CHEMISTRY

Course Structure

Units	Topics	Marks
I	Basic Concepts of Chemistry	11
II	Structure of Atom	11
III	Classification of Elements & Periodicity in Properties	4
IV	Chemical Bonding and Molecular Structure	
V	States of Matter: Gases and Liquids	21
VI	Thermodynamics	21
VII	Equilibrium	
VIII	Redox Reactions	
IX	Hydrogen	16
X	s-Block Elements	10
XI	Some p-Block Elements	
XII	Organic Chemistry: Basic Principles & Techniques	
XIII	Hydrocarbons	18
XIV	Environmental Chemistry	
Total		70

Course Syllabus

Unit I: Some Basic Concepts of Chemistry

- > General Introduction:
 - Importance of Chemistry
 - Scope of chemistry
- Nature of matter

- > Laws of chemical combination
- Dalton's atomic theory
- Concept of:
 - Elements
 - Atoms
 - Molecules
- > Atomic and molecular masses:
 - Mole concept
 - Molar mass
 - Percentage composition
 - Empirical and molecular formula
 - Chemical reactions
 - Stoichiometry and calculations based on stoichiometry

Unit II: Structure of Atom

- Discovery of:
 - Electron
 - Proton
 - Neutron
 - Atomic number
 - Isotopes
 - Isobars
- Models:
 - Thomson's model and its limitations
 - Rutherford's model and its limitations
 - Bohr's model and its limitations
- Concept of shells and subshells
- > Dual nature of matter and light
- > de Broglie's relationship
- Heisenberg uncertainty principle

- Concept of orbitals
- Quantum numbers
- Shapes of s, p and d orbitals
- Rules for filling electrons in orbitals:
 - Aufbau principle
 - Pauli's exclusion principle
 - · Hund's rule
 - Electronic configuration of atoms
 - Stability of half-filled and completely filled orbitals

Unit III: Classification of Elements and Periodicity in Properties

- Significance of classification
- Brief history of the development of periodic table
- > Modern periodic law
- Present form of periodic table
- Periodic trends in properties of elements:
 - Atomic radii
 - Ionic radii
 - Inert gas radii
 - Ionization enthalpy
 - Electron gain enthalpy
 - Electronegativity
 - Valency
- Nomenclature of elements with atomic number greater than 100

Unit IV: Chemical Bonding and Molecular Structure

- Valence electrons
- > Ionic bond
- Covalent bond

- Bond parameters
- Lewis structure
- Polar character of covalent bond
- Covalent character of ionic bond
- Valence bond theory
- Resonance
- > Geometry of covalent molecules
- VSEPR theory
- Concept of hybridization
- > Involving s, p and d orbitals
- Shapes of some simple molecules
- Molecular orbital theory of homonuclear diatomic molecules (qualitative idea only)
- > Hydrogen bond

Unit V: States of Matter: Gases and Liquids

- > Three states of matter
- Intermolecular interactions
- Types of bonding
- Melting and boiling points
- Role of gas laws in elucidating the concept of the molecule
- Boyle's law
- > Charles law
- Gay-Lussac's law
- > Avogadro's law
- > Ideal behavior
- Empirical derivation of gas equation
- Avogadro's number
- Ideal gas equation
- > Deviation from ideal behavior

- Liquefaction of gases
- > Critical temperature
- Kinetic energy and molecular speeds (elementary idea)
- > Liquid state
- Vapour pressure
- Viscosity
- Surface tension

Unit VI: Chemical Thermodynamics

- > System
 - Concept
 - Types
 - Surroundings
 - Work
 - Heat
 - Energy
 - Extensive
 - Intensive properties
 - State functions
- > First law of thermodynamics
- Internal energy and enthalpy
- > Heat capacity and specific heat
- \triangleright Measurement of ΔU and ΔH
- > Hess's law of constant heat summation
- Enthalpy of bond dissociation
- Combustion
- Formation
- Atomization
- > Sublimation
- Phase transition

- > Ionization
- > Solution
- Dilution
- Second law of Thermodynamics (brief introduction)
- Introduction of entropy as a state function
- Gibb's energy change for spontaneous and non-spontaneous processes
- > Criteria for Equilibrium
- Third law of thermodynamics (brief introduction)

Unit VII: Equilibrium

- > Equilibrium in physical and chemical processes
- Dynamic nature of equilibrium
- > Law of mass action
- > Equilibrium constant
- Factors affecting equilibrium
- ➤ Le chatelier's principle
- Ionic equilibrium-ionization of acids and bases
- Strong and weak electrolytes
- Degree of ionization
- Ionization of poly basic acids
- Acid strength
- Concept of pH
- > Henderson equation
- Hydrolysis of salts (elementary idea)
- Buffer solution
- Solubility product
- Common ion effect (with illustrative examples)

Unit VIII: Redox Reaction

- Concept of oxidation and reduction
- Redox reactions
- Oxidation number
- Balancing redox reactions
- > In terms of loss and gain of electrons and change in oxidation number
- Applications of redox reactions

Unit IX: Hydrogen

- Position of hydrogen in periodic table
- Occurrence
- Isotopes
- Preparation
- Properties and uses of hydrogen
- > Hydrides-ionic covalent and interstitial
- Physical and chemical properties of water
- Heavy water
- Hydrogen peroxide -preparation, reactions and structure and use
- Hydrogen as a fuel

Unit X: s -Block Elements (Alkali and Alkaline Earth Metals)

Group 1 & Group 2 Elements

- General introduction
- Electronic configuration
- Occurrence
- > Anomalous properties of the first element of each group
- Diagonal relationship
- > Trends in the variation of properties such as:

- Ionization enthalpy
- Atomic and ionic radii
- Trends in chemical reactivity with:
 - Oxygen
 - Water
 - Hydrogen
 - Halogens
- Preparation and Properties of Some Important Compounds:
 - Sodium Carbonate
 - Sodium Chloride
 - Sodium Hydroxide
 - Sodium Hydrogen carbonate
- > Biological importance of:
 - Sodium
 - Potassium
 - Magnesium
 - Calcium
- Industrial uses of:
 - Calcium Oxide
 - Calcium Carbonate

Unit XI: Some p -Block Elements

General Introduction to p - Block Elements

- Group 13 Elements:
 - General introduction
 - Electronic configuration
 - Occurrence
 - Variation of properties
 - Oxidation states
 - Trends in chemical reactivity

- Anomalous properties of first element of the group
- Boron physical and chemical properties
- Some important compounds Borax, Boric acid, Boron Hydrides, Aluminum
- Reactions with acids and alkalis

Group 14 Elements:

- General introduction
- Electronic configuration
- Occurrence
- Variation of properties
- Oxidation states
- Trends in chemical reactivity
- Anomalous behaviour of first elements
- Carbon-catenation
- Allotropic forms
- Physical and chemical properties
- Uses of some important compounds: oxides
- · Important compounds of Silicon and a few uses
- Uses of Silicon Tetrachloride, Silicones, Silicates and Zeolites

Unit XII: Organic Chemistry

- Some Basic Principles and Technique
- > General introduction
- Methods of purification
- Qualitative and quantitative analysis
- Classification and IUPAC nomenclature of organic compounds
- Electronic displacements in a covalent bond
- > Inductive effect
- > Electromeric effect
- Resonance and hyper conjugation

- Homolytic and heterolytic fission of a covalent bond
- > Free radicals
- Carbocations
- > Carbanions
- Electrophiles
- Nucleophile
- > Types of organic reactions

Unit XIII: Hydrocarbons - Classification

- > Aliphatic Hydrocarbons
- Alkanes
 - Nomenclature
 - Isomerism
 - Conformation (ethane only)
 - Physical properties
 - Chemical reactions including free radical mechanism of halogenation
 - Combustion
 - Pyrolysis
- Alkenes
 - Nomenclature
 - Structure of double bond (ethene)
 - Geometrical isomerism
 - Physical properties
 - Methods of preparation
 - Chemical reactions
 - Addition of hydrogen, halogen, water, hydrogen halides (markownikov's addition and peroxide effect)
 - Ozonolysis
 - Oxidation
 - Mechanism of electrophilic addition

Alkynes

- Nomenclature
- Structure of triple bond (ethyne)
- Physical properties
- Methods of preparation
- Chemical reactions
- Acidic character of alkynes
- Addition reaction of hydrogen, halogens, hydrogen halides and water

> Aromatic Hydrocarbons

- Introduction
- IUPAC nomenclature
- Benzene
- Resonance
- Aromaticity
- Chemical properties
- Mechanism of electrophilic substitution
- Nitration
- Sulphonation
- Halogenation
- Friedel Craft's alkylation and acylation
- directive influence of functional group in mono-substituted benzene
- Carcinogenicity and toxicity

Unit XIV: Environmental Chemistry

- > Environmental pollution:
 - Air
 - Water
 - Soil pollution
- > Chemical reactions in atmosphere
- Smog

- Major atmospheric pollutants
- > Acid rain
- Ozone and its reactions
- > Effects of depletion of ozone layer
- Greenhouse effect and global warming
- > Pollution due to industrial wastes
- Green chemistry as an alternative tool for reducing pollution
- Strategies for control of environmental pollution

Practical Syllabus

Course Structure

Units	Topics	Marks
I	Volumetric Analysis	8
II	Salt Analysis	8
III	Content Based Experiment	6
IV	Project Work	4
V	Class record and viva	4
Total		30

Practical Syllabus

A. Basic Laboratory Techniques

- Cutting glass tube and glass rod
- > Bending a glass tube
- > Drawing out a glass jet
- Boring a cork

B. Characterization and Purification of Chemical Substances

- > Determination of melting point of an organic compound.
- Determination of boiling point of an organic compound.
- Crystallization of impure sample of any one of the following: Alum, Copper Sulphate, Benzoic Acid.

C. Experiments based on pH

- (a) Any one of the following experiments:
 - Determination of pH of some solutions obtained from fruit juices, solution of known and varied
 - concentrations of acids, bases and salts using pH paper or universal indicator.
 - Comparing the pH of solutions of strong and weak acids of same concentration.
 - > Study the pH change in the titration of a strong base using universal indicator.
- (b) Study the pH change by common-ion in case of weak acids and weak bases.

D. Chemical Equilibrium

One of the following experiments:

- > Study the shift in equilibrium between ferric ions and thiocyanate ions by increasing/decreasing the concentration of either of the ions.
- > Study the shift in equilibrium between [Co(H2O)6]2+ and chloride ions by changing the concentration of either of the ions.

E. Quantitative Estimation

- Using a chemical balance
- Preparation of standard solution of Oxalic acid

- Determination of strength of a given solution of Sodium Hydroxide by titrating it against standard solution of Oxalic acid
- Preparation of standard solution of Sodium Carbonate
- Determination of strength of a given solution of Hydrochloric acid by titrating it against standard Sodium Carbonate solution

F. Qualitative Analysis

Determination of one anion and one cation in a given salt

Cations-Pb
$$^{2+}$$
, Cu $^{2+}$ As $^{3+}$ A13 $^{+}$, Fe $^{3+}$, Mn $^{2+}$, Ni $^{2+}$, Zn $^{2+}$, Co $^{2+}$ Ca $^{2+}$, Sr $^{2+}$, Ba $^{2+}$, Mg $^{2+}$,

Anions -
$$C_{3.}^{2-}$$
 S²⁻, S_{3}^{2-} , SO_{4}^{2-} , NO_{3}^{-} , Cl⁻, Br, I⁻, PO³⁺, $C2O_{4}^{2-}$, CH₃ COO⁻

(Note: Insoluble salts excluded)

Detection of -Nitrogen, Sulphur, Chlorine in organic compounds.

PROJECT WORK

Scientific investigations involving laboratory testing and collecting information from other sources.

A few suggested Projects:

- Checking the bacterial contamination in drinking water by testing sulphide ion.
- Study of the methods of purification of water.
- Testing the hardness, presence of Iron, Fluoride, Chloride, etc., depending upon the regional variation
- in drinking water and study of causes of presence of these ions above permissible limit (if any).

- > Investigation of the foaming capacity of different washing soaps and the effect of addition of Sodium Carbonate on it.
- > Study the acidity of different samples of tea leaves.
- > Determination of the rate of evaporation of different liquids.
- > Study the effect of acids and bases on the tensile strength of fibers.
- > Study of acidity of fruit and vegetable juices.

Note: Any other investigatory project, which involves about 10 periods of work, can be chosen with the approval of the teacher.