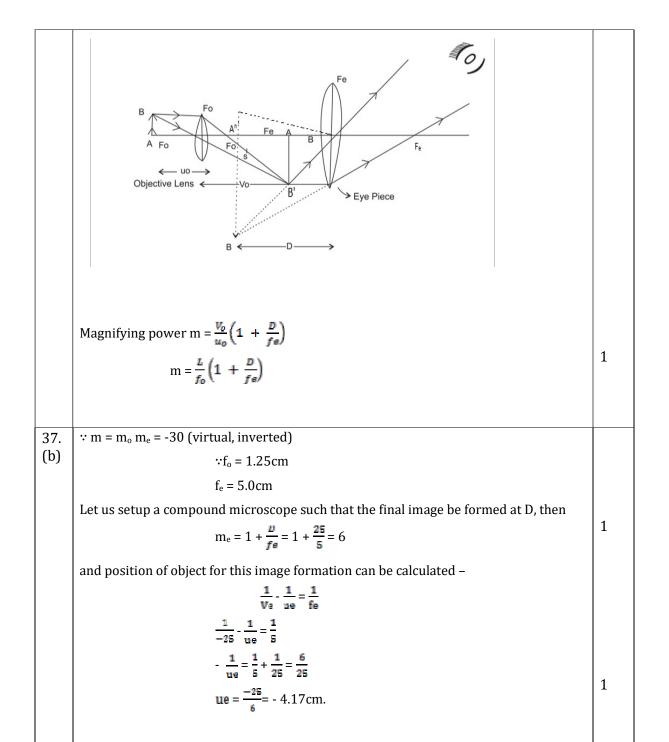

The force required to keep arm PQ in constant motion is F = IIB. Its direction is to the left. In magnitude

$$F = I/B = \frac{B^{\alpha} I^{\alpha} V}{r} ; \qquad 0 \le x < b$$
$$= 0 ; \qquad b \le x < 2b$$

The Joule heating loss is

$$\begin{split} P_J &= I^2 \, \gamma \\ &= \frac{B^2 t^2 v^2}{\gamma} \\ &= 0 \\ \end{split} \qquad 0 \leq x < b \\ b \leq x < 2b \end{split}$$

One obtains similar expressions for the inward motion from x = 2b to x = 0


1

1

1

1

	<u>OR</u>	
	Working principle of cyclotron Diagram Working of cyclotron with explanation Any two appliations	1 1 2 1
37.	B B' B' C	1
	Deduction of mirror formula $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	2
	For a convex mirror f is always +ve.	
	∴f>c	1
	Object is always placed in front of mirror hence $u < 0$ (for real object) $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	
	$\Rightarrow \frac{1}{v} = \frac{1}{f} - \frac{1}{u}$	
	As u < 0 u -ve hence	
	$\frac{1}{v} > 0$	1
	\Rightarrow v> 0 i.e. +ve for all values of u. Image will be formed behind the mirror and it will be virtual for all values of u.	
	OR	
37. (a)	Ray Diagram : (with proper labeling)	1

$$\frac{-6}{5u0} = \frac{1}{125}$$

$$uo = -1.5cm \Longrightarrow v_0 = 7.5cm$$

$$Tube \ length = V_0 + |u_e| = 7.5cm + 4.17cm$$

$$L = 11.67cm$$

$$Object \ should \ be \ placed \ at 1.5cm \ distance \ from \ the \ objective \ lens.$$