## [4 marks]

Q.1. Maximise Z = 8x + 9y subject to the constraints given below :

 $2x + 3y \le 6; \ 3x - 2y \le 6; \ y \le 1; \ x, \ y \ge 0$ 

#### Ans.

Given constraints are

 $2x + 3y \le 6$ 

 $3x - 2y \le 6$ 

 $y \leq 1$ 

 $x, y \ge 0$ 

# For graph of $2x + 3y \le 6$

We draw the graph of 2x + 3y = 6

| x | 0 | 3 |
|---|---|---|
| У | 2 | 0 |

 $2 \times 0 + 3 \times 0 \le 6 \Rightarrow (0,0)$  satisfy the constraints.

Hence, feasible region lie towards origin side of line.

### For graph of $3x - 2y \le 6$

We draw the graph of line 3x - 2y = 6.

| x | 0      | 2 |
|---|--------|---|
| У | -<br>3 | 0 |



 $3 \times 0 - 2 \times 0 \le 6 \Rightarrow$  Origin (0, 0) satisfy 3x - 2y = 6.

Hence, feasible region lie towards origin side of line.

#### For graph of $y \le 1$

We draw the graph of line y = 1, which is parallel to x-axis and meet y-axis at 1.

 $0 \le 1 \Rightarrow$  feasible region lie towards origin side of y = 1.

Also,  $x \ge 0$ ,  $y \ge 0$  says feasible region is in 1st quadrant

Therefore, OABCDO is the required feasible region, having corner point O(0, 0), A(0, 1),

 $B\left(\tfrac{3}{2},1\right),\,C\left(\tfrac{30}{13},\tfrac{6}{13}\right)\,D\bigl(2,\,0\bigr).$ 

Here, feasible region is bounded. Now the value of objective function Z = 8x + 9y is obtained as.

| Corner Point                    | Z = 8 <b>x</b> + 9 <b>y</b> |
|---------------------------------|-----------------------------|
| O (0, 0)                        | 0                           |
| A (0, 1)                        | 9                           |
| $B(\frac{3}{2},1)$              | 21                          |
| $C(\frac{30}{13},\frac{6}{13})$ | 22.6                        |
| D(2, 0)                         | 16                          |

Z is maximum when  $x = \frac{30}{13}$  and  $y = \frac{6}{13}$ .

Q.2. Minimize and maximize Z = 5x + 2y subject to the following constraints:

 $x-2y \le 2$ ,  $3x+2y \le 12$ ,  $-3x+2y \le 3$ ,  $x \ge 0$ ,  $y \ge 0$ 

Ans.

Here, objective function is

$$Z = 5x + 2y \qquad \dots (i)$$

Subject to the constraints :

$$x - 2y \le 2 \qquad \dots (ii)$$

$$3x + 2y \le 12$$
 ...(*iii*)

 $-3x + 2y \le 3 \qquad \dots (iv)$ 

$$x \ge 0, y \ge 0 \qquad \dots (v)$$

Graph for  $x - 2y \leq 2$ 

We draw graph of x - 2y = 2 as

| X | 0 | 2 |
|---|---|---|
| У | Ι | 0 |
| - | 1 |   |

 $0-2\times 0\leq 2$ 

[By putting x = y = 0 in the equation]

*i.e.*, (0, 0) satisfy (*ii*)  $\Rightarrow$  feasible region lie origin side of line x - 2y = 2.

#### Graph for $3x + 2y \le 12$

We draw the graph of 3x + 2y = 12.

| x | 0 | 4 |
|---|---|---|
| У | 6 | 0 |

 $3\times 0+2\times 0\leq 12$ 

[By putting x = y = 0 in the given equation]

*i.e.*, (0, 0) satisfy (*iii*)  $\Rightarrow$  feasible region li

⇒ feasible region lie origin side of line 3x + 2y = 12.



#### Graph for $-3x + 2y \le 3$

We draw the graph of  $-3x + 2y \le 3$ 

| X | -1 | 0   |
|---|----|-----|
| У | 0  | 1.5 |

 $-3 \times 0 + 2 \times 0 \le 3$ [ By putting x = y = 0]

*i.e.*, (0, 0) satisfy  $(iv) \Rightarrow$  feasible region lies origin side of line -3x + 2y = 3.

 $x \ge 0, y \ge 0$   $\Rightarrow$  feasible region is in Its quadrant.

Now, we get shaded region having corner points *O*, *A*, *B*, *C* and *D* as feasible region. The co-ordinates of *O*,

A, B, C and D are O(0, 0),  $A(2, 0) B\left(\frac{7}{2}, \frac{3}{4}\right)$ ,  $C\left(\frac{3}{2}, \frac{15}{4}\right)$  and  $D\left(0, \frac{3}{2}\right)$ , respectively.

Now, we evaluate Z at the corner point as.

| Corner Point                             | Z = 5x + 2y |           |
|------------------------------------------|-------------|-----------|
| O (0, 0)                                 | 0 —         | → Minimum |
| A (2, 0)                                 | 10          |           |
| $B\left(\frac{7}{2},\frac{3}{4}\right)$  | 19 _        | →Maximum  |
| $C\left(\frac{3}{2},\frac{15}{4}\right)$ | 15          |           |
| $D\left(0,\frac{3}{2}\right)$            | 3           |           |

Hence, Z is minimum at x = 0, y = 0 and minimum value = 0

Z is maximum at  $x = \frac{7}{2}$ ,  $y = \frac{3}{4}$  and maximum value = 19

#### Q.3. Determine graphically the minimum value of the objective function

$$Z = -50x + 20y$$
 ...(*i*)

Subject to the constraints

 $2x - y \ge -5$  ...(*ii*)

 $3x + y \ge 3$  ...(*iii*)

 $2x - 3y \le 12$  ...(*iv*)  $x \ge 0, y \ge 0$  ...(*v*)

Ans.

First of all, let us graph the feasible region of the system of inequalities (*ii*) to (v). The feasible region (Shaded) is shown in the figure. Observe that the feasible region is unbounded.



We now evaluate Z at the corner points.

| Corner Point | $\mathbf{Z} = -50x + 20y$ |
|--------------|---------------------------|
| (0, 5)       | 100                       |
| (0, 3)       | 60                        |
| (1, 0)       | -50                       |
| (6, 0)       | -300 🔶                    |

From this table, we find that -300 is the smallest value of Z at the corner point (6, 0). Can we say that minimum value of Z is (–)300? Note that if the region would have been bounded, this smallest value of Z is the minimum value of Z. But here we see that the feasible region is unbounded. Therefore, -300 may or may not be the minimum value of Z. To decide this issue, we graph the inequality.

$$-50x + 20y < -300$$

*i.e.*, -5x + 2y < -30

and check whether the resulting open half plane has points in common with feasible region or not. If it has common points, then -300 will not be the minimum value of *Z* otherwise, -300 will be the minimum value of *Z*.

As shown in the figure, it has common points. Therefore, Z = -50x + 20y has no minimum value subject to the given constraints.