

Practice Problems

Problems based on Thermometry

Basic level

1.	A centigrade and a Fahrenheit thermometer are dipped in boiling water. The water temperature is lowered until the Fahrenheit thermometer registers 140°. What is the fall in temperature as registered by the Centigrade thermometer [CBSE PMT 1992; AIIMS 1998]						
	(a) 30°	(b) 40°	(c) 60°	(d) 80°			
2.	At what temperature the	e centigrade (Celsius) and Fah	renheit, readings are the same [RPMT 1997]				
	(a) - 40°	(b) + 40°	(c) 36.6°	(d) - 37°			
3.	Standardisation of therm	nometers is obtained with		[CPMT 1996]			
	(a) Jolly's thermometer		(b) Platinum resistance thermometer				
	(c) Thermocouple therm	nometer	(d)	Gas thermometer			
4.	The gas thermometers a	re more sensitive than liquid	thermometers because	[CPMT 1993]			
	(a) Gases expand more	than liquids	(b) Gases are easily obt	ained			
	(c) Gases are much light their states	ter	(d)	Gases do not easily change			
5۰	Mercury thermometers	can be used to measure tempe	ratures upto				
	(a) 100°C	(b) 212°C	(c) 360°C	(d) 500°C			
6.	A constant volume gas thermometer shows pressure reading of 50 <i>cm</i> and 90 <i>cm</i> of mercury at 0° <i>C</i> and 100° <i>C</i> respectively. When the pressure reading is 60 <i>cm</i> of mercury., the temperature is						
	(a) 25°C	(b) 40°C	(c) 15°C	(d) 12.5°C			
7.	The relation that converts temperature in Celsius scale to temperature in Fahrenheit scale is						
	(a) $t^{\circ}F = \frac{5}{9}(t^{\circ}C - 32^{\circ})$	(b) $t^{\circ}F = \frac{5}{9}t^{\circ}C + 32^{\circ}$	(c) $t^{\circ}F = \frac{9}{5}t^{\circ}C + 32^{\circ}$	(d) $t^{\circ}F = \frac{9}{5}(t^{\circ}C + 32^{\circ})$			
8.	A temperature difference of $5^{\circ}C$ on Celsius scale corresponds to the following temperature difference in the Fahrenheit scale						
	(a) 9° (b) 41°		(c) 2.8°	(d) 15°			
9.	Mercury boils at 367°C. However, mercury thermometers are made such that they can measure temperature up to 500°C. This is done by						
	(a) Maintaining vacuum above mercury column in the stem of the thermometer						
	(b) Filling nitrogen gas at high pressure above the mercury column						
	(c) Filling nitrogen gas	at low pressure above the men	cury column				
	(d) Filling oxygen gas at	t high pressure above the mer	cury column				
	Advance level						
10.	Which of the following is the smallest temperature						
	(a) 1° <i>R</i>	(b) 1°C	(c) 1°F	(d) 1° K			

82 Thermometry, Thermal Expansion and

Basic level

12.

- **11.** At some temperature *T*, a bronze pin in a little large to fit into a hole drilled in a steel block. The change in temperature required for an exact fit is minimum when
 - (a) Only the block is heated together

(c) Both block and pin are cooled together

If the length of a cylinder on heating increases by 2%, the area of its base will increase by [CPMT 1993] (a) 0.5% (b) 2% (c) 1% (d) 4%

(b)

(d) Only the pin is cooled

Both block and pin are heated

- (a) 0.5% (b) 2% (c) 1% (d) 4% **13.** A thin wire of length *L* increases in length by 1% when heated to a certain range of temperature. If a thin copper plate of area $2L \times L$ is heated through same range the percentage increase in area will be (a) 3% (b) 2.5% (c) 1.5% (d) 2%
- 14. Two rods of length L_1 and L_2 are made of materials of coefficients of linear expansions α_1 and α_2 respectively such that $L_1\alpha_1 = L_2\alpha_2$. The temperature of the rods is increased by ΔT and correspondingly the change in their respective lengths be ΔL_1 and ΔL_2
 - (a) $\Delta L_1 \neq \Delta L_2$
 - (b) $\Delta L_1 = \Delta L_2$
 - (c) Difference in length $(L_1 L_2)$ is a constant and is independent of rise of temperature
 - (d) Data is insufficient to arrive at a conclusion

15. A rod of length 40 *cm* has the coefficient of linear expansion $\alpha_1 = 6 \times 10^{-6} / {}^{\circ}C$. Another rod of length *l* has the coefficient of linear expansion $\alpha_2 = 4 \times 10^{-6} / {}^{\circ}C$. If the difference in length of the two rods always remain same at all temperatures, then the value of *l* is (a) 26 *cm*(b) 60 *cm*(c) 80 *cm*(d) 32 *cm*

Advance level

16. Two metal rods having same length and area of cross-section are fixed end to end between two rigid supports. The coefficients of linear expansion of the rods are α_1 and α_2 and their respective Young's moduli are Y_1 and Y_2 . The system is now cooled and it is observed that the junction between the rods does not shift at all for the condition

(a)
$$Y_1\alpha_2 = Y_2\alpha_1$$
 (b) $Y_1\alpha_1^2 = Y_2\alpha_2^2$ (c) $Y_1\alpha_1 = Y_2\alpha_2$ (d) $Y_1\alpha_2^2 = Y_2\alpha_1^2$

- **17.** The coefficient of linear expansion of crystal in one direction is α_1 and that in every direction perpendicular to it α_2 . The coefficient of cubical expansion is
 - (a) $\alpha_1 + \alpha_2$ (b) $2\alpha_1 + \alpha_2$ (c) $\alpha_1 + 2\alpha_2$ (d) None of these

Problems based on Expansion of liquid

Basic level

18. A liquid with coefficient of volume expansion γ is filled in a container of a material expansion α . If the liquid overflows on heating then

(a)
$$\gamma = 3\alpha$$
 (b) $\gamma > 3\alpha$ (c) $\gamma < 3\alpha$ (d) $\gamma = \alpha^3$

19. Water does not freeze at the bottom of the lakes in winter because

- (a) Ice is a good conductor of heat (b) Ice reflects heat and light
- (c) Of anomalous expansion of water between $4^{\circ}C$ to $0^{\circ}C$ (d) Nothing can be said
- **20.** A one litre glass flask contains some mercury. It is found that at different temperatures the volume of air inside the flask remains the same. What is the volume of mercury in this flask if coefficient of linear expansion of glass is $9 \times 10^{-6} / °C$ while of volume expansion of mercury is $1.8 \times 10^{-4} / °C$

(a) 50 cc (b) 100 cc (c) 150 cc (d) 200 cc

Advance level

21. A metal ball immersed in alcohol weighs W_1 at 0°C and W_2 at 59°C. The coefficient of cubical expansion of the metal is less than that of alcohol. Assuming that the density of metal is large compared to that of alcohol, it can be shown that [CPMT 1998]

(a)
$$W_1 > W_2$$
 (b) $W_1 = W_2$ (c) $W_1 < W_2$ (d) $W_2 = (W_1 / 2)$

22. In a vertical U-tube containing a liquid, the two arms are maintained at different temperatures t_1 and t_2 . The liquid columns in the two arms have heights l_1 and l_2 respectively. The coefficient of volume expansion of the liquid is equal to

(a)
$$\frac{l_1 - l_2}{l_2 t_1 - l_1 t_2}$$

(b) $\frac{l_1 - l_2}{l_1 t_1 - l_2 t_2}$
(c) $\frac{l_1 + l_2}{l_2 t_1 + l_1 t_2}$
(d) $\frac{l_1 + l_2}{l_1 t_1 + l_2 t_2}$

Problems based on Application of thermal expansion

Basic level

- **23.** Two spheres of same size are made of the same material but one is solid and the other is hollow. They are heated to the same temperature
 - (a) Both spheres expand equally (b) The solid sphere expands more
 - (c) The hollow sphere expands more (d) Data is insufficient to arrive at a conclusion
- 24. A bimetallic strip is made up of two metals with different α
 (a) On heating, it bends towards the metal with high α(b) On heating, it bends towards the metal with low α
 (c) On cooling, it bends towards the metal with high α(d) On cooling, it bends towards the metal with low α
- **25.** A metal rod of length L_0 , made of material of Young's modulus *Y*, area *A* is fixed between two rigid supports. The coefficient of linear expansion of the rod is α . The rod is heated such that the tension in the rod is *T*
 - (a) $T \propto L_0$ (b) $T \propto A_0^0$ (c) $T \propto A$ (d) $T \propto L_0^0$
- **26.** A triangular plate has two cavities, one square and one rectangular as shown. The plate is heated

- (b) *a* and *b* both increase
- (c) *a* and *b* increase, *x* and *l* decrease

(b) 2

- (d) *a*, *b*, *x* and *l* all increase
- **27.** The coefficient of volume expansion of a solid is *x* times the coefficient of linear expansion. Then *x* is

(c) 2.5

- (d) 3
- **28.** The metal of a pendulum clock has a coefficient of expansion as $2 \times 10^{-5} / K$. Its period is 2*s* at 15°*C*. If the temperature increases to 25°*C*, shall the clock

(a) Show correct time (b) Lose time (c) Gain time (d) First lose and then gain time

Advance level

29. Three rods of equal length *l* are joined to form an equilateral triangle *PQR*. *O* is the mid point of *PQ*. Distance *OR* remains same for small change in temperature. Coefficient of linear expansion for *PR* and *RQ* is same *i.e.* α_2 but that for *PQ* is α_1 . Then

(a) $\alpha_2 = 3\alpha_1$

84 Thermometry, Thermal Expansion and

(b) $\alpha_2 = 4\alpha_1$

(c) $\alpha_1 = 3\alpha_2$

(d) $\alpha_1 = 4\alpha_2$

Problems based on Specific heat, thermal capacity and water equivalent

Basic level

30.	Amount of heat required to raise the temperature of a body through 1K is called its [M					
	(a) Water equivalent	(b) Thermal capacity	(c) Entropy	(d) Specific heat		
31.	The specific heat of metals at low temperature is					
	(a) Proportional to T	(b) Proportional to T^2	(c) Proportional to T^3	(d) Independent of T		
32.	A body of mass <i>m</i> gram has specific heat <i>c</i>					
	(a) Heat capacity of the body is <i>mc</i>		(b) Water equivalent of the body is m			
	(c) Water equivalent of the body is <i>mc</i>		(d) Heat capacity of the body is c			
	Advance level					
33.	A system <i>S</i> receives hea constant at 50° <i>C</i> when t to 34.9° <i>C</i> in 1 <i>minute</i> . Th	t continuously from an electr he surrounding temperature is e heat capacity of <i>S</i> is	ical heater of power 10 W s 20°C. After the heater is	<i>V</i> . The temperature of <i>S</i> becomes switched off, <i>S</i> cools from 35.1° <i>C</i>		

(a) $750 \ J(^{\circ}C)^{-1}$ (b) $1500 \ J(^{\circ}C)^{-1}$ (c) $3000 \ J(^{\circ}C)^{-1}$ (d) $6000 \ J(^{\circ}C)^{-1}$

Problems based on Latent heat

Basic level

- **34.** A metallic ball and highly stretched spring are made of the same material and have the same mass. They are heated so that they melt, the latent heat required
 - (a) Are the same for both
 - (b) Is greater for the ball
 - (c) Is greater for the spring
 - (d) For the two may or may not be the same depending upon the metal
- **35.** A mass of liquid with volume V_1 is completely changed into a gas of volume V_2 at a constant external pressure P and temperature T. If the latent heat of evaporation for the given mass is L, then the increase in the internal energy of the system is **[Roorkee 1999]**

(c)
$$L - P(V_2 - V_1)$$
 (d) L

(d) 8 kq

36. During the melting of a slab of ice at 273 *K* at atmospheric pressure

(b) $P(V_2 - V_1)$

- (a) Positive work is done by ice-water system on the atmosphere
- (b) Positive work is done on the ice-water system by the atmosphere
- (c) The internal energy of the ice-water system increases
- (d) The internal energy of the ice-water system decreases
- **37.** 1 *gm* steam at 100°*C* can melt how much ice at $0^{\circ}C$

(a)
$$\frac{80}{540} gm$$
 (b) $\frac{540}{80} gm$ (c) 8 gm

- **38.** The melting of solids under atmospheric pressure is
 - (a) An isometric change

- (b) An isobaric change
- (c) Both isobaric and isothermal change (d) An adiabatic change

39.	3.2 <i>kg</i> of ice at – 10° <i>C</i> just melts with a mass <i>m</i> of steam						
	(a) $m = 400 \ gm$	(b) <i>m</i> = 800 <i>gm</i>	(c) $m = 500 \ gm$	(d) $m = 900 \ gm$			
40.	A 10 kg iron bar (specif	ic heat 0.11 <i>cal/gm</i> -°C) at 80°	C is placed on a block of ic	e. How much ice melts			
	(a) 1.1 <i>kg</i>	(b) 10 <i>kg</i>	(c) 16 <i>kg</i>	(d) 60 <i>kg</i>			
41.	Water at 0° <i>C</i> was boiled away over a burner supplying heat at a constant rate. If the time to raise the temperature from 0° <i>C</i> to 100° <i>C</i> is 5 <i>min</i> and the time to boil away at 100° <i>C</i> is 28 <i>min</i> , then the specific latent heat of steam in $J g^{-1}$ is (take $s = 1.0 \text{ cal } g^{-1} K^{-1}$)						
	(a) 540	(b) 2250	(c) 2352	(d) 2392			
	• Advance level						
42.	An object of mass 3.5 kg is situated at a height of 2 km from the earth's surface at a temperature of $-15^{\circ}C$. it i dropped from rest. It falls in a tube containing ice at $0^{\circ}C$ and immediately comes to rest. During the journey it temperature becomes $0^{\circ}C$ due to friction with air as it reaches the surface of the earth. If g is 10 m/s ² and latent heat of ice is $3.5 \times 10^5 J/kg$, the object will melt						
	(a) 400 <i>gm</i> of ice	(b) 300 <i>gm</i> of ice	(c) 200 <i>gm</i> of ice	(d) 100 <i>gm</i> of ice			
43.	An immersion heater ta normal boiling point T_2 the liquid is <i>c</i> and heat heat of vaporisation is $Mc(T_2 - T_1)t_2$	kes time t_1 to raise the tempe . In a further time t_2 , a mass c losses to the atmosphere an $mc(T_2 - T_2)t_2$	erature of a mass M of a lie m of the liquid is vaporized d to the containing vessed $McT_{-}T_{-}$	quid from a temperature T_1 to its ed. If the specific heat capacity of 1 are ignored, the specific latent <i>mt</i> .			
	(a) $\frac{mt_1}{mt_1}$	(b) $\frac{me(r_2 - r_1)r_2}{MT_1}$	(c) $\frac{mt_1}{mt_1}$	(d) $\frac{m_1}{Mc(T_2 - T_1)t_2}$			
		Problems based	on Caloriemetru				
► F	Rasic level						
4.4	100 a of ice is mixed wi	th 100 a of water at 100°C W	bat will be the final temp	erature of the mixture[SCPA 1006]			
44.	100 g of ice is mixed wi	th 100 g of water at 100°C. W	that will be the final temp	erature of the mixture[SCRA 1996]			
44.	100 g of ice is mixed wi (a) $10^{\circ}C$	th 100 <i>g</i> of water at 100° <i>C</i> . W (b) 20° <i>C</i>	hat will be the final temp (c) 30°C	erature of the mixture[SCRA 1996] (d) 40° <i>C</i>			
44. 45.	100 g of ice is mixed wi (a) 10°C One kg of ice at 0°C is m	th 100 <i>g</i> of water at 100° <i>C</i> . W (b) 20° <i>C</i> nixed with 1 <i>kg</i> of water at 10	That will be the final temp (c) 30°C °C. The resulting tempera	erature of the mixture[SCRA 1996] (d) 40°C ture will be			
44. 45.	100 g of ice is mixed wi (a) 10°C One kg of ice at 0°C is m (a) Between 0°C and 10	th 100 <i>g</i> of water at 100° <i>C</i> . W (b) 20° <i>C</i> nixed with 1 <i>kg</i> of water at 10 0° <i>C</i> (b)	That will be the final temp (c) 30°C °C. The resulting tempera Equal to 0°C	erature of the mixture[SCRA 1996] (d) $40^{\circ}C$ ture will be (c) Less than $0^{\circ}C$ (d)			
44. 45. 46.	100 g of ice is mixed with (a) 10°C One kg of ice at 0°C is mixed (a) Between 0°C and 10 1 g of ice at 0°C is mixed the mixture is	th 100 g of water at 100°C. W (b) 20°C nixed with 1 kg of water at 10 °C (b) ed with 1g of steam at 100°C	That will be the final temp (c) 30°C °C. The resulting tempera Equal to 0°C . After thermal equilibriu	erature of the mixture[SCRA 1996] (d) 40°C ture will be (c) Less than 0°C (d) m is attained the temperature of			
44. 45. 46.	100 g of ice is mixed with (a) $10^{\circ}C$ One kg of ice at $0^{\circ}C$ is mixed (a) Between $0^{\circ}C$ and $10^{\circ}C$ 1 g of ice at $0^{\circ}C$ is mixed the mixture is (a) $1^{\circ}C$	th 100 <i>g</i> of water at 100° <i>C</i> . W (b) 20° <i>C</i> nixed with 1 <i>kg</i> of water at 10 0° <i>C</i> (b) ed with 1 <i>g</i> of steam at 100° <i>C</i> (b) 50° <i>C</i>	That will be the final temp (c) 30°C °C. The resulting tempera Equal to 0°C . After thermal equilibriu (c) 81°C	erature of the mixture[SCRA 1996] (d) 40°C ture will be (c) Less than 0°C (d) m is attained the temperature of (d) 100°C			
44. 45. 46. 47.	100 g of ice is mixed with (a) 10°C One kg of ice at 0°C is mixed (a) Between 0°C and 100 1 g of ice at 0°C is mixed the mixture is (a) 1°C A 50 gm piece of iron and specific heat of iron in the	th 100 g of water at 100°C. W (b) 20°C nixed with 1 kg of water at 10° 0°C (b) ed with 1g of steam at 100°C (b) 50°C t 100°C is dropped into 100 g <i>Calorie/gm</i> °C will be	That will be the final temp (c) 30°C °C. The resulting temperat Equal to 0°C . After thermal equilibriu (c) 81°C gm water at 20°C. The tem	erature of the mixture[SCRA 1996] (d) 40°C ture will be (c) Less than 0°C (d) m is attained the temperature of (d) 100°C nperature of mixture 25.5°C. The			
44. 45. 46. 47.	100 g of ice is mixed with (a) 10°C One kg of ice at 0°C is mixed (a) Between 0°C and 10C 1 g of ice at 0°C is mixed the mixture is (a) 1°C A 50 gm piece of iron and specific heat of iron in the (a) 0.341	th 100 <i>g</i> of water at 100° <i>C</i> . W (b) 20° <i>C</i> nixed with 1 <i>kg</i> of water at 100° 0° <i>C</i> (b) ed with 1 <i>g</i> of steam at 100° <i>C</i> (b) 50° <i>C</i> (b) 50° <i>C</i> t 100° <i>C</i> is dropped into 100 <i>g</i> <i>Calorie/gm</i> ° <i>C</i> will be (b) 0.267	That will be the final temp (c) 30°C °C. The resulting temperat Equal to 0°C . After thermal equilibriu (c) 81°C gm water at 20°C. The tem (c) 0.082	erature of the mixture[SCRA 1996] (d) 40°C ture will be (c) Less than 0°C (d) m is attained the temperature of (d) 100°C nperature of mixture 25.5°C. The (d) 0.148			
44. 45. 46. 47. 48.	100 g of ice is mixed with (a) 10°C One kg of ice at 0°C is mixed (a) Between 0°C and 100 1 g of ice at 0°C is mixed the mixture is (a) 1°C A 50 gm piece of iron and specific heat of iron in 0 (a) 0.341 A mass m of steam at 100 all the ice is melted and	th 100 g of water at 100°C. W (b) 20°C nixed with 1 kg of water at 100°C (b) ed with 1g of steam at 100°C (b) 50°C (c) 50°C t 100°C is dropped into 100 g Calorie/gm°C will be (b) 0.267 D0°C is to be passed into a version of the temperature is raised to 50°C	 That will be the final temperation (c) 30°C °C. The resulting temperation Equal to 0°C After thermal equilibriu (c) 81°C m water at 20°C. The temperation (c) 0.082 ssel containing 10g of ice 5°C. Neglecting heat absor 	erature of the mixture[SCRA 1996] (d) 40°C ture will be (c) Less than 0°C (d) m is attained the temperature of (d) 100°C nperature of mixture 25.5°C. The (d) 0.148 and 100 <i>g</i> of water at 0°C so that bed by the vessel, we get			
44. 45. 46. 47. 48.	100 <i>g</i> of ice is mixed with (a) 10° <i>C</i> One <i>kg</i> of ice at 0° <i>C</i> is mixed (a) Between 0° <i>C</i> and 100 1 <i>g</i> of ice at 0° <i>C</i> is mixed the mixture is (a) 1° <i>C</i> A 50 <i>gm</i> piece of iron and specific heat of iron in 0 (a) 0.341 A mass <i>m</i> of steam at 100 all the ice is melted and (a) $m = 2.1g$	th 100 g of water at 100°C. W (b) 20°C nixed with 1 kg of water at 100°C (b) 60°C (c) 50°C (c) 50°C	 That will be the final temperative (c) 30°C °C. The resulting temperative Equal to 0°C After thermal equilibriu (c) 81°C gm water at 20°C. The temperative (c) 0.082 ssel containing 10g of ice (c) 0.082 ssel containing 10g of ice (c) 0.082 (c) Neglecting heat absorption (c) m = 6.3g 	erature of the mixture[SCRA 1996] (d) $40^{\circ}C$ ture will be (c) Less than $0^{\circ}C$ (d) m is attained the temperature of (d) $100^{\circ}C$ nperature of mixture 25.5°C. The (d) 0.148 and 100g of water at 0°C so that bed by the vessel, we get (d) $m = 8.4g$			
 44. 45. 46. 47. 48. 49. 	100 g of ice is mixed with (a) $10^{\circ}C$ One kg of ice at $0^{\circ}C$ is mixed (a) Between $0^{\circ}C$ and $10^{\circ}C$ 1 g of ice at $0^{\circ}C$ is mixed the mixture is (a) $1^{\circ}C$ A 50 gm piece of iron and specific heat of iron in the (a) 0.341 A mass m of steam at 100 all the ice is melted and (a) $m = 2.1g$ A ball of thermal capace containing water. The many and its contents rises for	th 100 <i>g</i> of water at 100° <i>C</i> . W (b) 20° <i>C</i> nixed with 1 <i>kg</i> of water at 10° 0° <i>C</i> (b) ed with 1 <i>g</i> of steam at 100° <i>C</i> (b) 50° <i>C</i> (c) 50° <i>C</i>	That will be the final temper (c) $30^{\circ}C$ $^{\circ}C$. The resulting temperating temperating temperating temperating temperating to $0^{\circ}C$. After thermal equilibriu (c) $81^{\circ}C$ gm water at $20^{\circ}C$. The temperature of furnace. It is 200 gr temperature of furnace.	erature of the mixture[SCRA 1996] (d) $40^{\circ}C$ ture will be (c) Less than $0^{\circ}C$ (d) m is attained the temperature of (d) $100^{\circ}C$ nperature of mixture 25.5° <i>C</i> . The (d) 0.148 and 100 <i>g</i> of water at 0° <i>C</i> so that bed by the vessel, we get (d) <i>m</i> = 8.4 <i>g</i> is then transferred into a vessel <i>n</i> . The temperature of the vessel			
 44. 45. 46. 47. 48. 49. 	100 g of ice is mixed with (a) $10^{\circ}C$ One kg of ice at $0^{\circ}C$ is mixed (a) Between $0^{\circ}C$ and $10^{\circ}C$ 1 g of ice at $0^{\circ}C$ is mixed the mixture is (a) $1^{\circ}C$ A 50 gm piece of iron and specific heat of iron in $0^{\circ}C$ (a) 0.341 A mass m of steam at 10° all the ice is melted and (a) $m = 2.1g$ A ball of thermal capacity containing water. The mand its contents rises for (a) $640^{\circ}C$	th 100 <i>g</i> of water at 100° <i>C</i> . W (b) 20° <i>C</i> mixed with 1 <i>kg</i> of water at 100° <i>C</i> (b) ed with 1 <i>g</i> of steam at 100° <i>C</i> (b) 50° <i>C</i> (c) 50° <i>C</i> t 100° <i>C</i> is dropped into 100 <i>g</i> <i>Calorie/gm</i> ° <i>C</i> will be (b) 0.267 50° <i>C</i> is to be passed into a ver the temperature is raised to 5 (b) $m = 4.2g$ ity 10 <i>cal</i> /° <i>C</i> is heated to the forwater equivalent of vessel and from 10° <i>C</i> to 40° <i>C</i> . What is the (b) 64° <i>C</i>	That will be the final temper (c) $30^{\circ}C$ $^{\circ}C$. The resulting temperating temperating temperating temperating temperating the temperating temperature of the temperature of temperat	erature of the mixture[SCRA 1996] (d) $40^{\circ}C$ ture will be (c) Less than $0^{\circ}C$ (d) m is attained the temperature of (d) $100^{\circ}C$ nperature of mixture 25.5°C. The (d) 0.148 and 100 <i>g</i> of water at 0°C so that bed by the vessel, we get (d) $m = 8.4g$ is then transferred into a vessel n. The temperature of the vessel (d) $100^{\circ}C$			
 44. 45. 46. 47. 48. 49. 	100 <i>g</i> of ice is mixed with (a) 10° <i>C</i> One <i>kg</i> of ice at 0° <i>C</i> is mixed (a) Between 0° <i>C</i> and 100 1 <i>g</i> of ice at 0° <i>C</i> is mixed the mixture is (a) 1° <i>C</i> A 50 <i>gm</i> piece of iron and specific heat of iron in the (a) 0.341 A mass <i>m</i> of steam at 100 all the ice is melted and (a) $m = 2.1g$ A ball of thermal capace containing water. The main and its contents rises for (a) 640° <i>C</i> Advance level	th 100 <i>g</i> of water at 100° <i>C</i> . W (b) 20° <i>C</i> nixed with 1 <i>kg</i> of water at 100° <i>C</i> (b) ed with 1 <i>g</i> of steam at 100° <i>C</i> (b) 50° <i>C</i> (c) 50° <i>C</i>	That will be the final temper (c) $30^{\circ}C$ °C. The resulting temperating temperating temperation (c) $81^{\circ}C$ (c) $81^{\circ}C$ (c) 0.082 (c) 0.082 (c) 0.082 (c) 0.082 (c) $m = 6.3g$ (c) $m = 6.3g$ temperature of furnace. It (d the contents is 200 gr temperature of furnace (c) $600^{\circ}C$	erature of the mixture[SCRA 1996] (d) $40^{\circ}C$ ture will be (c) Less than $0^{\circ}C$ (d) m is attained the temperature of (d) $100^{\circ}C$ apperature of mixture 25.5°C. The (d) 0.148 and 100 <i>g</i> of water at 0° <i>C</i> so that bed by the vessel, we get (d) <i>m</i> = 8.4 <i>g</i> is then transferred into a vessel <i>n</i> . The temperature of the vessel (d) $100^{\circ}C$			
 44. 45. 46. 47. 48. 49. 	100 <i>g</i> of ice is mixed with (a) 10° <i>C</i> One <i>kg</i> of ice at 0° <i>C</i> is mixed (a) Between 0° <i>C</i> and 100 1 <i>g</i> of ice at 0° <i>C</i> is mixed the mixture is (a) 1° <i>C</i> A 50 <i>gm</i> piece of iron and specific heat of iron in 0 (a) 0.341 A mass <i>m</i> of steam at 100 all the ice is melted and (a) $m = 2.1g$ A ball of thermal capacity containing water. The of and its contents rises for (a) 640° <i>C</i> Advance level	th 100 <i>g</i> of water at 100° <i>C</i> . W (b) 20° <i>C</i> nixed with 1 <i>kg</i> of water at 10° 0° <i>C</i> (b) ed with 1 <i>g</i> of steam at 100° <i>C</i> (b) 50° <i>C</i> (c) 50° <i>C</i>	That will be the final temper (c) $30^{\circ}C$ $^{\circ}C$. The resulting temperating temperating temperating temperating temperating to $0^{\circ}C$. After thermal equilibriu (c) $81^{\circ}C$ (c) $81^{\circ}C$ (c) 0.082 (c) 0.082 (c) 0.082 (c) $m = 6.3g$ (c) $m = 6.3g$ temperature of furnace. It (d the contents is 200 gr temperature of furnace (c) $600^{\circ}C$	erature of the mixture[SCRA 1996] (d) $40^{\circ}C$ ture will be (c) Less than $0^{\circ}C$ (d) m is attained the temperature of (d) $100^{\circ}C$ nperature of mixture 25.5°C. The (d) 0.148 and 100g of water at 0°C so that bed by the vessel, we get (d) $m = 8.4g$ is then transferred into a vessel n. The temperature of the vessel (d) $100^{\circ}C$			

86 Thermometry, Thermal Expansion and

50. 10 *g* of ice at $-20^{\circ}C$ is dropped into a calorimeter containing 10 *g* of water at $10^{\circ}C$. The specific heat of water is twice that of ice. When equilibrium is reached, the calorimeter will contain

- (a) 10 g of ice and 10 g water
 (b)
 20 g water

 (c) 5 g ice and 15 g water
 (d)
 20 g ice
- **51.** Three liquids of equal volumes are thoroughly mixed. If their specific heats are s_1, s_2, s_3 and their temperatures

 $\theta_1, \theta_2, \theta_3$ and their densities d_1, d_2, d_3 respectively, then the final temperature of the mixture is

(a)
$$\frac{s_1\theta_1 + s_2\theta_2 + s_3\theta_3}{d_1s_1 + d_2s_2 + d_3s_3}$$

(b) $\frac{d_1s_1\theta_1 + d_2s_2\theta_2 + d_3s_3\theta_3}{d_1s_1 + d_2s_2 + d_3s_3}$
(c) $\frac{d_1s_1\theta_1 + d_2s_2\theta_2 + d_3s_3\theta_3}{d_1\theta_1 + d_2\theta_2 + d_3\theta_3}$
(d) $\frac{d_1\theta_1 + d_2\theta_2 + d_3\theta_3}{s_1\theta_1 + s_2\theta_2 + s_3\theta_3}$

- **52.** Equal masses of three liquids *A*, *B* and *C* have temperatures 10°*C*, 25°*C* and 40°*C* respectively. If *A* and *B* are mixed, the mixture has a temperature of 15°*C*. If *B* and *C* are mixed, the mixture has a temperature of 30°*C*. If *A* and *C* are mixed, the mixture will have a temperature of
 - (a) $16^{\circ}C$ (b) $20^{\circ}C$ (c) $25^{\circ}C$ (d) $29^{\circ}C$

${\cal A}$ nswer Sheet (Practice problems)

1.	2.	3.	4.	5۰	6.	7.	8.	9.	10.
b	a	d	a	с	a	с	a	b	с
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
a	d	d	b, c	b	с	с	b	с	с
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
с	a	с	b, c	c, d	d	d	b	d	b
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
с	a, c	b	а	а	b, c	b	с	с	а
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
с	с	а	a	b	d	d	a	a	a
51.	52.								
b	a								