UNIT-2

(Ans: K = -91)

POLYNOMIALS

It is not once nor twice but times without number that the same ideas make their appearance in the world.

1. Find the value for K for which $x^4 + 10x^3 + 25x^2 + 15x + K$ exactly divisible by x + 7.

Ans: Let $P(x) = x^4 + 10x^4 + 25x^2 + 15x + K$ and g(x) = x + 7Since P(x) exactly divisible by g(x)·**·**. r(x) = 0now $x + 7 \overline{\smash{\big)} x^4 + 10x^3 + 25x^2 + 15x + K}$ $x^4 + 7x^3$ $3x^3 + 25 x^2$ $3x^3 + 21x^2$ $4x^{2} + 15 x$ $4x^{2} + 28x$ ------13x + K- 13x - 91 _____ K + 91 _____ $\therefore K + 91 = 0$ K= -91

2. If two zeros of the polynomial $f(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$. Find the other zeros. (Ans:7, -5)

Ans: Let the two zeros are $2 + \sqrt{3}$ and $2 - \sqrt{3}$ Sum of Zeros $= 2 + \sqrt{3} + 2 - \sqrt{3}$ = 4Product of Zeros $= (2 + \sqrt{3})(2 - \sqrt{3})$ = 4 - 3 = 1Quadratic polynomial is $x^2 - (sum) x + Product$

3. Find the Quadratic polynomial whose sum and product of zeros are $\sqrt{2} + 1$, $\frac{1}{\sqrt{2} + 1}$.

Ans:
$$sum = 2\sqrt{2}$$

Product = 1
Q.P =
 $X^2 - (sum) x + Product$
 $\therefore x^2 - (2\sqrt{2}) x + 1$

- 4. If α,β are the zeros of the polynomial $2x^2 4x + 5$ find the value of a) $\alpha^2 + \beta^2$ b) $(\alpha \beta)^2$.
 - (Ans: a) -1, b) -6)

Ans:
$$p(x) = 2x^2 - 4x + 5$$

 $\alpha + \beta = \frac{-b}{a} = \frac{4}{2} = 2$
 $\alpha \beta = \frac{c}{a} = \frac{5}{2}$
 $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \alpha \beta$
Substitute then we get, $\alpha^2 + \beta^2 = -1$
 $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4 \alpha \beta$
Substitute, we get $= (\alpha - \beta)^2 = -6$

5. If α,β are the zeros of the polynomial $x^2 + 8x + 6$ frame a Quadratic polynomial whose zeros are a) $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ b) $1 + \frac{\beta}{\alpha}$, $1 + \frac{\alpha}{\beta}$. (Ans: $x^2 + \frac{4}{3}x + \frac{1}{6}, x^2 - \frac{32}{3}x + \frac{32}{3}$) **Ans:** $p(x) = x^2 + 8x + 6$ $\alpha + \beta = -8$ and $\alpha \beta = 6$ a) Let two zeros are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ Sum = $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \cdot \beta} = \frac{-8}{6} = \frac{-4}{3}$ Product = $\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha \cdot \beta} = \frac{1}{6}$ Required Q.P is $x^{2} + \frac{4}{3}x + \frac{1}{6}$ b) Let two Zeros are $1 + \frac{\beta}{\alpha}$ and $1 + \frac{\alpha}{\beta}$ sum = $1 + \frac{\beta}{\alpha} + 1 + \frac{\alpha}{\beta}$ $=2+\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$ $=2+\frac{\alpha^2+\beta^2}{\alpha\beta}$ = 2+ $\frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$ after solving this problem, We get $=\frac{32}{2}$ Product = $(1 + \frac{\beta}{\alpha})(1 + \frac{\alpha}{\beta})$ $=1+\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+1$ $=2+\frac{\alpha^2+\beta^2}{\alpha\beta}$

Substitute this sum,

We get =
$$\frac{32}{3}$$

Required Q.P. is $x^2 - \frac{32}{3}x + \frac{32}{3}$

6. On dividing the polynomial $4x^4 - 5x^3 - 39x^2 - 46x - 2$ by the polynomial g(x) the quotient is $x^2 - 3x - 5$ and the remainder is -5x + 8. Find the polynomial g(x). (Ans: $4x^2+7x+2$)

Ans:
$$p(x) = g(x) q(x) + r(x)$$

 $g(x) = \frac{p(x) - r(x)}{q(x)}$
let $p(x) = 4x^4 - 5x^3 - 39x^2 - 46x - 2$
 $q(x) = x^2 - 3x - 5$ and $r(x) = -5x + 8$
now $p(x) - r(x) = 4x^4 - 5x^3 - 39x^2 - 41x - 10$
when $\frac{p(x) - r(x)}{q(x)} = 4x^2 + 7x + 2$
 $\therefore g(x) = 4x^2 + 7x + 2$

- 7. If the squared difference of the zeros of the quadratic polynomial $x^2 + px + 45$ is equal to 144, find the value of p. (Ans: ± 18).
- Ans: Let two zeros are α and β where $\alpha > \beta$ According given condition $(\alpha - \beta)^2 = 144$ Let $p(x) = x^2 + px + 45$ $\alpha + \beta = \frac{-b}{a} = \frac{-p}{1} = -p$ $\alpha\beta = \frac{c}{a} = \frac{45}{1} = 45$ now $(\alpha - \beta)^2 = 144$ $(\alpha + \beta)^2 - 4 \alpha\beta = 144$ $(-p)^2 - 4 (45) = 144$ Solving this we get $p = \pm 18$
- 8. If α,β are the zeros of a Quadratic polynomial such that $\alpha + \beta = 24$, $\alpha \beta = 8$. Find a Quadratic polynomial having α and β as its zeros. (Ans: $k(x^2 24x + 128)$)
- Ans: $\alpha + \beta = 24$ $\alpha - \beta = 8$ $2\alpha = 32$

 $\alpha = \frac{32}{2} = 16, \therefore \alpha = 16$

Work the same way to $\alpha + \beta = 24$

So,
$$\beta = 8$$

Q.P is $x^2 - (sum) x + product$ = $x^2 - (16+8) x + 16 x 8$ Solve this, it is k ($x^2 - 24x + 128$)

9. If $\alpha \& \beta$ are the zeroes of the polynomial $2x^2 - 4x + 5$, then find the value of a. $\alpha^2 + \beta^2$ b. $1/\alpha + 1/\beta$ c. $(\alpha - \beta)^2$ d. $1/\alpha^2 + 1/\beta^2$ e. $\alpha^3 + \beta^3$

$$(Ans:-1, \frac{4}{5}, -6, \frac{-4}{25}, -7)$$

Ans: Let $p(x) = 2x^2 - 4x + 5$ $\alpha + \beta = \frac{-b}{a} = \frac{4}{2} = 2$ $\alpha\beta = \frac{c}{a} = \frac{5}{2}$ a) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ Substitute to get $= \alpha^2 + \beta^2 = -1$ b) $\frac{1}{a} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta}$ substitute, then we get $= \frac{1}{a} + \frac{1}{\beta} = \frac{4}{5}$ b) $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$ Therefore we get, $(\alpha - \beta)^2 = -6$ d) $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha\beta^2} = \frac{-1}{\left(\frac{5}{2}\right)^2}$ $\therefore \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{-4}{25}$ e) $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ Substitute this,

to get,
$$\alpha^3 + \beta^3 = -7$$

- 10. Obtain all the zeros of the polynomial $p(x) = 3x^4 15x^3 + 17x^2 + 5x 6$ if two zeroes are $-1/\sqrt{3}$ and $1/\sqrt{3}$. (Ans:3,2)
- 11. Give examples of polynomials p(x), g(x), q(x) and r(x) which satisfy the division algorithm.
 a. deg p(x) = deg q(x)
 b. deg q(x) = deg r(x)
 c. deg q(x) = 0.
- 12. If the ratios of the polynomial $ax^3+3bx^2+3cx+d$ are in AP, Prove that $2b^3-3abc+a^2d=0$

Ans: Let $p(x) = ax^3 + 3bx^2 + 3cx + d$ and α , β , r are their three Zeros but zero are in AP let $\alpha = m - n$, $\beta = m$, r = m + nsum $= \alpha + \beta + r = \frac{-b}{a}$ substitute this sum, to get $= m = \frac{-b}{a}$ Now taking two zeros as sum $\alpha\beta + \beta r + \alpha r = \frac{c}{a}$ $(m-n)m + m(m+n) + (m + n)(m - n) = \frac{3c}{a}$ Solve this problem, then we get $\frac{3b^2 - 3ac}{a^2} = n^2$

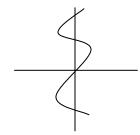
Product
$$\alpha\beta r = \frac{d}{a}$$

 $(m-n)m (m+n) = \frac{-d}{a}$
 $(m^2 - n^2)m = \frac{-d}{a}$
 $[(\frac{-b}{a})^2 - (\frac{3b^2 - 3ac}{a^2})](\frac{-b}{a}) = \frac{-d}{a}$

Simplifying we get

$$2b^3 - 3abc + a^2 d = 0$$

13. Find the number of zeros of the polynomial from the graph given.



(Ans:1)

If one zero of the polynomial $3x^2 - 8x + 2k + 1$ is seven times the other, find the 14. zeros and the value of k (Ans k = 2/3)

Self Practice

14. If (n-k) is a factor of the polynomials $x^2 + px + q \& x^2 + m x + n$. Prove that

$$\mathbf{k} = \mathbf{n} + \frac{n-q}{m-p}$$

Ans : since (n - k) is a factor of $x^2 + px + q$

:. $(n - k)^2 + p(n - k) + q = 0$ And $(n - k)^2 + m(n - k) + n = 0$

Solve this problem by yourself,

$$\therefore k = n + \frac{n-q}{m-p}$$

SELF PRACTICE 16. If 2, $\frac{1}{2}$ are the zeros of px^2+5x+r , prove that p=r.

17. If m, n are zeroes of
$$ax^2-5x+c$$
, find the value of a and c if $m + n = m.n=10$

(Ans: a=1/2,c=5)

- 18. What must be subtracted from $8x^4 + 14x^3 2x^2 + 7x 8$ so that the resulting polynomial is exactly divisible by $4x^2+3x-2$. (Ans: 14x - 10)
- 19. What must be added to the polynomial $p(x) = x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by x^2+2x-3 . (Ans: x-2)