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Figure 1 Charactelistic magnetic susceptibilities of diamagnetic and paramagnetic substtances. 



CHAPTER 11: DIAMAGNETISM AND PARAMAGNETISM 

Magnetism is inseparable from quantum mechanics, for a strictly classical 
system in thermal equilibrium can display no magnetic moment, even in a 
magnetic field. The magnetic moment of a free atom has three principal 
sources: the spin with which electrons are endowed; their orbital angular mo- 
mentum about the nucleus; and the change in the orbital moment induced by 
an applied magnetic field. 

The first two effects give paramagnetic contributions to the magnetiza- 
tion, and the third gives a diamagnetic contribution. In the ground Is state of 
the hydrogen atom the orbital moment is zero, and the magnetic moment is 
that of the electron spin along with a small induced diamagnetic moment. In 
the ls2 state of helium the spin and orbital moments are both zero, and there is 
only an induced moment. Atoms with all filled electron shells have zero spin 
and zero orbital moment: finite moments are associated with unfilled shells. 

The magnetization M is defined as the magnetic moment per unit volume. 
The magnetic susceptibility per unit volume is defined as 

M (CGS) ,y = - ; B 

where B is the macroscopic magnetic field intensity. In both systems of units ,y 
is dimensionless. We shall sometimes for convenience refer to M/B as the sus- 
ceptibility without specifying the system of units. 

Quite frequently a susceptibility is defined referred to unit mass or to a 
mole of the substance. The molar susceptibility is written as ,yM; the magnetic 
moment per gram is sometimes written as u. Substances with a negative mag- 
netic susceptibility are called diamagnetic. Substances with a positive suscep- 
tibility are called paramagnetic, as in Fig. 1. 

Ordered arrays of magnetic moments are discussed in Chapter 12; the ar- 
rays may be ferromagnetic, ferrimagnetic, antiferromagnetic, helical, or more 
complex in form. Nuclear magnetic moments give rise to nuclear paramag- 
netism. Magnetic moments of nuclei are of the order of times smaller 
than the magnetic moment of the electron. 

LANGEVIN DIAMAGNETISM EQUATION 

Diamagnetism is associated with the tendency of electrical charges par- 
tially to shield the interior of a body from an applied magnetic field. In 
electromagnetism we are familiar with Lenz's law: when the flux through an 
electrical circuit is changed, an induced (diamagnetic) current is set up in such 
a direction as to oppose the flux change. 



In a superconductor or in an electron orbit within an atom, the induced 
current persists as long as the field is present. The magnetic field of the in- 
duced current is opposite to the applied field, and the magnetic moment asso- 
ciated with the current is a diamagnetic moment. Even in a normal metal 
there is a diamagnetic contribution from the conduction electrons, and this 
diamagnetism is not destroyed by collisions of the electrons. 

The usual treatment of the diamagnetism of atoms and ions employs the 
Larmor theorem: In a magnetic field the motion of the electrons around a 
central nucleus is, to the first order in B, the same as a possible motion in the 
absence of B except for the superposition of a precession of the electrons with 
angular frequency 

(CGS) w = eB/2mc ; 

If the field is applied slowly, the motion in the rotating reference system will 
be the same as the original motion in the rest system before the application of 
the field. 

If the average electron current around the nucleus is zero initially, the 
application of the magnetic field will cause a finite current around the nucleus. 
The current is equivalent to a magnetic moment opposite to the applied field. 
It is assumed that the Larmor frequency (2) is much lower than the frequency 
of the original motion in the central field. This condition is not satisfied in free 
carrier cyclotron resonance, and the cyclotron frequency of the carriers is 
twice the frequency (2). 

The Larmor precession of Z electrons is equivalent to an electric 
current 

. . ) ! ,  . v .  ,, ..- ,. "? .*.. v .  i . . . , ;  . ... ' . .  . . .  - 

(SI) 1 = (charge)(revolutio~~s per unit time! - (-71.) 

The magnetic moment p of a current loop is given by the product (cur- 
rent) X (area of the loop). The area of the loop of radius p  is rP2. We have 

Z e 2 ~  (CGS) p = - - (p2)  . ( 4 )  
4mc2 

Here (p2)  = (x2) + ( y 2 )  is the mean square of the perpendicular distance of the 
electron from the field axis through the nucleus. The mean square distance of 
the electrons from the nucleus is (2) = (x2) + ( y 2 )  + (2). For a spherically 
symmetrical distribution of charge we have (x2) = ( y 2 )  = ( z2) ,  SO that 

(2) = 3 p 2 ) .  
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From (4) the diamagnetic susceptibility per unit volume is, if N is the 
number of atoms per unit volume, 

This is the classical Langevin result. 
The problem of calculating the diamagnetic susceptibility of an isolated 

atom is reduced to the calculation of (2) for the electron distribution within 
the atom. The distribution can be calculated by quantum mechanics. 

Experimental values for neutral atoms are most easily obtained for the 
inert gases. Typical experimental values of the molar susceptibilities are the 
following: 

He Ne Ar Kr Xe 

,yM in CGS in crn3/mole: -1.9 -7.2 -19.4 -28.0 -43.0 

In dielectric solids the diamagnetic contribution of the ion cores is de- 
scribed roughly by the Langevin result. The contribution of conduction elec- 
trons in metals is more complicated, as is evident from the de Haas-van 
Alphen effect discussed in Chapter 9. 

QUANTUM THEORY OF DIAMAGNETISM OF MONONUCLEAR SYSTEMS 

We give the quantum treatment of the classical Langevin result. From 
Appendix (G.18) the effect of a magnetic field is to add to the Hamiltonian 
the terms 

iefi e2 x = - ( v - A + A . v ) + - A ~  ; 
2mc 2mc2 

for an atomic electron these terms may usually be treated as a small perturba- 
tion. If the magnetic field is uniform and in the z direction, we may write 

A  =-' B  z~ . A , = & B ,  A , = o ,  (7 )  

and (6) becomes 

The first term on the right is proportional to the orbital angular momen- 
tum component L, if r is measured from the nucleus. In mononuclear systems 



this term gives rise only to paramagnetism. The second term gives for a spheri- 
cally symmetric system a contribution 

by first-order pertnrbation thcory. The associated magnetic moment is 
diamagnetic: 

aE1 e2V)  
p = - = = - s  > (10) 

in agreement with the classical result (5). 

PARAMAGNETISM 

Electronic paramagnetism (positive contribution to X) is found in: 

1. Atoms, molecules, and lattice defects possessing an odd number of 
electrons, as here the total spin of the system cannot bc zcro. Examples: free 
sodium atoms; gaseous nitric oxide (NO); organic free radicals s i~ch as tri- 
phenylmethyl, C(C,H,),; F centers in alkali halides. 

2. Free ato~ns and ions with a partly filled inner shell: transition ele- 
ments; ions isoelectronic with transition elements; rare earth and actinide ele- 
ments. Examples: Mn2', Gd3+, U4+. Paramagnetism is exhibited by many of 
these ions even when incorporated into solids, but not invariably. 

3. A few compo~~nds with an even number of electrons, including molec- 
ular oxygen and organic biradicals. 

4. Metals. 

QUANTUM THEORY OF PARAMAGNETISM 

The magnetic moment of an atom or ion in free space is given by 

where the total angular rriorrleriturn h.J is the surn of the orbital h.L and spin fiS 
angular momenta. 

The constant y is the ratio of the magnetic moment to the angular mo- 
mentum; y is called the gyromagnetic ratio or magnetogyric ratio. For 
electronic systems a quantity g called the g factor or the spectroscopic splitting 
factor is defined by 

~ P B = - $  . (12) 

For an clcctron spin g = 2.0023, us~~ally taken as 2.00. For a Gee atom the 
g factor is given by the Land6 equation 

2J(J + 1) 
(13) 
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Figure 2 Energy level splitti~ig for one elec- 
tron in a magnetic field B directed along the 
positivc z axis. For an electron the magnetic 
moment p is oppo~ite irr sign to thc spin S, so 
that p = -gp,S. In the low-energy state the 
rnagnetic moment is parallel to the magnetic 
field. 

7 n 75 

\upper state 

Figure 3 Fracho~ral pupulat~ons of a hyo-level 
system in thermal equilibrium at temperature T 
in a magnetic field B. The magnetic moment is 
proportional to the differe~~cc bctwcen the two 
curves 

The Bohr magneton p,  is defined as efi/2m in CGS and efiflm in SI. It is 
closely equal to the spin magnetic moment of a free electron. 

The energy levels of the system in a magnetic field are 

where ml is the azimuthal quantum number and has the values J ,  J - 1, . . . , 
-1. For a single spin with no orbital moment we have VL] = 2; and g = 2, 
whence U = ?pBB. This splitting is shown in Fig. 2. 

If a system has only two levels the equilibrium populations are, with 
7 ' kgT, 

here N,, Nz are the populations of the lower and upper levels, and N = N, + 
NP is the total number of atoms. The fractional populations are plotted in 
Fig. 3. 

The projcction of the magnetic moment of the upper state along the field 
direction is - p  and of the lower state is p.  The resultant magnetization for N 
atoms per unit volume is, with x = pB/k,T, 

F r - e - r  - Np tanhx . M = (N ,  - N2)p  = Np . - - 
eX + eKX 

For x < 1, tanh x = x, and we have 

In a magnetic field an atom wit11 angular momentum quantum niimher] 
has 2J + 1 equally spaced energy levels. The magnetization (Fig. 4) is given by 



Figure 4 Plot of magnetic moment versus B/T for spherical samples of (I)  potassiulll chro~niurn 
alum, (11) ferric arnmoniunl alum, and (111) gadolirliuni sulfate octahydrate. Over 99.5% magnetic 
saturation is achieved at 1.3 K and about 50,000 gauss (5T). After W E. Henry. 

where the Brillouin function B, is defined by 

2 ] +  1 
BJ(x) = - (2j  + l?x 1 

21 
ctnh ( 21 ) - %ctnh ($) 

Equation (17) is a special case of (20)  for] = i. 
For x = pB/kBT < 1, we have 

and the susceptibility is 

Here p is the effective number of Bohr magnetons, defined as 

p = g[]iJ + 1)11" . (23)  
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Figure 5 Plot of 1/x vs T for a gadoli~liu~n salt, Gd(C,H,SO,), . YH,O. The straight line is the 
Curie law (After L. C. Jackson and H. Kamrrlingh Onnes.) 

The constant C is know1 as the Curie constant. The form (19) is known as 
the Curie-Brillouin law, and (22) is known as the Curie law. Results for the 
paramagnetic ions in a gadolinium salt are shown in Fig. 5. 

Rare Earth Ions 

The ions of the rare earth elements (Table 1) have closcly similar chemical 
properties, and their chemical separation in tolerably pure form was accom- 
plished only long after their discovev. Their magnetic properties are fascinating: 
The ions exhibit a systematic variety and intelligible complexity The chemical 
properties of thc trivalent ions are similar because the outerrnost electron 
shells are identically in the 5~%~%onfiguration, like neutral xenon. In lan- 
thanum, just before the rare eartli group begins, the 4f shell is empty; at 
cerium there is one 4f electron, and the number of 4f electrons increases 
steadily through the group until we have 4f13 at yttcrbium and the filled shell 
4fL4 at lutetium. The radii of the trivalent ions contract fairly smoothly as we 
go through the group from 1.11 A at cerium to 0.94 A at ytterbium. This is 
known as the "lanthanide contraction." What distinguishes t l ~ e  magnetic be- 
havior of one ion species from another is the riurnber of 4f electrons com- 
pacted in the inner shell with a rahus of perhaps 0.3 A. Even in thc metals the 



Tablc 1 Effective magneton numbers p for trivalent lanthanide group ions 

(Near room tcmucrature) 

p(ca1c) = pkxp), 
Ion Cunfiguratiun Basic level d l ( l  + 1)11'2 approximate 

4f core retains its integrity and its atomic properties: no other group of clc- 
lnents in the periodic table is as interesting. 

The preceding discussion of paramagnetism applies to atoms that have a 
(21 + 1)-fold degenerate ground state, the degeneracy being lifted by a mag- 
nctic field. The influence of all higher energy states of the system is neglected. 
These assllmptions appcar to be satisfied by a number of rare-earth ions, 
Table 1. The calc~llated magneton numbers are obtained with g values from 
the Land6 result (13) and the ground-state lcvcl assignment predicted below 
by the Hund theory of spectral terms. The discrepancy hetween the experi- 
nlental rnagrieton numbers and those calculated on these assumptions is quite 
marked for ~ u "  aud Sm" ions. For these ions it is necessary to consider the 
influence of the high states of the L - S multiplet, as the intervals between 
successive states of the multiplet are not large conlpared to k,T at room tem- 
peratilre. A multiplet is the set of levels or different J values arising out of a 
given L and S. The levels of a mnltiplet arc split by the spin-orbit interaction. 

Hund Rules 

The Hiind rules as applied to electrons in a given shell of an atom affirm 
that electrons will occupy orbitals in such a way that the ground state is char- 
acterized by the following: 

1. The maxi~nurn value of the total spin S allowed by the exclusion principle; 
2. The maximum value of the orbital angular momentum L consistent 

with this value of S; 
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3. The value of the total angular ~rlo~nentum] is equal to IL - SI when the 
shell is less than half full and to L + S when the shell is more than half full. When 
the shell is just half full: the application of thc first rille gives L = 0, so that! = S. 

The first Hund rule has its origin in the exclusion principle and the coulomb 
repulsio~l between electrons. The exclusion principle prevents two electrons of 
the same spin from being at the same place at the same time. Thus electrons of 
the same spin are kept apart, further apart t h a  electrons of opposite spin. Be- 
cause of the coulomb interaction the energy of electrons of the same spin is 
lower-the average potential energy is less positive for parallel spin than for 
antiparallel spin. A good example is the ion Mn2+. This ion has five electrons in 
the 3d shell, which is therefore half-filled. The spins can all be parallel if each 
electron enters a different orbital, and there are exactly five different orbitals 
available, characterized by the orbital quantum numbers r n ~  = 2, 1, 0, -1, -2. 
These will b r  occnpied by one electron each. We expect S = 9, and because 
Em, = 0 the only possible value of L is 0, as observed. 

The second Hund rule is best approached by model calc~llations. Pauling 
and Wilson,' for example, give a calculation of thc spectral terms that arise 
from the configuration p! The third Hund rule is a consequence of the sign of 
the spin-orbit interaction: For a singlc clectron the energy is lowest when the 
spin is antiparallel to the orbital angular momentum. But the low-energy pairs 
TTLL,  mS are progressively used up as we add electrons to the shell; by the exclu- 
sion principlc when the shell is more than half full the state of lowest energy 
ncccssarily has the spin parallel to the orbit. 

Consider two examples of the Hund rules: The ion cc3+  has a single f 
electron; an f electron has E = 3 and s = i. Becausc the f shell is less than half 

1 - full, theJ value by the preceding rule is IL - SI = L - , = i. The ion Pr3+ has 
two f electrons; one of the rules tells us that the spins add to give S = 1. Both f 
electrons cannot have = 3 without violating the Pauli exclusion principle, so 
that the maximum L consistent with the Pauli is not 6, hut 5.  The J 
valuc is IL - S = 5 - 1 = 4. 

Iron Group Ions 

Table 2 shows that the experimental magneton numbers for salts of the 
iron transition group of tbe periodic tahle are in poor agreement with (23). 
The values often agrcc quite well with magneton numbers p = 2[S(S + l)]'" 
calculatcd as if the orbital moment were not there at all. 

Crystal Field Splitting 

The difference in behavior of the rare earth and thc iron group salts is that 
the 4f shell respo~lsible fur paramagnetism in the rare earth ions lies deep 

'L. Pau l i~~g  and E. B. \T7ilron; Introduction t o  quantum mechanics, McGraw-Hill, 1935, 
pp. 239-248. See also Dover Reptint. 



Table 2 Effective magneton numbers for iron group ions 

Basic p[calcj = p(m1c) = 
Ion Cnnfiguration level e[/(/ + 1)1112 2[S(S + l)]lA p(cxp)X 

"Representative values. 

inside the ions, within the 5s and 5p  shells, whereas in the iron group ions the 
3d shcll responsible lor paramagnetisni is the outermost shell. The 3d shell er- 
periences the intense inhomogeneous electric field produced. by neighboring 
ions. This inhomogeneous electric field is called the crystal field. The inter- 
action of the paramagnetic ions with the crystal field has two major effects: 
The coupling of L and S vectors is largely hroken up, so that the states are no 
longer specified by their J values; further, the 2L + 1 s~~hlevels belonging to a 
given L which are degenerate in the free ion may now be split by the crystal 
field, as in Fig. 6. This splitting dirni~iishes the contribution of the orbital mo- 
tion to the magnetic moment. 

Quenching ofthe Orbital Angular Momentum 

In an electric field directed toward a fixed nucleus, the plane of a classical 
orbit is fixed in space, so that all the orbital angular momentum components 
L,, Ly, Lz are constant. In quantum theory one angular momentum compo- 
nent, usually taken as L,, and the square of the total orbital angular momen- 
tum L' are constant in a central field. In a noncentral field the plane of the 
orbit will move about; the angular momentum co~riponents are no longer con- 
stant and may average to zero. In a crystal L; will no longer be a constant of 
the motion, although to a good approximation  nay continue to be constant. 
When L, averages to zero, the orbital angnlar momentum is said to he 
cluenched. The magnetic moment of a state is given hy the avrragc value of the 
magnetic moment operator pB(L + 25).  In a magnetic field along the z direc- 
tion the orbital contribution to the magnetic moment is proportional to the 
quantum expectation value of L,; the orbital magnetic moment is quenched if 
the mechanical moment L, is quenched. 
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Figure 6 Consider an atom with orbital angular momentum L = 1 placed in the uniaxial crys- 
tallme electric field of the two positive ions along the z axis. In the free atom the states m, = f 1, 0 
have identical energies-they are degenerate. In the crystal the atom has a lower energy when the 
electron cloud is close to positive ions as in (a) than when it is oriented midway between them, as 
in (b) and (c). The wavefunctions that give rise to these charge densities are of the form zfjr), xf(r) 
and yfjr) and are called the p,, p,, p,  orbitals, respectively In an axially symmetric field, as shown, 
the p, andp, orbitals are degenerate. The energy levels referred to the free atom (dotted line) are 
shown in (d). If the electric field does not have axial symmetry, all three states wi l l  have different 
energies. 

As an example, consider a single electron with orbital quantum number 
L = 1 moving about a nucleus, the whole being placed in an inhomogeneous 
crystalline electric field. We omit electron spin. 

In a crystal of orthorhombic symmetry the charges on neighboring ions 
will produce an electrostatic potential cp about the nucleus of the form 

where A and B are constants. This expression is the lowest degree polynomial 
in x, y, z which is a solution of the Laplace equation V2cp = 0 and compatible 
with the symmetry of the crystal. 

In free space the ground state is three-fold degenerate, with magnetic 
quantum numbers m, = 1, 0, -1. In a magnetic field these levels are split by 
energies proportional to the field B, and it is this field-proportional splitting 
which is responsible for the normal paramagnetic susceptibility of the ion. In 
the crystal the picture may be different. We take as the three wavefunctions 
associated with the unperturbed ground state of the ion 



These wavefunctions are orthogonal, and we assume that they are normalized. 
Each of the U's can he shown to have the property 

where Y2 is the operator for the square of the orbital angular momentum, in 
units of fi. The result (26) confirms that the selected wavefunctions are in fact 
p functions, having L = 1. 

We observe now that the US are diagonal with respect to the perturbation, 
as by symmetry the nondiagonal elements vanish: 

(L'z!,lecplUy) = (U,lecplR) = (uy!,lecplUz) = 0 . (27) 

Consider for example, 

(U,lecplU,) = J xyl f(r)I2(Ax2 + By2 - (A + B)z2] dx dy dz ; (28) 

the integrand is an odd function of x (and also of y) and therefore the integral 
must be zero. The energy levels are then given by the diagonal matrix 
elements: 

(U,lecplU,) = J Ifir) I2{kx4 + By2x2 - (A + B)Z%*] dx dy dz 

z A({, - 12)  , (29) 

where 

I1 = J lfir) I2x4 dx dy dz ; I2 = J 1 f(r) I2x2zj2 dx dy c2z . 

In addition, 

(UylecplUy) = B(It - 12)  ; (LrZlecpluz) = -(A + B)(I, - 1%) . 

The three cigcnstates in the crystal field are p functions with their angular 
lobes directed along each of the x, y, z axes, respectively. 

The orbital moment of each of the levels is zero, hecause 

The level still has a definite total angular momentum, since 2' is diagonal and 
gives L = 1, but the spatial components of the angular momentum are not 
constants of the motion and their time average is zero in the first approxima- 
tion. Therefore the components of the orbital magnetic moment also vanish in 
the same approximation. The role of the crystal field in the quenching process 
is to split the originally degenerate levels into nonmagnetic levels separated by 
energies % pH, SO that the magnetic field is a small perturbation in compari- 
son with the crystal field. 

At a lattice site of cubic symmetry there is no term in the potential of the 
form (24), that is, quadratic in the electron coordinates. Now the ground state 
of an ion with one p electron (or with one hole in a p shell) will be triply 
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degenerate. However, thc energy of the ion will be lowered if the ion displaces 
itself with respect to the surroundings, thereby creating a noncubic ~otent ia l  
such as (24). Silch a spontaneous displace~rle~~t is k~lown as a Jahn-Teller 
effect and is often large and important, particularly with the ~ n ~ +  and Cu2+ 
ions and with holes in alkali and silver halides. 

Spectroscopic Splitting Factor 

We suppose for convenicnce that the crystal field constants, A, B are such 
that U, = xfjr) is the orbital wave function of the ground state o l  the atom in 
the crystal. For a spin S = : there are twv possible spin states S, = -ti repre- 
sented by the spin functions a ,  P ,  which in the absence of a magnetic field are 
degenerate in the zeroth approximation. The problem is to take into account 
the spin-orbit interactior~ energy AL . S. 

If the ground state function is $, = UXa = ~f (r )a  in the zeroth approxima- 
tion, the11 in the first approximation, considering the AL . S interaction by 
standard perturbation theory, we have 

where A1 is thc cnergy difference between the U, and U, states, and Az is the 
difference between the U, and Uz states. The term in U,P actually has only a 
second-order effect on the result and may be discardcd. The expectation value 
of the orbital angular momentum to the first order is given directly by 

and the magnetic moment of the statc as measured in the z direction is 

pB($ILZ + 2SZI+) = [-(A/Al) + lIpcL, . 

As the separation between the levels S: = ?$in a field H is 

AE = gpBH = 2[1- (A/Al)jpBH , 

the g value or spectroscopic splitting factor (12) in the z dircction is 

g = 2[1 - (AlA,)] . (31) 

Van Vleck Temperature-Independent Paramagnetism 

We consider an atomic or molccl~lar system which has no magnetic Ino- 
ment in the ground statc, by which we mean that the diagonal matrix element 
of the magnetic moment operator p, is zero. 

Suppose that there is a nondiagonal matrix element (sI,azI0) of thr mag- 
netic moment operator, connecting the ground state 0 with the cxcited state s 
of energy A = E, - E ,  above the ground state. Then by standard perturbation 
theory the wavefunction of the ground statc in a weak field (pZB * 4) becon~es 



and the wavefunction of the excited state becomes 

t//l = GS - (~/A)(OIP~IS)$~ 

The perturbed ground state now has a moment 

(O'lpIO1) = ~ B ~ ( S ~ ~ ~ I O ) ~ ~ / A  , (34) 

and the upper state has a inoinent 

There are two interesting cases to consider: 

Case (a). A < k,T. The surplus population in the ground state over the 
excited state is approximately equal to NA/W,T, so that the resultant magneti- 
zation is 

which gives for the siisceptihility 

x = NI (sI Pz 10) I2/kn~ 

Here N is the number of molecules per unit volume. This contrib~ition is of 
the usual Curie form, although the mechanism of magnetization here is hypo- 
larization of the states of the system, whereas with free spins the mechanism of 
magnetization is the redistribution of ions ariiong the spin states. We note that 
the splitting A does not enter in (37) .  

Case (b). A B k,T. Here the population is nearly all in the ground state, 
so that 

The susceptibility is 

~ N I ( ~ ~ P ~ I O ) ~ ~  x =  A 

independent of temperature. This type of contribution is kriow~~ as Van \'leek 
pararnagnctism. 

COOLING BY ISENTROPIC DEMAGNETIZATION 

The first method for attaining temperatures much below 1 K was that of 
isentropic, or adiabatic, demagnetization of a paramagnetic salt. By its use, 
temperatures of lo-" and lower have been reached. The method rests on the 
fact that at a fixed temperature the entropy of a system of magnetic moments 
is lowcrcd by the application of a magnetic field. 
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Figure 7 During isentropic demagnetization the total entropy of the speci~ncn is constant. For 
effective cooling the ir~itial arrtropy of the lattice should he small in comparison \vith the entropy 
of the spin system. 

The entropy is a measure of the disorder of a system: the greater the dis- 
order, the higher is the entropy. In the magnetic field the moments will be 
partly lined up (partly ordered), so that the entropy is lowered by the field. 
The entropy is also lowered if the temperati~re is lowered, as more of the mo- 
rrlents line up. 

I l  the lnagnctic field can then be removed without changing the entropy 
of thc spin system, the order of the spin syste~ri will look like a lower tempera- 
ture than the same degree of order in the presence of the field. When the 
specimen is demagnetized at constant entropy, entropy can flow into the spin 
system only from the system of lattice vibrations, as in Fig. 7. At the tempera- 
tures of interest the entropy of the lattice vibrations is usually negligible, thus 
the entropy o l  the spin system will be essentially constant during isentropic 
demagnetization of the specimen. Magnetic cooling is a one-shot operation, 
not cyclic. 

We first find an expression for the spin entropy o l a  system of N ions, each 
of spin S, at a temperature sufficiently high that the spin system is entirely dis- 
ordered. That is, T is supposed to be much higher than some temperature A 
wl~ich characterizes the energy of the interactions (E,, - kBA) tending to 
orient the spins prcfcrcntially. Some of these interactions are discussed in 
Chapter 12. Thc definition of the entropy u of a system of G accessible states 
is u = kg In 6. At a temperature so high that all of the 2 s  + 1 states of each 
ion are nearly equally populated, G is the number orways of arranging N spins 
in 25 + 1 states. Thus G = (2s + I ) ~ ,  whence thc spin entropy us is: 



Figure 8 Entropy for a spin system as a function of temperature, assuming an internal random 
magnetic field BA of 100 gauss. The specimen is magnetized isothermally along ab, and is then 
insulated thermally The external magnetic field is turned off along bc. In order to keep the figure 
on a reasonable scale the initial temperature TI is lower than would be used in practice, and so is 
the external magnetic field. 

This spin entropy is reduced by a magnetic field if the lower levels gain in 
population when the field separates the 2s + 1 states in energy. 

The steps carried out in the cooling process are shown in Fig. 8. The field 
is applied at temperature T ,  with the specimen in good thermal contact with 
the surroundings, giving the isothermal path ab. The specimen is then insu- 
lated (Au = 0) and the field removed, the specimen follows the constant en- 
tropy path bc, ending up at temperature T2. The thermal contact at T ,  is pro- 
vided by helium gas, and the thermal contact is broken by removing the gas 
with a pump. 

The population of a magnetic sublevel is a function only of pB/kBT, hence 
of B/T. The spin-system entropy is a function only of the population distribu- 
tion; hence the spin entropy is a function only of BIT. If B, is the effective 
field that corresponds to the local interactions, the final temperature T2 
reached in an isentropic demagnetization experiment is 

where B is the initial field and T I  the initial temperature. 

Nuclear Demagnetization 

Because nuclear magnetic moments are weak, nuclear magnetic interac- 
tions are much weaker than similar electronic interactions. We expect to reach 
a temperature 100 times lower with a nuclear paramagnet than with an elec- 
tron paramagnet. The initial temperature T ,  of the nuclear stage in a nuclear 
spin-cooling experiment must be lower than in an electron spin-cooling 
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Initial magnetic field in kG 

I ~ t i a l  BIT in 10%/~ 

Figure 9 Nuclear dcrnaglletizations of copper nuclei in the metal, starting frottr 0.012 K and 
various fields. (After M. V. Hobden and N. Kurti.) 

experiment. If we start at B = 50 kG and T ,  = 0.01 K, then pB/kBT1 = 0.5, 
and the entropy decrease on magnetization is over 10 percent of the maximum 
spin entropy. This is sufficient to overwhelln the lattice and from (41) we esti- 
mate a final temperature T2 = K. The first nuclear cooling experiment 
was carried out on Cu nuclei in the metal, starting from a first stage at about 
0.02 K as attained by electronic cooling. The lowest temperature reached was 
1.2 X lo-". 

The results in Fig. 9 fit a line of the form of (41): TZ = T1(3.1/B) with B in 
gauss, so that BA = 3.1 gauss. This is the effective interaction field of the 
magnetic moments of the Cti nuclei. The motivation for using nuclei in a metal 
is that conduction electrons help ensure rapid thermal contact of lattice and 
nuclei at the temperature of the first stage. 

PARAMAGNETIC SUSCEPTIBILITY OF CONDUCTION ELECTRONS 

\Ve are going to try to show how on the hasia of these statistics the fact that 
many metals arc diamagnetic, or only weakly paramagnetic, can be brought into 
agreement with tllr existence of a magnetic moment of the electrons. 

W. Pauli. 1927 

Classical free clcctron theory gives an unsatisfactory account of the para- 
magnetic ~usceptihi l i t~ of the conduction electrons. An electron has aqsociated 
with it a magnetic moment of one Bohr magneton, pB. One might expect that 



the conduction electrons would make a Curie-type paramagnetic contribution 
(22) to the magnetization of the metal: M = N & B / k B ~ .  Instead it is observed 
that the magnetization of most normal nonferromagnetic metals is indepen- 
dent of temperature. 

Pauli showed that the application of the Fermi-Dirac distribution (Chapter 6) 
would correct the theory as required. We first give a qualitative explanation. 
The result (18) tells us that the probability an atom will be lined up parallel to 
the field B exceeds the probability of the antiparallel orientation by roughly 
pBIkBT. For N atoms per unit volume, this gives a net magnetization 
=Np2BIkBT, the standard result. 

Most conduction electrons in a metal, however, have no possibility of turning 
over when a field is applied, because most orbitals in the Fermi sea with parallel 
spin are already occupied. Only the electrons within a range kBT of the top of the 
Fermi distribution have a chance to turn over in the field; thus only the fraction 
TITF of the total number of electrons contribute to the susceptibility. Hence 

which is independent of temperature and of the observed order of 
magnitude. 

We now calculate the expression for the paramagnetic susceptibility of a 
free electron gas at T < T,. We follow the method of calculation suggested by 
Fig. 10. An alternate derivation is the subject of Problem 5. 

Total energy, Idnetic + 
magnetic, of electrons 

I 

- Fermi level 

- Density of 
orbitals 

Figure 10 Pauli paramagnetism at absolute zero; the orbitals in the shaded regions in (a) are 
occupied. The numbers of electrons in the "up" and "down" band will adjust to make the energies 
equal at the Fermi level. The chemical potential (Fermi level) of the moment up electrons is equal 
to that of the moment down electrons. In (b) we show the excess of moment up electrons in the 
magnetic field. 
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The concentration of electrons with magnetic nlonrents parallel to the 
magnetic ficld is 

written for absolute zero. Here ~ D ( E  + pB) is the density of orbitals of one 
spin orientation, with allowance for the downward shift of energy by -pB. 
The approximation is written for kgT 4 eF. 

The concentration of electrons with magnetic moments antiparallel to the 
magnetic field is 

The magnetization is given by 12.1 = p(N+ - I"), SO that 

with D ( e F )  = 3 N / 2 ~ ~  = 3N/2ksTF from Chapter 6. The result (45) gives the 
Pauli spin magnetization or the conduction electrons, for k,T 4 e,. 

In deriving the paramagnetic snsceptihility, we have supposed that 
the spatial motion of thc electrons is not affected by the magnetic field. But 
the wavefunctions are modified by the magnetic field; Landau has shown that 
for free electrons this causes a diamagnetic 1rlome11t equal to -$ of the para- 
magnetic moment. Thus the total magrletization of a free electron gas is 

Before comparing (46) with the experiment we must take account of the 
diamagnetism of the ionic cores, of band effects, and of electron-electron in- 
teractions. In sodiiim the interaction effects increase the spin susceptibility by 
perhaps 75 percent. 

The magnetic susceptibility is considerably higher for most transition 
metals (with unfilled inner electron shells) than for the alkali metals. The high 
values suggest that the density of orbitals is linusually high for transition met- 
als, in agreement with measurements of the electronic heat capacity. We saw 
in Chapter 9 how this arises from hand theory. 

SUMMARY 
(In CGS Units) 

The diamagnetic s~isceptihility of N atoms of atornic number Z is ,y = 

-Ze2N(?)/6rnc" where (r2) is the mean square atomic radius. (Lange*?n) 

Atoms with a permanent magnetic moment p have a paramagnetic susccpti- 
bility x = N / ~ , ~ l 3 k ~ T ,  for pB <. kRT. (Curie-Langevin) 



For  a system of spins S = $, the exact rnag~letizatiorl is M = 

N p  tanh(pA/kBT), where p = agpB. (Brillouin) 

The grolind state of clectrons in the same shell have the  maximum value of 
S allowed by the Pauli principle and the maximum I, consistent with this S. 
The J value is L + S if the shell is more than half fill1 and IL - SI if thc shcll 
is less than half full. 

A cooling process operates by demagnetization of a paramagnetic salt at 
constant entropy. The final temperature reached is of the  order of 
(B,/B)T,,,,,,,. where B, is the effective local field and B is the  initial applied 
magnetic field. 

The para~nagnetic susceptibility of a F e r ~ n i  gas of corlductiorl electrons is 
,y = 3Np2/2eF, independent of temperature for kgT 4 eF. (Pauli) 

Problems 

1. Diamagnetic susceptibility of atomic hydrogen. The wave function of the 
hydrogen atom in its ground state (Is) is $=  (.rra~)-'/'exp(-r/a,,), where 
a, = fi2/m" 0.529 X 10-'cm. The charge density is p(x, y, z )  = -el$12, accordmg 
to the statistical interpretation of the wave function. Show that for this state 
(?) = 3ai, and calculate the molar diamagnetic susceptibility of atomic hydrogen 
(-2.36 X 10 cm3/mole). 

2. Hund rules. Apply the Hund rules to find the ground state (the basic level in the 
notation of Table 1) of (a) Eu++, in the configuration 4f7 5sZp6; (b) Yb3+; (c) Tb3+. 
The results for (b) and (c) are in Table I, but you should give the separate stcps in 
applying the rules. 

3.  Triplet excited states. Solnc organic lnolecules have a triplet (S = 1) excited state 
at an energy k,A above a singlct (S = 0) ground state. (a) Find an expression fnr the 
magnetic momcnt (p) in a ficld B. (b) Show that the susceptibility fnr T % A is ap- 
proximately independent of A. (c) With thc hclp of a diagram of energy levels versus 
ficld and a rongh sketch of entropy verslls field, explain how this system might be 
cooled by isentropic magnetixation (not den~agneti~ation). 

4 .  Heat capacity from internal degrees of freedom. (a) Corlsider a two-level systerrl 
with an energy splitting kgA between upper and lower states; the splittirrg rnay arise 
h r n  a magnetic field or in other ways. Show that the heat capacity per systern is 

The function is plotted in Fig. 11. Peaks of this type in the heat capacity are often 
known as Schottky anomalies. The maximum heat capacity is quite high, but for 
T < A and for T % A the heat capacity is low. (b) Show that for T * A we have 
C - kB(A/2T)' + . . . . The hyperfine interaction between nuclear and electronic mag- 
netic moments in paramagnetic salts (and in systems hating electron spin order) causes 
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x = Tlh 

Figure 11 Heat capacity of a two-level system as a function of TlA, where A is the level splitti~~g. 
The Schottky anorllaly in the heat capacity is a very useful tool for determining e n e r g  level split- 
tings of ions in rare-earth and transition-grnnp metals, com~pounds, and alloys. 

Figure 12 The normal-statc heat capacity of gallium 
at 1' < 0.21 K. The nnclear q ~ ~ a d r n ~ o l e  (C cc T-') and 
conduction electron (C T) contributions dominate 
the heat capacity at very low te~nperatures. (After 
N. E. Phillips.) 

splittings mlth A = 1 to 100 mK. These splittings are often detected experimentally by 
the presence of a ten11 in 1/P in the heat capacity in the region T * A. Nuclear electric 
quadrupole interactions wit11 crystal fields also cause splittings, as in Fig. 12. 

5.  Pauli spin susceptibility.  Tlre spin s~wceptibility of a conduction electron gas at 
alsolute zero may be approacl~ed hy another mcthod. Let 



be the corrcentrations of spin-up and spin-down electrons. (a)  Show that in a mag- 
netic field B the total energy of the spin-up band in a frcc clcctron gas is 

where E,  = $A's,, in terms of the Ferini energy eF in zero magnetic field. Find a 
similar cxprcssion for E-.  (b)  hlinimize = E+ + E-  with respect to [ and solve 
for the equilibrium valuc of 5 in thc approximation 5 < 1. Go on to show that the 
magnetization is M = 3NpEB12sF, in agreement with Eq. (45). 

6. Conduction electron ferromagnetism. We approximate the effect of exchange 
interactions among the condnction clcctrons if we assurnc that electrons with paral- 
lel spins interact with each other with energy -V, and V is positive, while electrons 
wit11 aritiparallel spins do not interact with each other. (a) Show with the help of 
Problerrr 5 that the total energy of the spin-up hand is 

find a similar expression for E-. (b)  Minimize the total energy and solve for 5 in the 
limit [ + 1. Show that the magnetization is 

so that the exchange interaction enhances the susccptihility. (c) Show that with 
B = 0 the total energy is unstalde at [ = 0 when V > 4sF/3N. If this is satisfied, a 
ferrorrragrretic state (i # 0) will have a lower energy than the paramagnctic statc. 
Because of the assn~rrptio~i 5 < 1, this is a s~~fficient condition for ferromagnctism, 
but it may not be a necessary co~~dit ion.  I t  is known as tlie Stoner condition. 

7 .  Two-level system. The result of Problerrl4 is often seen in another form. (a) If the 
two energy levels are at A  and A ,  show that the energy arid heat ca~~acity are 

(b)  If the systerrl has a random composition sr~ch that all values of A  arc cqually 
likely up to some limit A,, show tlvat the heat capacity is linearly proportional to thc 
temperature, provided k,T 4 A,. This result was applied to the heat capacity of di- 
lute magnetic alloys by JV. Marshall, Phys. Rev. 118, 1519 (1960). It is also used in 
the theory of glasses. 

8. Paramagnetism of S = 1 system. (a) Find the ~nagneti~,atiorr as a function of 
magnetic field and temperature for a system of spins with S - 1, rnoment fi2 and 
concentration n. (b)  Show that in the limit pB 4 kT the result is M - (2r~p"~3kT)R. 


