MENSURATION-II

An object which occupies space has usually three dimensions: length, breadth, and depth. Such an object is usually called a *solid*.

Given below are some commonly known solids:

CUBOID

- 1. Volume = $(l \times b \times h)$
- 2. Total surface area = 2(lb + bh + lh)
- 3. Diagonal = $\sqrt{l^2 + b^2 + h^2}$
- 4. Area of 4 walls of a room = $2 \times h (l + b)$

CUBE

In cube l = h = b

- 1. Volume = $(l)^3$
- 2. $l = \sqrt[3]{\text{volume}}$
- 3. Total surface area = $6(l)^2$
- 4. Diagonal = $l \sqrt{3}$

SPHERE

- (i) Let radius of sphere = r
 - 1. Volume = $\frac{4}{3} \pi r^3$
 - 2. Total surface area = $4\pi r^2$

- (ii) Hemi-sphere (half-sphere)
 - 1. Volume = $\frac{2}{3}\pi r^3$
 - 2. Curved surface area = $2\pi r^2$ Total surface area = $3\pi r^2$

CYLINDER

- 1. Volume = $\pi r^2 h$
- 2. Curved surface area = $2\pi rh$
- 3. Total surface area $= 2 \pi r (r + h)$

CONE

- 1. Slant height = $l = \sqrt{r^2 + h^2}$
- 2. Volume $=\frac{1}{3} \pi r^2 h$
- 3. Curved surface area = πrl
- 4. Total surface area = $\pi r (r + l)$

Example 1: A trench is 10 m long, 5 m broad, and $3\frac{1}{2}$ m deep. The earth dugout from this trench is evenly spread on a road which is 200 m long and 5 m broad. Find the height of the earth spread on the road.

(a)
$$16\frac{2}{3}$$
 cm (b) $6\frac{2}{3}$ cm

(b)
$$6\frac{2}{3}$$
 cm

(c)
$$16\frac{3}{5}$$
 cm

(c)
$$16\frac{3}{5}$$
 cm (d) $15\frac{3}{5}$ cm

(e) None of these

Solution. (a): Volume of the trench

$$= 10 \times 5 \times \frac{10}{3} = \frac{500}{3} \text{ cu m}$$

The area of the road = $200 \times 5 = 1000$ sq m.

∴ Height of the earth spread =
$$\frac{500}{3} \times \frac{1}{1000}$$

= $\frac{1}{6}$ m = $16\frac{2}{3}$ cm

Example 2: How many bricks will be required to build a wall 30 m long, 30 cm thick and 5 m high with a provision of 2 doors, each 2.5 m \times 1.2 m; each brick being 20 cm \times 16 cm \times 8 cm when 1/9 of the wall is filled with lime?

- (a) 15000
- (b) 25000
- (c) 35000
- (d) 500
- (e) None of these

Solution. (a): Area of wall = $30 \times 5 = 150$ sq m Area of 2 doors = $2 \times 2.5 \times 1.2 = 6$ sq m

 \therefore Remaining area of wall = 150 – 6 = 144 sqm.

Volume of wall =
$$144 \times \frac{30}{100} = \frac{216}{5}$$
 cu m

Lime used in the wall = $\frac{216}{5} \times \frac{1}{9} = \frac{24}{5}$ cu m

.. Volume of the bricks used in the wall

$$= \frac{216}{5} - \frac{24}{5} = \frac{192}{5} \text{ cu m}$$
Volume of 1 brick = $\frac{20}{100} \times \frac{16}{100} \times \frac{8}{100} \text{ cu cm}$

$$= \frac{8}{3125} \text{ cu m.}$$

.. Number of bricks =
$$\frac{\frac{192}{5}}{\frac{8}{3125}} = \frac{192 \times 3125}{40}$$

= 15000.

Example 3: The inner diameter of a hollow metallic sphere is 18" and its thickness is 2". Find the weight of the sphere, if the weight of 1 cu ft metal is 486 lbs.

- (a) 701.5 lbs
- (b) 700.0 lbs
- (c) 709.5 lbs
- (d) 710.5 lbs

(e) None of these

Solution. (c): Inner radius of the sphere = $\frac{18}{2}$

= 9 inches

Inner volume of the sphere = $\frac{4}{2} \pi r^3$

$$= \frac{4}{3} \pi \times 9^3 \text{ cu inches}$$

Outer radius of the sphere = 9 + 2 = 11 inches

:. Outer volume of the sphere

$$= \frac{4}{3} \pi \times 11^3 \text{ cu inches}$$

:. Volume of the metal used in the sphere

$$= \frac{4}{3}\pi(11^3 - 9^3) \text{ cu inches}$$

$$= \frac{4}{3} \times \frac{22}{7}(1331 - 729)$$

$$= \frac{88 \times 602}{21} = 2522.67 \text{ cu inches}$$

:. Weight of the sphere

$$= \frac{2522.67}{12 \times 12 \times 12} \times 486 = 709.5 \text{ lbs.}$$

Example 4: The volume of a cone is equal to that of a cylinder whose height is 9 cm and diameter 60 cm. What is the radius of the base of cone if its height is 108 cm?

- (a) 10 cm
- (b) 15 cm
- (c) 20 cm
- (d) 25 cm
- (e) None of these

Solution. (b): Volume of cylinder = $\pi r^2 h$

$$= \frac{22}{7} \times 30 \times 30 \times 9 \text{ cu cm}$$
Volume of a cone = $\frac{1}{3}\pi r^2 \times \text{height}$
= $\frac{1}{3} \times \frac{22}{7} \times r^2 \times 108 \text{ cu cm}$
 $\therefore \frac{22}{7} \times 30 \times 30 \times 9 = \frac{1}{3} \times \frac{22}{7} \times r^2 \times 108$

$$\therefore r^2 = \frac{30 \times 30 \times 9 \times 3}{108} = 225 \text{ or } r = 15 \text{ cm}$$

Example 5: There is a cubical room whose length is 10 m. How many students can it accommodate if each student requires 5 cu m of space?

(a) 100

(b) 150

(c) 200

(d) 250

(e) None of these

Solution. (c): Volume of room = $(10)^3$ cu m = 1000 cu m

Space required for a student = 5 cu m

$$\therefore$$
 Required number of students $=\frac{1000}{5} = 200$.

Example 6: Three cubes whose edges are 3 cm, 4 cm, and 5 cm respectively are melted to form a single cube. The surface of the new cube will be:

- (a) 100 sq m
- (b) 216 sq m
- (c) 200 sq m
- (*d*) 150 sq m
- (e) None of these

Soltuion. (b): Volume of 1st, 2nd and 3rd cube is 27, 64 and 125 cu cm.

Total volume of all three cubes = 27 + 64 + 125=216 cu cm

- \therefore Edge of new cube = $\sqrt[3]{216}$ = 6 cm
- \therefore Surface of the new cube = $6 \times (6)^2 = 216$ sq cm.

Example 7: Find the length of the longest rod that can be placed in a room 12 m long 9 m broad and 8 m high.

- (a) 16 m
- (b) 17 m
- (c) 15 m
- (d) 12 m
- (e) None of these

Solution. (b): The longest rod that can be placed in the room is equal to the length of its diagonal.

: Length of the longest rod

$$= \sqrt{12^2 + 9^2 + 8^2} = \sqrt{144 + 81 + 64}$$

$$=\sqrt{289} = 17 \text{ m}$$

Example 8 : Find the volume of a right circular cone whose height is 24 cm and diameter of the base is 20 cm.

- (a) $2514\frac{2}{7}$ cu cm (b) $2004\frac{1}{5}$ cu cm
- (c) $2510\frac{3}{5}$ cu cm (d) $2156\frac{3}{7}$ cu cm
- (e) None of these

Solution. (a): Volume of cone = $\frac{1}{3}\pi r^2 h$

$$= \frac{1}{3} \times \frac{22}{7} \times 10 \times 10 \times 24$$
$$= \frac{17600}{7} \text{ cu cm.} = 2514 \frac{2}{7} \text{ cu cm.}$$

Example 9 : Find the height of a right circular cone which is formed by melting a solid cylinder 3.5 m high and 2 m in radius. The radius of the base of the cone being equal to the radius of the cylinder.

- (a) 11.5 m
- (b) 12.5 m
- (c) 10.6 m
- (d) 10.5 m
- (e) None of these

Solution. (*d*): Volume of the cylinder

$$= \frac{22}{7} \times 2 \times 2 \times 3.5 = 44 \text{ cu m}$$

Radius of the base of the cone = 2 m

$$\therefore \quad \frac{1}{3}\pi r^2 h = 44$$

$$h = \frac{3 \times 44 \times 7}{22 \times 2 \times 2} = \frac{21}{2} = 10.5 \text{ m}$$

Example 10: A spherical iron shell with 21 cm external diameter weighs $22775 \frac{5}{21}$ grams. Find the thickness of the shell if the metal weighs 10 gram per cu m.

- (a) $0.5 \, \text{cm}$
- $(b) 1.0 \, \text{cm}$
- (c) 2.0 cm
- (d) 2.5 cm
- (e) None of these

Solution. (c): Let internal radius be r cm.

Internal volume = $\frac{4}{3} \pi r^3$ cu cm.

External radius = $\frac{21}{2}$ cm.

∴ External volume

$$=\frac{4}{3} \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2} = 4851 \text{ cm}$$

: Volume of the metal of the shell

$$=\frac{478280}{21}\times\frac{1}{10}=\frac{47828}{21}$$
 cu cm.

Internal volume of the metal of the shell

$$= \left(4851 - \frac{47828}{21}\right) = \left(\frac{101871 - 47828}{21}\right)$$

$$=\frac{54043}{21}$$
 cu cm.

$$\frac{4}{3}\pi r^3 = \frac{54043}{21}$$

$$\frac{4}{3} \times \frac{22}{7} \times r^{3} = \frac{54043}{21}$$

$$\therefore \qquad r^{3} = \frac{54043 \times 3 \times 7}{21 \times 4 \times 22}$$

or
$$r^3 = 614.125$$

or $r = 8.5$ cm
 \therefore Thickness = $(10.5 - 8.5)$
= 2 cm.

EXERCISE

- 1. A wall 8 m long 6 m high and 22.5 cm thick is made up of bricks each measuring (25 cm × 11.25 cm × 6 cm). The number of bricks required is:
 - (a) 6000
- (b) 5600
- (c) 6400
- (d) 7200
- (e) None of these
- 2. The maximum length of rod that can be kept in a rectangular box of dimensions 8 cm × 6 cm × 2 cm, is:
 - (a) $2\sqrt{13}$ cm
- (b) $2\sqrt{14}$ m
- (c) $2\sqrt{26}$ cm
- (d) $10\sqrt{2}$ m
- (e) None of these
- 3. A rectangular block 6 cm × 12 cm × 15 cm is cut up into exact number of equal cubes. The least possible number of cubes will be:
 - (*a*) 6

- (b) 11
- (c) 33
- (d) 40
- (e) None of these
- **4.** Three cubes of iron whose edges are 6 cm, 8 cm and 10 cm respectively are melted and formed into a single cube. The edge of the new cube formed is:
 - (a) 12 cm
- (b) 14 cm
- (c) 16 cm
- (d) 18 cm
- (e) None of these
- **5.** The surface area of a cube is 600 cm. The length of its diagonal is :
 - (a) $10/\sqrt{3}$ cm
- (b) $10/\sqrt{2}$ cm
- (c) $10\sqrt{3}$ cm
- (*d*) $10\sqrt{2}$ cm
- (e) None of these

- **6.** A beam 9 m long, 40 cm wide and 20 cm high is made up of iron which weighs 50 kg per cubic metre. The weight of the beam is:
 - (a) 56 kg
- (b) 48 kg
- (c) 36 kg
- (d) 27 kg
- (e) None of these
- 7. The sum of the length, breadth and depth of a cuboid is 19 cm and its diagonal is $5\sqrt{5}$ cm. Its surface area is:
 - (a) 361 cm^2
- (b) 125 cm^2
- (c) 236 cm^2
- (d) 486 cm^2
- (e) None of these
- **8.** Given that 1 cu cm of marble weighs 25 gms, the weight of a marble block 28 cm in width and 5 cm thick is 112 kg. The length of the block is:
 - (a) 36 cm
- (b) 37.5 cm
- (c) 32 cm
- (d) 26.5 cm
- (e) None of these
- **9.** The volume of a wall, 5 times as high as it is broad and 8 times as long as it is high, is 12.8 cu metres. The breadth of the wall is:
 - (a) 30 cm
- (b) 40 cm
- (c) 22.5 cm
- (d) 25 cm
- (e) None of these
- **10.** In a shower 5 cm of rain falls. The volume of water that falls on 1.5 hectares of ground is:
 - (a) 75 cu m
- (b) 750 cu m
- (c) 7500 cu m
- (d) 75000 cu m
- (e) None of these

EXPLANATORY ANSWERS

1.(c): Number of bricks =
$$\frac{800 \times 600 \times 22.5}{25 \times 11.25 \times 6}$$

= 6400.

2. (c): Required length =
$$\sqrt{(8^2 + 6^2 + 2^2)}$$
 cm
= $\sqrt{104}$ = $2\sqrt{26}$ cm

Num-Abl.-11-II

3. (d): Volume of rectangular block = $(6 \times 12 \times 15)$ = 1080 cm^3 The side of largest cube = HCF of 6 cm, 12 cm, 15 cm = 3 cmVolume of cube= $(3 \times 3 \times 3) \text{ cm}^3 = 27 \text{ cm}^3$ Number of cubes = (1080/27) = 40.

4. (a): Volume of the new cube = $[6^3 + 8^3 + (10)^3]$ = 1728 cu cm Let the edge of new cube be a cm Then, $a^3 = 1728 = (4 \times 4 \times 4 \times 3 \times 3 \times 3)$ $\Rightarrow a = 12$ cm

5. (c): $6 a^2 = 600 \implies a^2 = 100 \text{ or } a = 10 \text{ cm}$ So, diagonal = $\sqrt{3}a = 10\sqrt{3}$ cm.

6. (c): Volume =
$$(9 \times \frac{40}{100} \times \frac{20}{100})$$
 cu m = $\frac{18}{25}$ cu m
So, weight of the beam = $(\frac{18}{25} \times 50)$ kg
= 36 kg.

7.(c): (l+b+h) = 19 and $\sqrt{l^2 + b^2 + h^2} = 5\sqrt{5}$ and so $(l^2 + b^2 + h^2) = 125$ Given $(l+b+h)^2 = 19^2$

Now
$$(l^2 + b^2 + h^2) + 2(lb + bh + lh) = 361$$

 $\Rightarrow 2(lb + bh + lh) = (361 - 125) = 236$
So, surface area = 236 cm².

8. (c): Let length = x cm

82

Then,
$$x \times 28 \times 5 \times \frac{25}{1000} = 112$$

So,
$$x = \frac{112 \times 1000}{28 \times 5 \times 25} = 32 \text{ cm}$$

So, length of block = 32 cm

9. (b): Let, breadth = x metres. Then, height = 5x metres and length = 40x metres So, $x \times 5x \times 40x = 12.8$

or
$$x^3 = \frac{12.8}{200} = \frac{128}{2000} = \frac{64}{1000}$$

So,
$$x = \frac{4}{10} \text{ m} = \left(\frac{4}{10} \times 100\right) \text{ cm} = 40 \text{ cm}$$

10. (b): Area =
$$(1.5 \times 10000)$$
 sq . metres
= 15000 sq metres.
Depth = $5/100$ m = $1/20$ m
So, Volume = $(Area \times Depth)$
= $(15000 \times 1/20) = 750$ cu m.